SEMI-INCLUSIVE DIS, PDFs AND FFs AT A FUTURE EIC

Ignacio Borsa
Universidad de Buenos Aires

Initial Stages 2019 New York, June 26th
PDFs Selected Highlights

How well do we know the sea quarks?
PDFs Selected Highlights
How well do we know the sea quarks?

Semi-Inclusive processes in Global Fits
New insights from SIDIS
Combined extraction of PDFs & FFs

IB, R. Sassot, M. Stratmann
PDFs Selected Highlights
How well do we know the sea quarks?

Semi-Inclusive processes in Global Fits
New insights from SIDIS
Combined extraction of PDFs & FFs

Parton Distributions @ EIC
A case of study

IB, R. Sassot, M. Stratmann

E. Aschenauer, IB, R. Sassot, C. Van Hulse
Remarkable progress in the last decades:

- NNLO extractions
- High precision LHC measurements now included in fits (ATLAS/CMS W,Z production)
- Uncertainties reduction to a few percent points (and expected to be further constrained by the HL-LHC).
Remarkable progress in the last decades:

- NNLO extractions
- High precision LHC measurements now included in fits (ATLAS/CMS W,Z production)
- Uncertainties reduction to a few percent points (and expected to be further constrained by the HL-LHC).

We have a pretty clear image of how the quarks and gluons are distributed inside the proton.
Remarkable progress in the last decades:

- NNLO extractions
- High precision LHC measurements now included in fits (ATLAS/CMS W,Z production)
- Uncertainties reduction to a few percent points (and expected to be further constrained by the HL-LHC).
The strangeness puzzle

\[R_s(x, Q^2) = \frac{[s(x, Q^2) + \bar{s}(x, Q^2)]}{[u(x, Q^2) + \bar{d}(x, Q^2)]} \]

- Strange content of the proton not so well constrained.
- Tension in strangeness driven by disagreement between collider data and neutrino DIS
The strangeness puzzle

\[R_s(x, Q^2) = \frac{[s(x, Q^2) + \bar{s}(x, Q^2)]}{[\bar{u}(x, Q^2) + \bar{d}(x, Q^2)]} \]

NNLO, Q=100 GeV

- Strange content of the proton not so well constrained.
- Tension in strangeness driven by disagreement between collider data and neutrino DIS
The strangeness puzzle

\[R_s(x,Q^2) = \frac{[s(x,Q^2) + \bar{s}(x,Q^2)]}{[u(x,Q^2) + \bar{d}(x,Q^2)]} \]

Strange content of the proton not so well constrained.

Tension in strangeness driven by disagreement between collider data and neutrino DIS

There is still a lot of room for PDFs improvement
HOW WELL DETERMINED ARE THESE PARTON DISTRIBUTIONS?

The strangeness puzzle

How can we improve our knowledge of the PDFs?
What can we learn from a future Electron-Ion Collider?
HOW CAN WE IMPROVE OUR KNOWLEDGE OF THE PDFS?

Which are the experiments constraining the strangeness in the proton?

Traditional approach: completely inclusive DIS data

\[[f_q^P(x) + f_{\bar{q}}^P(x)] \]

Deuterium + Flavor symmetries for flavor separation

- DIS with electroweak currents
- W/Z production in p-p
HOW CAN WE IMPROVE OUR KNOWLEDGE OF THE PDFS?

Which are the experiments constraining the strangeness in the proton?

Traditional approach: completely inclusive DIS data

\[[f_q^P(x) + f_{\bar{q}}^P(x)] \]

Deuterium + Flavor symmetries for flavor separation

For strange distributions

Indirect sensitivity to the strange content of the proton
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

SIDIS as a tool to probe the sea quark distributions

\[\sum_q e_q^2 D_q^H(x, Q^2) \otimes f_q(x, Q^2) \]
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

SIDIS as a tool to probe the sea quark distributions

\[\sum_q e_q^2 D_q^H(x, Q^2) \otimes f_q(x, Q^2) \]

FFs acting as an effective charges, allowing for flavor a separation
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

SIDIS as a tool to probe the sea quark distributions

\[\sum_{q} e_q^2 D_q^H(x, Q^2) \otimes f_q(x, Q^2) \]
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

SIDIS as a tool to probe the sea quark distributions

\[|K^+\rangle = |u\bar{s}\rangle \quad |K^-\rangle = |\bar{u}s\rangle \]

\[\sum \quad e_q^2 \, D_q^H(x, Q^2) \otimes f_q(x, Q^2) \]

Kaon production as a tool to pin down the strangeness in the proton
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

SIDIS as a tool to probe the sea quark distributions

\[|K^+\rangle = |u\bar{s}\rangle \quad |K^-\rangle = |\bar{u}s\rangle \]

\[\sum_q e_q^2 D_q^H(x, Q^2) \otimes f_q(x, Q^2) \]

Semi-inclusive observables as a tool to probe the sea quark of the proton

PDFs & FFs global fit?
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

PDFs & FFs Combined Global Extraction: Cross-Talk between non perturbative quantities

Big number of parameters to fit
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

PDFs & FFs Combined Global Extraction: Cross-Talk between non perturbative quantities

Big number of parameters to fit

Factorial-like increase in the number of iterations needed
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

PDFs & FFs Combined Global Extraction: Cross-Talk between non perturbative quantities

- Big number of parameters to fit
- Factorial-like increase in the number of iterations needed
- Different Phase Space/Precision
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

PDFs & FFs Combined Global Extraction: Cross-Talk between non perturbative quantities

Big number of parameters to fit

Factorial-like increase in the number of iterations needed

Different Phase Space/Precision
IDENTIFIED FINAL STATE PARTICLES OBSERVABLES

PDFs & FFs Combined Global Extraction: Cross-Talk between non perturbative quantities

Some effort made in this direction:

- JAM Collaboration PDFs+FFs
 arXiv:1905.03788

- JAM Collaboration polPDFs+FFs
A different approach: Bayesian Inference

Based on the previous generation of replicas of the PDFs/FFs

$fi(x)$
A different approach: Bayesian Inference

Based on the previous generation of replicas of the PDFs/FFs

\[f_i(x) \]
A different approach: Bayesian Inference

Based on the previous generation of replicas of the PDFs/FFs

Statistically sound uncertainties

Allows for the inclusion of new data without a refit

\[
\langle \mathcal{O} \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N} \mathcal{O}[f(k)]
\]

\[
\Delta \mathcal{O}^2 = \frac{1}{(N_{\text{rep}} - 1)} \sum_{k=1}^{N} (\mathcal{O}[f(k)] - \langle \mathcal{O} \rangle)^2
\]
A different approach: Bayesian Inference

Based on the previous generation of replicas of the PDFs/FFs

We can include new information in the fit:

\[
\chi^2(y, f) = \sum_i \frac{(y_i - y_i[f])^2}{\sigma_i^2}
\]

\[
w(k) \propto e^{-\frac{1}{2} \chi^2(f_k)}
\]

\[
\langle \mathcal{O} \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N} \mathcal{O}[f(k)]
\]

\[
\Delta \mathcal{O}^2 = \frac{1}{(N_{\text{rep}} - 1)} \sum_{k=1}^{N} (\mathcal{O}[f(k)] - \langle \mathcal{O} \rangle)^2
\]
A different approach: Bayesian Inference

Based on the previous generation of replicas of the PDFs/FFs

We can include new information in the fit:

\[
\chi^2(y, f) = \sum_i \frac{(y_i - y_i[f])^2}{\sigma_i^2}
\]

\[
w(k) \propto e^{-\frac{1}{2} \chi^2(f_k)}
\]

\[
\langle \mathcal{O} \rangle_{\text{new}} = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N} \mathcal{O}[f(k)] \cdot w(k)
\]

\[
\Delta \mathcal{O}_{\text{new}}^2 = \frac{1}{(N_{\text{rep}} - 1)} \sum_{k=1}^{N} (\mathcal{O}[f(k)] - \langle \mathcal{O} \rangle_{\text{new}})^2 \cdot w(k)
\]
ITERATIVE PDF & FF EXTRACTION

ITERATIVE PDF & FF EXTRACTION

PDFs & FFs

Reweighting using SIDIS data

Modified PDFs

FFs extraction using new PDFs

FFs
ITERATIVE PDF & FF EXTRACTION

ITERATIVE PDF & FF EXTRACTION

ITERATIVE PDF & FF EXTRACTION

PDFs & FFs

Reweighting using SIDIS data

Modified PDFs

FFs extraction using new PDFs

FFs

Combined PDFs & FFs extraction including COMPASS & HERMES \(\pi \) and K SIDIS data

Robust

Fast convergence

Independent of the PDFs set used
What can we learn from SIDIS @ EIC?

Reweighting with EIC π^\pm & K^\pm SIDIS pseudo-data

10^3 NNPDF3.0 replicas
10^5 DSS14 & DSS17 replicas
What can we learn from SIDIS @ EIC?

Wide coverage in \(\{x, Q^2\} \)

5 GeV x 100 GeV \(\sqrt{s} = 45 \) GeV

20 GeV x 250 GeV \(\sqrt{s} = 140 \) GeV
What can we learn from SIDIS @ EIC?

Wide coverage in \(\{x, Q^2\} \)

- \(5 \text{ GeV} \times 100 \text{ GeV} \) \(\sqrt{s} = 45 \text{ GeV} \)
- \(20 \text{ GeV} \times 250 \text{ GeV} \) \(\sqrt{s} = 140 \text{ GeV} \)

Pseudodata generation:

- \(Q^2 > 1 \text{ GeV}^2 \)
- \(0.01 < y < 0.95 \) \(\text{PYTHIA6} \)
- \(W^2 > 10 \text{ GeV}^2 \) \(10 \text{ fb}^{-1} \)
- \(-3.5 < \eta < 3.5 \)
COMBINED PDFS & FFS EXTRACTION FROM EIC

What can we learn from SIDIS @ EIC?
What can we learn from SIDIS @ EIC?

COMBINED PDFS & FFS EXTRACTION FROM EIC

What can we learn from SIDIS @ EIC?

- 30% uncertainty reduction for u
- 20% uncertainty reduction for d

COMBINED PDFS & FFS EXTRACTION FROM EIC

What can we learn from SIDIS @ EIC?

What can we learn from SIDIS @ EIC?

Growing Q^2

Growing z

Combining PDFs & FFS Extraction from EIC

$\pi^+ \sqrt{s}=140$ GeV
What can we learn from SIDIS @ EIC?

Dominated by PDFs uncertainty

Dominated by FFs uncertainty

\[\chi^2(y, f) = \sum_i \frac{(y_i - y_i[f])^2}{\sigma_i^2} \]
What can we learn from SIDIS @ EIC?

Dominated by PDFs uncertainty

Dominated by FFs uncertainty

\[\chi^2(y, f) = \sum_i \frac{(y_i - y_i[f])^2}{\sigma_i^2} \]

Must include FF's uncertainty

EIC pseudodata

\(\pi^+ \sqrt{s}=140 \text{ GeV} \)
What can we learn from SIDIS @ EIC?

Dominated by PDFs uncertainty

Dominated by FFs uncertainty

Higher impact for the region of low Q^2 & x_B, where the PDFs are comparatively less constrained.

COMBINED PDFS & FFS EXTRACTION FROM EIC

What can we learn from SIDIS @ EIC?

30% uncertainty reduction for u
20% uncertainty reduction for d
What can we learn from SIDIS @ EIC?

E. Aschenauer, IB, R. Sassot, C. Van Hulse.
Phys.Rev. D99 (2019) no.9, 094004

\begin{align*}
\frac{s}{s_{\text{NNPDF}}} & = 1.1 \pm 0.1 \\
\frac{(s+\bar{s})}{(u+\bar{u})} & = 0.9 \pm 0.05
\end{align*}
COMBINED PDFS & FFS EXTRACTION FROM EIC

What can we learn from SIDIS @ EIC?

- Figure showing NNPDF3.0 and NNPDFrew PDFs for different xB values at √s = 45 GeV and √s = 140 GeV.

\[
\frac{s}{s_{\text{NNPDF}}} \quad \frac{(s+\bar{s})}{(\bar{u}+\bar{d})} \quad \frac{(s-s)}{(s+s)} \quad \frac{(u-d)}{(u+d)}
\]

- Expressions for different PDF combinations.

- Graphs illustrating the comparison of NNPDF3.0 and NNPDFrew for the PDF ratios and their uncertainties.
What can we learn from SIDIS @ EIC?

Remarkable reduction on the strangeness uncertainty driven by kaon SIDIS data

SIDIS can look into the proton’s strange content

What can we learn from SIDIS @ EIC?

Effect on Fragmentations

COMBINED PDFS & FFS EXTRACTION FROM EIC

SUMMARY

• There is still a lot of room for PDFs improvement

• **Semi-inclusive DIS** offers a great tool to probe the sea quark of the parton, as well as the confinement process into hadrons

 • The same analysis could be translated to nPDFs!

• **EIC semi-inclusive data** expected to provide important constrains on both PDFs & FFs, with new insights on the:

 • Proton’s strange content

 • Charge (& isospin) symmetry breaking

 • Nuclear effects on PDFs & FFs
THANK YOU
BACKUP SLIDES
What can we learn from SIDIS @ EIC?

\[\rho_w[A, B] = \frac{\langle A - \langle A \rangle \rangle \langle B - \langle B \rangle \rangle}{\sigma^w_A \sigma^w_B} \]

\[\sqrt{s} = 140 \text{ GeV} \]

\[\rho[u(x), d^3 \sigma/dx \, dQ^2 \, dz] \]

\[\rho[d(x), d^3 \sigma/dx \, dQ^2 \, dz] \]

\[\rho[s(x), d^3 \sigma/dx \, dQ^2 \, dz] \]

\[\rho[\bar{s}(x), d^3 \sigma/dx \, dQ^2 \, dz] \]

\[K^+ \quad - \quad K^- \quad - \quad . \]

COMBINED PDFS & FFS EXTRACTION FROM EIC

What can we learn from SIDIS @ EIC?

\[\rho_{w}[A, B] = \frac{\langle A - \langle A \rangle \rangle \langle B - \langle B \rangle \rangle}{\sigma_{A}^{th} \sigma_{B}^{th}} \]

\begin{align*}
\rho[u(x), K^+] = \rho[u(x), K^-] \\
\rho[\bar{u}(x), K^+] = \rho[\bar{u}(x), K^-] \\
\rho[d(x), K^+] = \rho[d(x), K^-] \\
\rho[\bar{d}(x), K^+] = \rho[\bar{d}(x), K^-] \\
\rho[s(x), K^+] = \rho[s(x), K^-] \\
\rho[\bar{s}(x), K^+] = \rho[\bar{s}(x), K^-]
\end{align*}

\(\sqrt{s} = 140 \text{ GeV} \)

\(Q^2 [\text{GeV}^2] \)

\(x_B \)
What can we learn from SIDIS @ EIC?

\[S[A, B] = \frac{\langle A - \langle A \rangle \rangle \langle B - \langle B \rangle \rangle}{\xi \sigma_A^{th} \sigma_B^{th}} \]

\[\xi = \frac{\sigma_{exp}}{\sigma_B^{th}} \]

\(\sqrt{s} = 140 \text{ GeV} \)

\(\sigma \)
What can we learn from SIDIS @ EIC?

\[\rho_w[A, B] = \frac{\langle A - \langle A \rangle \rangle \langle B - \langle B \rangle \rangle}{\sigma_A^{th} \sigma_B^{th}} \]

\[\rho[u(x), d^3\sigma/dx dQ^2 dz] \]

\[\rho[\bar{u}(x), d^3\sigma/dx dQ^2 dz] \]

\[\rho[d(x), d^3\sigma/dx dQ^2 dz] \]

\[\rho[\bar{d}(x), d^3\sigma/dx dQ^2 dz] \]

\[\rho[s(x), d^3\sigma/dx dQ^2 dz] \]

\[\rho[\bar{s}(x), d^3\sigma/dx dQ^2 dz] \]
What can we learn from SIDIS @ EIC?

\[\rho_w[A,B] = \frac{\langle A - \langle A \rangle \rangle \langle B - \langle B \rangle \rangle}{\sigma_A^{th} \sigma_B^{th}} \]

COMBINED PDFS & FFS EXTRACTION FROM EIC

What can we learn from SIDIS @ EIC?

$$S[A, B] = \frac{\langle A - \langle A \rangle \rangle \langle B - \langle B \rangle \rangle}{\xi \sigma_A^{th} \sigma_B^{th}}$$

$$\xi = \frac{\sigma_{exp}^B}{\sigma_B^{th}}$$

$$\sqrt{s} = 140 \text{ GeV}$$
\(\chi^2_{FF_s} = 1271 \)
\[\chi^2_{FFs} = 1271 \]
\[\chi^2_{FFs} = 1041 \]

REWIGHTING IN ACTION: STRANGE QUARK DISTRIBUTION
REWEIGHTING IN ACTION: STRANGE QUARK DISTRIBUTION

$\chi^2_{FFs} = 1271$

$\chi^2_{FFs} = 1041$

$\chi^2_{FFs} = 1002$
\[\chi^2_{FFs} = 1271 \]
\[\chi^2_{FFs} = 1041 \]
\[\chi^2_{FFs} = 1002 \]

- Fast convergence
- Uncertainties reduction of order 10%

REWEIGHTING IN ACTION: STRANGE QUARK DISTRIBUTION

![Graph showing reweighting in action for strange quark distribution with chi-squared values and convergence remarks.](image-url)
Starting from DSS based MMHT14

Starting from DSS based NNPDF3.0

Independency from the starting set of PDFs
Using NNPDF3.0 Replicas

Using CT14 Replicas

Independency from the set of replicas used