IP-JAZMA Critical Assessment of Physics Attributions

presented at

Initial Stages 2019 June 26th , 2019

(work done with Jamie Nagle)

This work was supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

> W.A. Zajc Columbia University

Explication

- Inspiration
- Realization
- "Domaination"
- Argumentation
- Publication
- Observation
- Mystification
- Expectation
- Quantification
- Desperation

- continuation ;-)
- Identification
- Instantiation
- Fluctuation
- Illustration
- Replication
- Elucidation
- Investigation
- Clarification
- Legislation
- Summation

Inspiration

PRL 113, 112301 (2014)

PHYSICAL REVIEW LETTERS

week ending 12 SEPTEMBER 2014

Exploiting Intrinsic Triangular Geometry in Relativistic ³He + Au Collisions to Disentangle Medium Properties

J. L. Nagle,^{1,*} A. Adare,¹ S. Beckman,¹ T. Koblesky,¹ J. Orjuela Koop,¹ D. McGlinchey,¹ P. Romatschke,¹ J. Carlson,² J. E. Lynn,² and M. McCumber²

Use intrinsic geometry to test applicability of hydrodynamics in

small systems.

Realization

 These geometries also could provide a critical test of initial-state models.

"Domaination"

T. Lappi, B. Schenke, S. Schlichting, R. Venugopalan, JHEP 1601, 061 (2016) arXiv:1509.03499

FIG. 1: (Color online) Color electric fields inside the nucleus fluctuate on an event by event basis.

Argumentation

Independent orientation of color fields implies

 as opposed to hydrodynamical translation of geometry

$$v_2(p + Au) < v_2(d + Au) \approx v_2(^3He + Au)$$

 $v_3(p + Au) \approx v_3(d + Au) < v_3(^3He + Au)$

³He+A

Publication

Volume 15 Issue 3, March 2019

The geometry of a quark-gluon plasma

A quark-gluon plasma is produced in proton-gold, deuterongold and helium-gold collisions. Observing elliptic and triangular flow in this nearly inviscid fluid from these different initial geometries provides a unique benchmark for hydrodynamic models.

See Nagle et al.

Image: Javier Orjuela-Koop, University of Colorado Boulder. Cover Design: David Shand.

Creation of quark-gluon plasma droplets with three distinct geometries, PHENIX Collaboration, Nature Physics **15**, 214 (2019)

Observation

Hydro ordering!

Creation of quark-gluon plasma droplets with three distinct geometries, PHENIX Collaboration, Nature Physics **15**, 214 (2019)

Mystification

How does MSTV reproduce hydro ordering ??

Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the Color Glass Condensate, M. Mace, V. Skokov, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. **121**, 052301 (2018) referred to as "MSTV"

Expectation

• Sensitive to scale for resolving domains:

• Hint of domain ordering only for $p_T > \sim 2.5$ GeV

Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the Color Glass Condensate, M. Mace, V. Skokov, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. **121**, 052301 (2018) referred to as "MSTV"

Desperation

 Decided to develop simple model to "identify" relevant input to initial state description

Assessing saturation physics explanations of collectivity in small collision systems with the *IP-Jazma model*, J.L. Nagle and W.A. Zajc, Phys. Rev. **C99**, 054908 (2019).

Publicly available code: <u>https://github.com/jamienagle/IPJazma</u>

• IP-JAZMA: Simplest possible model of initial state to test identification or attribution of final state features

Identification

Phrase borrowed from econometrics

	Article Talk Fead Edit View history Search Wikipedia
WIKIPEDIA The Free Encyclopedia	Parameter identification problem
	From Wikipedia, the free encyclopedia
ain page ontents patured content urrent events	This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations. (December 2009) (Learn how and when to remove this template message)
ndom article	For a more technical treatment, see Identifiability.
onate to Wikipedia ikipedia store	In statistics and econometrics, the parameter identification problem is the inability in principle to identify a best estimate of the value(s) of one or more parameters in a regression. This problem can occur in the estimation of multiple-equation econometric models where the equations have variables in common.
eraction	More generally, the term can be used to refer to any situation where a statistical model will invariably have more than one set of parameters that generate the same
ap	distribution of observations, meaning that multiple parametrizations are observationally equivalent.

statistical model will invariably have more than one set of parameters that generate the same distribution of observations, meaning that multiple parametrizations are observationally equivalent.

• IP-JAZMA: Simplest possible model of initial state to test identification or attribution of final state features

Instantiation

- MC-Glauber to find transverse position for *i*-th interacting nucleon (x_i, y_i) in each event
- IP-Sat to find contribution to saturation scale:

$$Q_s^2(x,y)_i = Q_{s,0}^2 e^{-\frac{1}{2\sigma^2}[(x-x_i)^2 + (y-y_i)^2]}$$

 σ = 0.32 fm (RHIC) , 0.28 fm (LHC)

Linear sum to find local target and projectile saturation scales:

$$Q_{s}^{2}(x,y)_{proj} = \sum_{i \in proj} Q_{s}^{2}(x,y)_{i} \qquad Q_{s}^{2}(x,y)_{targ} = \sum_{i \in targ} Q_{s}^{2}(x,y)_{i}$$

• Assume:

dense-dense limit: $\epsilon(x,y) \sim g^2 Q_s^2(x,y)_{proj} Q_s^2(x,y)_{targ}$

dilute- dense limit: $n_g(x,y) \sim g^2 Q_s^2(x,y)_{proj} F(Q_s(x,y)_{targ}/m)$

$$F(x) = \int_0^x \frac{du}{u} [1 - e^{-u^2}] \sim \log x \text{ for } x \gg 1$$

Fluctuation

 Following MSTV and other CGC practitioners, IP-JAZMA has option for Q_s fluctuations:

Intrinsic Fluctuations of the Proton Saturation Momentum Scale in High Multiplicity p+p Collisions, L. McLerran and P. Tribedy, Nucl. Phys. **A945**, 216 (2016)

Illustration

IP-Jazma Au+Au event

Replication

 IP-JAZMA replicates eccentricities calculated in IP-Glasma at t = 0.000015 fm/c (Au+Au, b=0 fm)

Replication

 IP-JAZMA replicates eccentricities calculated in IP-Glasma at t = 0.000015 fm/c (Au+Au, b=9 fm)

Elucidation

• Yes, but ... ▶ IP-Jazma suggests these features result from geometry only, even without log-normal fluctuations.

(Γ-dist, not NBD)

"The best fit is given by a negative binomial (NBD) distribution, as predicted in the Glasma flux tube framework [37]; our result adds further confirmation to a previous non-perturbative study [38]", B. Schenke, P. Tribedy, R. Venugopalan, <u>arXiv:1202.6646</u>

Elimination

"In the CGC, we can analytically trace the emergence of this approximate negative binomial distribution to the multiparticle Bose statistics of gluons. The enhancement of the high multiplicity tail in the configuration of the deuteron wavefunction with overlapping nucleons is a nontrivial result originating in from the Bose enhancement of gluons in QCD that is captured in the CGC EFT", M. Mace, V. Skokov, P. Tribedy, R. Venugopalan, arXiv:1901.10506

Application

"albeit configurations with overlapping nucleons are suppressed by the available phase space, Bose statistics enhanced higher order correlations present in the CGC lead to a significant contribution of these configurations (in contrast to the MC Glauber model) in the high multiplicity tails of d+Au collisions.", M. Mace, V. Skokov, P. Tribedy, R. Venugopalan, arXiv:1901.10506

Investigation

Why does this complex expression show ~no deviation from pure 1/k²

$$\frac{dN^{\text{even}}(\mathbf{k}_{\perp})}{d^{2}kdy}[\rho_{p},\rho_{t}] = \frac{2}{(2\pi)^{3}}\frac{\delta_{ij}\delta_{lm} + \epsilon_{ij}\epsilon_{lm}}{k^{2}}\Omega^{a}_{ij}(\mathbf{k}_{\perp})[\Omega^{a}_{lm}(\mathbf{k}_{\perp})]^{\star}, \quad (2)$$

where $\Omega_{ij}^{a}(\mathbf{k}_{\perp}) = g \int [(d^{2}p)/(2\pi)^{2}] \{ [p_{i}(k-p)_{j}]/p^{2} \} \rho_{p}^{b}(\mathbf{p}_{\perp}) U_{ab}(\mathbf{k}_{\perp}-\mathbf{p}_{\perp}) \text{ and } \epsilon_{ij}(\delta_{ij}) \text{ denotes the Levi-Civita symbol}$ (Kronecker delta). The adjoint Wilson line U_{ab} is a functional of the target charge density and is the two-dimensional Fourier transform of its coordinate space counterpart: $\tilde{U}(\mathbf{x}_{\perp}) = \mathcal{P} \exp [ig^{2} \int dx^{+} [1/(\nabla_{\perp}^{2})] \tilde{\rho}_{t}^{a}(x^{+}, \mathbf{x}_{\perp}) T_{a}].$

• Hint of domain ordering only for $p_T > \sim 2.5 \text{ GeV}$

Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the Color Glass Condensate, M. Mace, V. Skokov, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. **121**, 052301 (2018) referred to as "MSTV"

Clarification

Clarification

domain ordering for $p_T > \sim 0.5$ GeV

http://www.int.washington.edu/talks/WorkShops/int_19_1b/People/Mace_M/Mace.pdf

Legislation

• Science magazine:

- Unpublished Data and Personal Communications
- Related Papers
- Security Concerns

Research standards

- Statistical Analysis
- Guidelines for Specific Types of Studies
- Data Deposition

We require that all computer code used for modeling and/or data analysis that is not commercially available be deposited in a publicly accessible repository upon publication.

Summation

- The PHENIX v_n data from p/d/³He+Au coliisons are well-described by relativistic viscous hydrodynamics.
- The same data are not described by existing initial-state models.
- IP-JAZMA has proven to be a useful diagnostic tool for *identification* and *attribution*.
- The demonstrable benefit of open-source code will lead to further progress in these investigations.

Back-Up Material

This work was supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

Continuation (words I didn't use)

- Information
- Reincarnation
- Justification
- Augmentation
- Motivation
- Affirmation
- Hallucination
- Verification
- Explanation
- Revelation
- Implementation
- Ramification

- Dramatization
- Reconciliation
- Diversification
- Unification
- Recrimination
- Abnegation
- Validation
- Moralization
- Normalization
- Animation
- Abomination
- Derivation
- Invocation

Flow and Non-Flow (Slide from J. Nagle)

 https://indico.cern.ch/event/656452/contributions/2869833/attachments/1649 479/2637419/QM18-smallsystem-shengli-10.pdf

Examination of Flow and Non-Flow Factorization Methods in Small Collision Systems

S.H. Lim, 1 Q. Hu, 1 R. Belmont, 2 K.K. Hill, 1 J.L. Nagle, 1 and D.V. Perepelitsa 1

¹University of Colorado, Boulder, Colorado 80309, USA ²University of North Carolina, Greensboro, North Carolina 27413, USA (Dated: March 1, 2019)

•https://arxiv.org/abs/1902.11290

• *HIJING and AMPT closure tests indicate significant over-subtraction by template method with STAR kinematics*

• Useful discussion moving forward, but details matter...

 Recent STAR preliminary result with small Δη gap, thus huge non-flow subtraction!

• Very sensitive to non-flow subtraction.

