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Hard processes in p+Pb collisions
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• Modification of PDFs in nuclei, initial state energy loss, etc. 

• Non-linear QCD effects: angular broadening, monojet production, etc. 

• In this talk: recent photon/jet measurements in 2016 p+Pb data 

➡ All results at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults 
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R=0.4 jets in calorimeter 
system (|η| < 4.9)

Photons in EM Barrel (|η| < 1.37)  
and EM Endcap (1.56 < |η| < 2.37)
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+ High-level trigger system sampling 162/nb of 
8.16 TeV and 0.36/nb of 5.02 TeV p+Pb data



Prompt photons in 
p+Pb collisions 

(nucl-ex/1903.02209)
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• Results on Z/W in Pb+Pb shown by 
M. Dumancic (ATLAS) + others 

➡ Z’s, W’s only probe Q2 > mW/Z2, 
and probe primarily quark nPDFs 

➡ Photons probe lower-Q2, give 
access to nuclear gluons 

• Full statistics, 8.16 TeV p+Pb data 

• Measurement presented here is 
centrality-integrated (0-100%) Z production in 5.02 TeV p+Pb

Phys. Rev. C 92, 044915 (2015)
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ɣ+multi-jet event 
8.16 TeV p+Pb 

ATLAS data

high-pT photon p+Pb event
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Prompt photon cross-section in p+Pb

nucl-ex/1903.02209

forward (p-going) backward (Pb-going)

• Full cross-section vs. η (Δη ~ 4.5) and ET = 20-500 GeV 

➡ total uncertainties reach 2% in certain regions!  

➡ under-prediction of dσ/dET by JETPHOX NLO pQCD, as in pp 
collisions —> need pp data reference !

!6nucl-ex/1903.02209
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JHEP 06 (2016) 005

Use 8 TeV pp data as the 
reference in the photon RpPb  

RpPb = σp+Pb / A σpp

Multiplicative correction for larger √s 
and center-of-mass shift of p+Pb 
➡ construct with LO generator or 

NLO calculation (w/ varied PDFs) 
➡ resulting uncertainties are sub-

dominant to those on σp+Pb or σpp 

Prompt photon RpPb
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nucl-ex/1903.02209

https://link.springer.com/article/10.1007/JHEP08(2016)005
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• In shadowing region, data compatible with free nucleon PDFs 
➡but favors anti-shadowing in line with global nPDF fits
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note: RpPb < 1 
just from 

isospin effects

nucl-ex/1903.02209
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note: RpPb < 1 
just from 

isospin effects

nucl-ex/1903.02209
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• In shadowing region, data compatible with free nucleon PDFs 
➡but favors anti-shadowing in line with global nPDF fits

• Disfavors large initial state E-loss
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isospin effects
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• RpPbForward/RpPbBackward — cancel many systematic uncertainties 

• At low-ET, ratio sensitive to gluon shadowing / quark anti-shadowing  
➡ data almost compatible with free nucleon PDFs  
➡ modifications more in line with EPPS16 than nCTEQ15 

• New information for global nPDF fits!

Forward / backward RpPb ratio vs. pT
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Forward dijets in p+Pb collisions 
(nucl-ex/1901.10440)
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Au nucleus.

Au
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FIG. 4: (color online). JdA versus xfrag
Au for peripheral (60–

88%) and central (0–20%) d+Au collisions at
√
sNN = 200

GeV. The statistical error bars and systematic uncertainty
boxes are the same as in Fig. 3. Above xfrag

Au > 10−3, some

data points were offset from their true xfrag
Au to avoid overlap.

The leftmost point in each group of three is at the correct
xfrag
Au .

Because the fragmentation hadrons on average carry a
momentum fraction ⟨z⟩ < 1, xfrag

Au will be smaller than
⟨xAu⟩. Based on previous studies by PHENIX at midra-
pidity, the mean fragmentation ⟨z⟩ is expected to be be-
tween 0.5-0.75 [22]. In general the theoretical extrac-
tion of xAu from the measured pT and η will differ from
the leading order QCD picture of 2→2 processes used
above. Also, at modest pT ’s the interpretation of the
measured correlation functions as high energy 2→2 par-
ton scattering accessing low x may be limited by con-
tributions from processes with small momentum transfer
Q2. Future theoretical analysis will be necessary to eval-
uate these and other contributions from different nuclear
effects [4–10] on the observed large suppression in JdA.
These analyses could additionally be complicated by the
presence of hadron pairs originating from multiparton in-
teractions [23] that might not probe gluon structure at
low xAu.
In summary, measurements of the inclusive π0 yield

at forward rapidity, of the back-to-back correlated yield
of cluster-π0 pairs in the forward-rapidity region, and of
the correlated yield of forward-rapidity π0’s with midra-
pidity π0’s or hadrons in p+p and d+Au collisions at√
sNN = 200 GeV were presented. The correlated yields

of back-to-back pairs were analyzed for various kinematic
selections in pT and rapidity. The forward-central pair
measurements show no increase in the azimuthal angular
correlation width within experimental uncertainties. The
correlated yield of back-to-back pairs in d+Au collisions
is observed to be substantially suppressed relative to p+p
collisions with a suppression that is observed to increase
with decreasing impact parameter selection and for pairs

probing more forward rapidities.
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PHENIX suppression of central-
forward per-trigger hadron yields

• Measure forward (2.7 < y* < 4.0, i.e. proton-going), low-pT (~20-40 GeV) di-jets  

➡ 5.02 TeV p+Pb data 2016, paired with 5.02 TeV pp data 2015 

• Measurement presented here is centrality-integrated (0-90%)

centralperipheral

STAR broadening of di-hadron 
away-side Δɸ correlation
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Figure 5: Comparison of (left) W12 and (right) I12 values in pp (open symbols) and p+Pb (closed symbols) collisions
for di�erent selections of pT,1 and pT,2 as a function of y⇤2. The y⇤2 intervals are separated by dotted vertical lines.
The data points are shifted horizontally for visibility, and do not reflect an actual shift in rapidity. The vertical size
of the shaded and open boxes represents systematic uncertainties for pp and p+Pb, respectively, and the error bars
indicate statistical uncertainties. The horizontal size of the shaded and open boxes does not represent the width of the
bins. Some points are not presented due to large statistical uncertainties. Results are shown with no �pT requirement,
where �pT = pT,1 � pT,2.
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sub-leading jet rapidity

normalized to the number of forward (2.7 < y⇤1 < 4.0) leading jets N1 in a given pT,1 interval, are defined
as:

C12(pT,1, pT,2, y⇤1, y
⇤
2) =

1
N1

dN12
d��
,

where N12 is the number of dijets, and �� is the azimuthal angle between the leading and subleading jets.
The C12 distributions are fitted and their widths W12 defined by the root-mean-square of the fit function:
W12(pT,1, pT,2, y⇤1, y

⇤
2) = RMS(C12).

In addition to dijet azimuthal angular distributions, the dijet conditional yields I12 are measured and defined
as:

I12(pT,1, pT,2, y⇤1, y
⇤
2) =

1
N1

d4N12
dy⇤1dy⇤2dpT,1dpT,2

.

The azimuthal angular correlations and conditional yields evaluated in p+Pb and pp collisions are compared
and the ratios in W12 and I12 between the two systems are calculated as:

⇢pPb
W (pT,1, pT,2, y⇤1, y

⇤
2) =

WpPb
12

Wpp
12
, ⇢pPb

I (pT,1, pT,2, y⇤1, y
⇤
2) =

IpPb
12

Ipp
12
.

To define a phase space that better suits next-to-leading-order calculations, a minimum �pT = pT,1 � pT,2
is required for the dijets [20–22]. However, techniques such as Sudakov resummation [23] can take into
account the absence of �pT requirements. Also, comparisons with fixed-order calculations and soft-gluon
resummation, which involve transverse-momentum-dependent PDFs, instead of collinear PDFs, are better
suited to scenarios not placing any minimum �pT requirement on the dijets. The results of the measurement
are therefore presented both without any requirement on �pT and with a requirement of �pT > 3 GeV.

2 Experimental setup

The measurements presented here are performed using the ATLAS calorimeter, trigger, and data acquisition
systems [24]. The calorimeter system consists of a sampling lead/liquid argon (LAr) electromagnetic
calorimeter covering |⌘ | < 3.2, a steel/scintillator sampling hadronic calorimeter covering |⌘ | < 1.7, a
LAr hadronic calorimeter covering 1.5 < |⌘ | < 3.2, and two LAr forward calorimeters (FCal) covering
3.2 < |⌘ | < 4.9. The electromagnetic calorimeters are segmented longitudinally in shower depth into three
layers plus an additional presampler layer and have a granularity that varies with the layer and pseudorapidity,
and which is also much finer than that of the hadronic calorimeter. The hadronic calorimeter has three
longitudinal sampling layers and comprises the Tile barrel and extended barrel hadronic calorimeters
covering |⌘ | < 1.7, and the hadronic endcap calorimeter (HEC) covering 1.5 < |⌘ | < 3.2. The minimum-
bias trigger scintillators detect particles over 2.1 < |⌘ | < 3.9 using two azimuthally segmented counters
placed at z = ±3.6 m. There are 12 measurements per counter. Each counter provides measurements of
both the pulse heights and the arrival times of energy deposits from each segment.

A two-level trigger system was used to select the pp and p+Pb collisions. The first level is the level-1 (L1)
hardware-based trigger implemented with custom electronics. The second level is the software-based high-
level trigger (HLT). Jet events were selected by the HLT with input from the L1 jet and transverse-energy
triggers in pp collisions, and minimum-bias trigger in p+Pb collisions. The two L1 transverse-energy
triggers used in pp collisions required the total transverse energy measured in the calorimeters to be greater
than 5 GeV and 10 GeV, respectively. The L1 jet trigger used in pp collisions required a jet to exceed

3

Conditional (i.e. per-trigger jet 
normalized) yield

explored as a function of leading 
& subleading jet kinematics

Fix leading jet rapidity y = 2.7-4.0 
(far proton-going), scan in 

subleading jet rapidity

I12(p+Pb) < I12(pp) for forward-
forward pairs?
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• No suppression for central+forward pairs  

• ~20% suppression for forward-forward pairs (no significant 
dependence on pT,1, pT,2) 
➡ these dijets probe xA ~ 10-4 to 10-3 

➡ does the suppression change the Δɸ?
!14

Quantify p+Pb modifications via: 𝜌I = I12(pPb) / I12(pp) 
(cancelling common systematic uncertainties)
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normalized to the number of forward (2.7 < y⇤1 < 4.0) leading jets N1 in a given pT,1 interval, are defined
as:

C12(pT,1, pT,2, y⇤1, y
⇤
2) =

1
N1

dN12
d��
,

where N12 is the number of dijets, and �� is the azimuthal angle between the leading and subleading jets.
The C12 distributions are fitted and their widths W12 defined by the root-mean-square of the fit function:
W12(pT,1, pT,2, y⇤1, y

⇤
2) = RMS(C12).

In addition to dijet azimuthal angular distributions, the dijet conditional yields I12 are measured and defined
as:

I12(pT,1, pT,2, y⇤1, y
⇤
2) =

1
N1

d4N12
dy⇤1dy⇤2dpT,1dpT,2

.

The azimuthal angular correlations and conditional yields evaluated in p+Pb and pp collisions are compared
and the ratios in W12 and I12 between the two systems are calculated as:

⇢pPb
W (pT,1, pT,2, y⇤1, y

⇤
2) =

WpPb
12

Wpp
12
, ⇢pPb

I (pT,1, pT,2, y⇤1, y
⇤
2) =

IpPb
12

Ipp
12
.

To define a phase space that better suits next-to-leading-order calculations, a minimum �pT = pT,1 � pT,2
is required for the dijets [20–22]. However, techniques such as Sudakov resummation [23] can take into
account the absence of �pT requirements. Also, comparisons with fixed-order calculations and soft-gluon
resummation, which involve transverse-momentum-dependent PDFs, instead of collinear PDFs, are better
suited to scenarios not placing any minimum �pT requirement on the dijets. The results of the measurement
are therefore presented both without any requirement on �pT and with a requirement of �pT > 3 GeV.

2 Experimental setup

The measurements presented here are performed using the ATLAS calorimeter, trigger, and data acquisition
systems [24]. The calorimeter system consists of a sampling lead/liquid argon (LAr) electromagnetic
calorimeter covering |⌘ | < 3.2, a steel/scintillator sampling hadronic calorimeter covering |⌘ | < 1.7, a
LAr hadronic calorimeter covering 1.5 < |⌘ | < 3.2, and two LAr forward calorimeters (FCal) covering
3.2 < |⌘ | < 4.9. The electromagnetic calorimeters are segmented longitudinally in shower depth into three
layers plus an additional presampler layer and have a granularity that varies with the layer and pseudorapidity,
and which is also much finer than that of the hadronic calorimeter. The hadronic calorimeter has three
longitudinal sampling layers and comprises the Tile barrel and extended barrel hadronic calorimeters
covering |⌘ | < 1.7, and the hadronic endcap calorimeter (HEC) covering 1.5 < |⌘ | < 3.2. The minimum-
bias trigger scintillators detect particles over 2.1 < |⌘ | < 3.9 using two azimuthally segmented counters
placed at z = ±3.6 m. There are 12 measurements per counter. Each counter provides measurements of
both the pulse heights and the arrival times of energy deposits from each segment.

A two-level trigger system was used to select the pp and p+Pb collisions. The first level is the level-1 (L1)
hardware-based trigger implemented with custom electronics. The second level is the software-based high-
level trigger (HLT). Jet events were selected by the HLT with input from the L1 jet and transverse-energy
triggers in pp collisions, and minimum-bias trigger in p+Pb collisions. The two L1 transverse-energy
triggers used in pp collisions required the total transverse energy measured in the calorimeters to be greater
than 5 GeV and 10 GeV, respectively. The L1 jet trigger used in pp collisions required a jet to exceed
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Figure 5: Comparison of (left) W12 and (right) I12 values in pp (open symbols) and p+Pb (closed symbols) collisions
for di�erent selections of pT,1 and pT,2 as a function of y⇤2. The y⇤2 intervals are separated by dotted vertical lines.
The data points are shifted horizontally for visibility, and do not reflect an actual shift in rapidity. The vertical size
of the shaded and open boxes represents systematic uncertainties for pp and p+Pb, respectively, and the error bars
indicate statistical uncertainties. The horizontal size of the shaded and open boxes does not represent the width of the
bins. Some points are not presented due to large statistical uncertainties. Results are shown with no �pT requirement,
where �pT = pT,1 � pT,2.
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Figure 6: Ratios (top) ⇢pPb
W of W12 and (bottom) ⇢pPb

I of I12 values between p+Pb collisions and pp collisions for
di�erent selections of pT,1 and pT,2 as a function of y⇤2. The data points are shifted horizontally for visibility, and do
not reflect an actual shift in rapidity. The vertical size of the open boxes represents systematic uncertainties and the
error bars indicate statistical uncertainties. The horizontal size of the open boxes does not represent the width of the
bins. Some points are not presented due to large statistical uncertainties. Results are shown with no �pT requirement,
where �pT = pT,1 � pT,2.
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Quantify p+Pb modifications via: 𝜌W = W12(pPb)/W12(pp)

• No significant angular broadening within 
uncertainties, for any set of kinematics 

• Theory calculations: interplay of saturation 
and proper treatment of Sudakov effects 
➡ interesting to explore centrality 

dependence! 

sub-leading jet rapidity
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Figure 6: Ratios (top) ⇢pPb
W of W12 and (bottom) ⇢pPb

I of I12 values between p+Pb collisions and pp collisions for
di�erent selections of pT,1 and pT,2 as a function of y⇤2. The data points are shifted horizontally for visibility, and do
not reflect an actual shift in rapidity. The vertical size of the open boxes represents systematic uncertainties and the
error bars indicate statistical uncertainties. The horizontal size of the open boxes does not represent the width of the
bins. Some points are not presented due to large statistical uncertainties. Results are shown with no �pT requirement,
where �pT = pT,1 � pT,2.
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3

FIG. 1. Broadening of distributions in p-Pb collisions vs p-p collisions for di↵erent sets of cuts imposed on the jets’ transverse
momenta. The plots show normalized cross sections as functions of the azimuthal distance between the two leading jets, ��.

saturation e↵ects, but it also takes into account sub-leading corrections to the linear term: the kinematic constraint,
DGLAP-type non-singular terms and contribution from quarks. The KS gluon distribution in the proton was fitted to
proton’s structure function data as measured at HERA [36] and the distribution in lead was obtained by modification
of the target radius, which is one of the parameters in the equation. Calculation of all TMDs in full generality
is currently beyond reach. What is possible, however, is to determine them from the KS gluon in a mean-field
approximation, which assumes that all the colour-charge correlations in the target stay Gaussian throughout the
evolution. Such an approach was adopted in Ref. [19] and we use the TMDs determined there to calculate observables
presented in this work.

RESULTS

Fig. 1 shows normalized cross sections as functions of �� in p-p and p-Pb collisions. The three panels correspond
to three di↵erent cuts on the transverse momenta of the two leading jets: 28 < p1T , p2T < 35 GeV, 35 < p1T <
45 and 28 < p2T < 35 GeV, and 35 < p1T , p2T < 45 GeV . Both jets are selected in the forward rapidity region,
2.7 < y1, y2 < 4.0, and they are defined with the anti-kT jet algorithm with the radius R = 0.4. The points with
error bars represent experimental data from Ref. [3]. It is important to note that the experiment did not measure the
cross sections. The experimental points represent the number of two-jet events normalized to the single jet events,
as a function of ��. It is not possible to calculate the single inclusive jet cross section from our formalism using the
information available in Ref. [3]. Therefore, we investigate only the shape of the experimental curves and prove that
they contain valuable information.

Theoretical predictions obtained in our framework are shown as the red bands for p-p collisions, and the blue bands
for p-Pb collisions. The Sudakov resummation described earlier has been included in the predictions. In each case,
the width of the band comes from variation of the factorization and renormalization scale by the factors 1/2 and 2,
and is interpreted as theoretical uncertainty. For each set of cuts, the normalization of our predictions was determined
from a fit to p-p data. The same value was then used for p-Pb predictions. In the individual panels, we plot the data
and the predictions for both p-p and p-Pb. The latter was shifted by a constant value determined from the data by
subtracting the p-Pb and the p-p result in the right-most bin. By representing the results that way, we see in Fig. 1
that the �� distributions are broader in the case of p-Pb with respect to p-p collisions. In our framework, such a
broadening comes from non-linear evolution of the initial state.

We observe that our predictions describe the shape of the experimental curves well, within the experimental and
theoretical uncertainties, across all jet cuts and in the entire range of��. We emphasize that this is a highly non-trivial
consequence of the two components present in our theoretical framework: gluon saturation at low x and Sudakov
resummation.

To test the robustness of our predictions, and to verify which elements of the theoretical framework we use are
essential, we performed several alternative calculations. In the first one, we switched o↵ the Sudakov resummation.

Quantify p+Pb modifications via: 𝜌W = W12(pPb)/W12(pp)

• No significant angular broadening within 
uncertainties, for any set of kinematics 

• Theory calculations: interplay of saturation 
and proper treatment of Sudakov effects 
➡ interesting to explore centrality 

dependence! 
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