

CMS high multiplicity proton-lead collisions

Measurement of elliptic and triangular flow with multiparticle correlations in pPb collisions at 8.16 TeV

Shengquan Tuo for the CMS Collaboration

stages of high energy nuclear collisions

The fifth installment on the physics of the initial

Hosted at Columbia University, New Yor June 24–28, 2019

Motivation

• Fourier harmonics v_n

$$\frac{dN}{d\phi} \propto 1 + \sum 2v_n \cos[n(\phi - \Psi_n)]$$

- Initial state $\mathcal{E}_n \rightarrow$ final state v_n
- PbPb collectivity
 - \circ Global geometry \rightarrow Elliptic flow v₂
 - \circ Fluctuation → Triangular flow v₃ and ...

• pPb

- Pure fluctuation → v_2 and v_3 ?
- o What is the distribution? Gaussian?

Motivation

Collectivity in small collision systems

- Higher order v₃ harmonics from multiparticle correlations?
 Origin of collectivity Comparing to PbPb
- Gauge the fluctuation effect
 - \circ Transport properties (η /s)

Cumulant method

- 4-particle correlator, per event $\rightarrow \langle 4 \rangle = \langle e^{-in(\varphi_1 + \varphi_2 \varphi_3 \varphi_4)} \rangle$
- 4-particle cumulant, all events $\rightarrow c_n\{4\} = \langle \langle 4 \rangle \rangle 2 \langle \langle 2 \rangle \rangle^2$

Cumulant method

- 4-particle correlator, per event $\rightarrow \langle 4 \rangle = \langle e^{-in(\varphi_1 + \varphi_2 \varphi_3 \varphi_4)} \rangle$
- 4-particle cumulant, all events $\rightarrow c_n\{4\} = \langle \langle 4 \rangle \rangle 2 \langle \langle 2 \rangle \rangle^2$
- Cumulant $v_n \rightarrow$

• Flow fluctuations \rightarrow

$$\begin{aligned} v_n \{2\}^2 &= \langle v_n \rangle^2 + \sigma_n^2 \\ v_n \{4\}^2 &= \langle v_n \rangle^2 - \sigma_n^2 \end{aligned}$$

• Gaussian fluctuations $\rightarrow v_n{4} = v_n{6} = v_n{8}$

Experiment setup

• pPb 8.16 TeV

High Multiplicity trigger

• PbPb 5.02 TeV

 \circ Minimum Bias trigger

• N_{trk}^{offline} definition:

 \circ p_T > 0.4 GeV/c, | η | < 2.4

Results: v_n in pPb

Results: v_n in pPb

Shengquan Tuo (Vanderbilt)

Results: v_n in pPb

Hydrodynamic calculation of pPb 5.02 TeV

 $\circ \sigma$ = 0.4 fm, η /s = 0.08

Consistent with data

Results: v_n in pPb and PbPb

Result: v_n {4}/ v_n {2} in pPb

v₂ and v₃ fluctuation driven

Shengquan Tuo (Vanderbilt)

arXiv:1904.11519

- TRENTo ϵ_n {4}/ ϵ_n {2} for 5.02 TeV pPb with Glauber and σ = 0.3 fm
 - Insensitive to other model parameters
 - Consistent with data

Result: v_n {4}/ v_n {2} in pPb and PbPb

Shengquan Tuo (Vanderbilt)

Results: fluctuation of eccentricity

Fluctuation driven eccentricity

 Non-Gaussian fluctuation $v_2\{4\} \gtrsim v_2\{6\} \gtrsim v_2\{8\}$

 \circ Power law distribution ε_2 (PRL 112, (2014) 082301)

Results: fluctuation of eccentricity

Fluctuation driven eccentricity

○ Non-Gaussian fluctuation v_2 {4} $\ge v_2$ {6} $\ge v_2$ {8}

 \circ Power law distribution ϵ_{2} (PRL 112, (2014) 082301)

• pPb 5.02 TeV

OPRL 115 (2015) 012301

• pPb 8.16 TeV

Improved statistics

Good agreement with predictions

Summary

- Measurement of v₃{4} in small systems
- v₂, v₃ dominated by fluctuations in pPb
- Global geometry dominates PbPb v2 results
- $v_2{4} \ge v_2{6} \ge v_2{8} \rightarrow \text{Non-Gaussian fluctuation}$
- Consistent with data: Hydro, TRENTo, power distribution

Backup: Power law distribution

Phys. Rev. Lett. 112, 082301 (2014)

$$P(\varepsilon) = 2\alpha\varepsilon(1-\varepsilon^2)^{\alpha-1}$$

TABLE I. Values of the first eccentricity cumulants for the Gaussian (2), Bessel-Gaussian (3) and power law (4) distributions.

	Gauss	BG	Power
$\varepsilon{2}$	σ	$\sqrt{\sigma^2 + \bar{\varepsilon}^2}$	$\frac{1}{\sqrt{1+lpha}}$
$\varepsilon{4}$	0	Ē	$\left[\frac{2}{\left(1+\alpha\right)^2(2+\alpha)}\right]^{1/4}$
$\varepsilon{6}$	0	Ē	$\left[rac{6}{\left(1+lpha ight)^3(2+lpha)(3+lpha)} ight]^{1/6}$
ε {8 }	0	Ē	$\left[\frac{48\left(1+\frac{5\alpha}{11}\right)}{(1+\alpha)^4(2+\alpha)^2(3+\alpha)(4+\alpha)}\right]^{1/8}$

FIG. 1. (Color online) Histogram of the distribution of ε_2 obtained in a Monte-Carlo Glauber simulation of a p-Pb collision at LHC, and fits using Eqs. (2)-(4).

Backup: quantum interference

PLB 795 (2019) 259-265

Figure 1: The elliptic flow cumulants $v_n\{2s\}(k)$ of (12), evaluated at momentum scale $Bk^2 = 1$ from (2s)-particle correlations functions (10) in which all multiple dipole contributions to all orders $\left(\frac{m^2}{(N_c^2-1)}\right)^d$ are resummed.

with increasing m while the observed qualitative trend is seen in the data.² Our conclusion is therefore limited to the statement that the model calculation presented here provides a proof of principle that quantum interference can contribute to flow-like multi-particle correlations even if both final state rescattering effects and effects of parton saturation are absent.

Shengquan Tuo (Vanderbilt)

