Computing the gluon Sivers function at small-x

Yoshitaka Hatta (BNL)

Based on Phys. Lett. B790 (2019) 361, with Xiaojun Yao and Yoshikazu Hagiwara

Transverse Single Spin Asymmetry (SSA)

Production of hadrons is left-right asymmetric!

SSA in $p^{\uparrow}p$: experiments

$$A_N = \frac{d\sigma^L - d\sigma^R}{d\sigma^L + d\sigma^R}$$

 x_F

Enhanced in the forward region $x_F
ightarrow 1$

Sivers function

Sivers (1990)

Distribution of partons can be left-right asymmetric

$f(x, \vec{k}_{\perp}) = f_1(x, |k_{\perp}|) + (\vec{k}_{\perp} \times \vec{S}_{\perp})^z f_{1T}^{\perp}(x, |k_{\perp}|)$

One of the possible origins of single spin asymmetry

Universality up to a sign

 $f_{1T}^{\perp}(x,k_{\perp}) \sim F.T. \langle PS_{\perp} | \bar{\psi}(z/2) \gamma^+ U^{[\pm]} \psi(-z/2) | PS_{\perp} \rangle$

$$U^{[+]}$$
 or $U^{[-]}$,

Sivers function flips signs (Collins 1993)

→Opposite signs when used in SIDIS (initial state interaction) and Drell-Yan (final state interaction)

Gluon Sivers function

There are two ways to make it gauge invariant

Bomhof, Mulders, Pijlman (2006) Dominguez, Marquet, Xiao, Yuan (2011)

Expected to be dominant in SSA of high-mass states SSA in the backward region

Proposals to study at EIC, RHIC, AFTER@LHC e.g., Zheng, Aschenauer, Lee, Xiao, Yin (2018)

Little constraints from theory. Factorization often assumed.

Weizsacker-Williams distribution

$${\rm Tr}[F(-z/2)U^{[+]}F(z/2)U^{[+]}]$$

Dipole distribution

$${\rm Tr}[F(-z/2)U^{[+]}F(z/2)U^{[-]}]$$

 $f_{1T}^{\perp}(x,k_{\perp}) \approx A(x)B(k_{\perp})$

Evolution of the Sivers function $f_{1T}^{\perp}(x,k_{\perp})$

$$Q^2$$
 evolution $ightarrow$ usual TMD evolution

Small-x evolution \rightarrow ??

$$f(x, \vec{k}_{\perp}) = f_1(x, |k_{\perp}|) + (\vec{k}_{\perp} \times \vec{S}_{\perp})^z f_{1T}^{\perp}(x, |k_{\perp}|)$$

$$\uparrow$$
BFKL, BK
??

In general, spin effects are suppressed at small-x.

 \rightarrow sub-eikonal effects, double logarithmic resummation $(\alpha_s \ln^2 1/x)^n$

 \rightarrow Talk by Matt Sievert on Friday

Spin-dependent Odderon

Jian Zhou (2013)

BFKL and $BK \rightarrow$ Evolution of the dipole S-matrix

$$\langle PS | \operatorname{tr} U(r_{\perp}) U^{\dagger}(0_{\perp}) | PS \rangle$$

This cannot depend on spin S^{μ} if longitudinally polarized (parallel to P^{μ})

However, it can depend on S^{μ} if transversely polarized!

$$\langle PS | \operatorname{tr} U(r_{\perp}) U^{\dagger}(0_{\perp}) | PS \rangle = P(r_{\perp}) + iS_{\perp} \times r_{\perp} Q(r_{\perp})$$

real	imaginary
Pomeron	Odderon

Dipole gluon Sivers and Odderon

Boer, Echevarria, Mulders, Zhou (2015)

$$f_{1T}^{\perp}(x,k_{\perp}) \propto rac{k_{\perp}^2}{x} \widetilde{Q}(x,k_{\perp})$$
 Fourier transform of Odderon

Small-x evolution of (dipole) gluon Sivers \rightarrow evolution of Odderon in QCD

Single logarithmic, well understood in the literature including saturation effects

Bartels (1979); Kwiecinski, Praszalowicz (1980) Kovchegov, Szymanowski, Wallon (2003) YH, Iancu, Itakura, McLerran (2004)

$$\begin{aligned} \frac{\partial}{\partial Y} O(x_{\perp}, y_{\perp}) &= \frac{\bar{\alpha}_s}{2\pi} \int d^2 z_{\perp} \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \Bigg[O(x_{\perp}, z_{\perp}) + O(z_{\perp}, y_{\perp}) - O(x_{\perp}, y_{\perp}) - O(x_{\perp}, y_{\perp}) - O(x_{\perp}, z_{\perp}) N(z_{\perp}, y_{\perp}) - N(x_{\perp}, z_{\perp}) O(z_{\perp}, y_{\perp}) \Bigg], \end{aligned}$$

Initial condition anti-symmetric $O(x_{\perp}, y_{\perp}) = -O(y_{\perp}, x_{\perp})$

Bartels-Vacca-Lipatov solution in the linear regime. Regge intercept exactly unity.

Numerical results (1)

Initial condition

$$O(|r_{\perp}|, \theta) = \kappa Q_{s0}^{3} |r_{\perp}|^{3} \sin \theta e^{-r_{\perp}^{2} Q_{s0}^{2}},$$

BLV solution \rightarrow Odderon amplitude constant? Strongly dependent on r_{\perp}

Sudakov-like suppression at small- r_{\perp}

Suppression due to the nonlinear terms

Peak position does not move. (No geometric scaling)

See, also, Lappi, Ramnath, Rummukainen, Weigert (2016)

Numerical results (2)

Always there is a node in k_\perp

Factorization $f_{1T}^{\perp}(x,k_{\perp}) \approx A(x)B(k_{\perp})$ holds approximately, unlike in unpolarized TMDs (Good news for phenomenology)

SSA in open charm production

SIDIS $ep^{\uparrow} \rightarrow DX$

$$\frac{d\sigma}{dx_B dz dQ^2 dy d^2 \ell_{\perp}} = \frac{\alpha_{\rm em}^2 e_c^2}{2\pi^4 x_B Q^2} \mathcal{A} \int \frac{d^2 k_{\perp}}{(2\pi)^2} H(k_{\perp}, \ell_{\perp}, Q^2) \epsilon^{ij} S_{\perp i} k_{\perp j} \widetilde{Q}\left(|k_{\perp}|\right).$$

$$\begin{split} H(k_{\perp}, \ell_{\perp}, Q^{2}) \\ &= \Big[1 - y + \frac{y^{2}}{2}\Big] \Big\{ \Big(z^{2} + (1 - z)^{2}\Big) \Big[\frac{\ell_{\perp} - k_{\perp}}{\rho + (\ell_{\perp} - k_{\perp})^{2}} - \frac{\ell_{\perp}}{\rho + \ell_{\perp}^{2}} \Big]^{2} + m_{c}^{2} \left(\frac{1}{\rho + (\ell_{\perp} - k_{\perp})^{2}} - \frac{1}{\rho + \ell_{\perp}^{2}} \right)^{2} \Big\} \\ &+ 4(1 - y)z^{2}(1 - z)^{2}Q^{2} \left(\frac{1}{\rho + (\ell_{\perp} - k_{\perp})^{2}} - \frac{1}{\rho + \ell_{\perp}^{2}} \right)^{2} \end{split}$$

Integral dominated by $\,k_\perp \sim l_\perp$

Node in $\widetilde{Q}(k_{\perp}) \rightarrow$ node in $\frac{d\sigma}{d^2 l_{\perp}}$

Summary

- Quark Sivers → most well-studied TMD, rich phenomenology
 Gluon Sivers → relatively unexplored, interesting at EIC.
- Related to Odderon at small-x, single-logarithmic evolution
- Suppressed at very small-x due to saturation effects
- Factorization of x and k_{\perp} looks reasonably OK
- SSA of open charm at EIC. Predict a node (nodes) in $P_{h\perp}$

Different signs in SIDIS and Drell-Yan Different signs for D^0 and \overline{D}^0 Different signs in different $P_{h\perp}$ regions

← initial/final state effects ← C-oddness ← Node in k_{\perp}