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The Vcb matrix element: Tensions

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


Matrix must be unitary
(preserve the norm)

Determination |Vcb| (·10−3)
Exclusive 39.2± 0.7
Inclusive 42.2± 0.8

PDG 2016

Based on CLN, motivated
this work
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The Vcb matrix element: Measurement from exclusive
processes

dΓ

dw

(
B̄ → D∗`ν̄`

)
︸ ︷︷ ︸

Experiment

=
G2
Fm

5
B

48π2
(w2 − 1)

1
2P (w) |ηew|2︸ ︷︷ ︸

Known factors

|F(w)|2︸ ︷︷ ︸
Theory

|Vcb|2

The amplitude F must be calculated in the theory

Extremely difficult task, QCD is non-perturbative

Can use effective theories (HQET) to say something about F
Separate light (non-perturbative) and heavy degrees of freedom as mQ →∞
limmQ→∞ F(w) = ξ(w), which is the Isgur-Wise function
We don’t know how ξ(w) looks like, but we know ξ(1) = 1

At large (but finite) mass F(w) receives corrections O
(
αs,

ΛQCD
mQ

)
Reduction in the phase space (w2 − 1)

1
2 limits experimental results at w ≈ 1

Need to extrapolate |Vcb|2 |ηewF(w)|2 to w = 1
This extrapolation is done using well established parametrizations
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The Vcb matrix element: The parametrization issue

All the parametrizations perform an expansion on the z parameter

z =

√
w + 1−

√
2

√
w + 1 +

√
2

Boyd-Grinstein-Lebed (BGL) Phys. Rev. Lett. 74 (1995) 4603-4606

Phys.Rev. D56 (1997) 6895-6911

Nucl.Phys. B461 (1996) 493-511fX(w) =
1

BfX (z)φfX (z)

∞∑
n=0

anz
n

BfX Blaschke factors, includes contributions from the poles
φfX is called outer function and must be computed for each form factor
Unitarity constrains

∑
n |an|

2 ≤ 1

Caprini-Lellouch-Neubert (CLN) Nucl. Phys. B530 (1998) 153-181

F(w) ∝ 1− ρ2z + cz2 − dz3, with c = fc(ρ), d = fd(ρ)

Relies strongly on HQET, spin symmetry and (old) inputs
Tightly constrains F(w): four independent parameters, one relevant at w = 1
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The Vcb matrix element: The parametrization issue

From Phys. Lett. B769 (2017) 441-445 using Belle data at non-zero recoil and

lattice data at zero recoil

CLN seems to
underestimate the slope
at low recoil

The BGL value of |Vcb| is
compatible with the
inclusive one

|Vcb| = 41.7±2.0(×10−3)

Current discrepancy might be an artifact

Data at w & 1 is urgently needed to settle the issue

Experimental measurements perform badly at low recoil

We would benefit enormously from a high precision lattice calculation at w & 1
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The Vcb matrix element: Tensions in lepton universality

R
(
D(∗)

)
=
B
(
B → D(∗)τντ

)
B
(
B → D(∗)`ν`

)
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Average of SM predictions

 = 1.0 contours2χ∆
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Calculating Vcb on the lattice: Formalism

Form factors

〈D∗(pD∗ , εν)| Vµ
∣∣B̄(pB)

〉
2
√
mBmD∗

=
1

2
εν∗εµνρσv

ρ
Bv

σ
D∗hV (w)

〈D∗(pD∗ , εν)| Aµ
∣∣B̄(pB)

〉
2
√
mBmD∗

=

i

2
εν∗ [gµν (1 + w)hA1

(w)− vνB (vµBhA2
(w) + vµD∗hA3

(w))]

V and A are the vector/axial currents in the continuum

The hX enter in the definition of F
We can calculate hA1,2,3,V directly from the lattice
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Calculating Vcb on the lattice: Formalism

Helicity amplitudes

H± =
√
mBmD∗(w + 1)

(
hA1(w)∓

√
w − 1

w + 1
hV (w)

)

H0 =
√
mBmD∗(w+1)mB [(w − r)hA1

(w)− (w − 1) (r hA2
(w) + hA3

(w))] /
√
q2

HS =

√
w2 − 1

r(1 + r2 − 2wr)
[(1 + w)hA1

(w) + (wr − 1)hA2
(w) + (r − w)hA3

(w)]

Form factor in terms of the helicity amplitudes

χ(w) |F|2 =
1− 2wr + r2

12mBmD∗ (1− r)2
(
H2

0 (w) +H2
+(w) +H2

−(w)
)
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Calculating Vcb on the lattice: The Roadmap

Well established roadmap to improve our calculation:

The all HISQ project

ASQTAD light + Fermilab
heavy

HISQ light + Fermilab
heavy

HISQ light + HISQ heavy

This work

Reduces chiral-continuum extrapolation
errors, light quark discretization errors

Removes matching errors, reduces heavy
quark discretization errors
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Calculating Vcb on the lattice: Available ensembles
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Calculating Vcb on the lattice: Dispersion relation

Discretization effects coming from the heavy quark break the dispersion
relation

The Fermilab action uses tree-level matching, discretization errors O(αm)

a2E2(pµ) = (am1)
2+

m1

m2
(pa)2+

1

4

[
1

(am2)2
−

am1

(am4)
3

]
(a2p2)2−

am1w4

3

3∑
i=1

(api)
4+O(p6

i )

As long as the
discretization errors
are under control, this
is all right

In the Fermilab action
we interpret the
kinetic mass am2 as
the particle mass
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Calculating Vcb on the lattice: Current renormalization

In the coefficients of the terms of our effective theory a dependence arises
with the scale (i.e. a)

The renormalization tries to account for the right dependence

The scheme we employ is called Mostly non-perturbative renormalization of
results

ZV 1,4,A1,4 = ρV 1,4,A1,4︸ ︷︷ ︸
Perturbative factor

×
√
ZVbbZVcc︸ ︷︷ ︸

Non-perturbative piece

The (relatively large) non-perturbative piece cancels in our ratios

The (close to one) perturbative piece (matching factor ρ) is calculated at
one-loop level for w = 1

The error for w 6= 1 is estimated and added to the factor

This analysis is blinded and the blinding happens at the level of the matching
factor
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Calculating Vcb on the lattice: The chiral-continuum
extrapolation

Our data represents the form factors at non-zero a and unphysical mπ

Extrapolation to the physical pion mass described by EFTs

The EFT describe the a and the mπ dependence

Functional form explicitly known

hA1(w) = 1 +
XA1

(Λχ)

m2
c

+
g2D∗Dπ

48π2f2πr
2
1

logsSU3(a,ml,ms,ΛQCD)︸ ︷︷ ︸
NLOχPT+HQET

−

ρ2(w − 1) + k(w − 1)2︸ ︷︷ ︸
w dependence

+c1xl + c2x
2
l + ca1xa2 + ca2x

2
a2 + ca,mxlxa2︸ ︷︷ ︸

NNLOχPT

with

xl = B0
ml

(2πfπ)2
, xa2 =

(
a

4πfπr21

)2
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Results: Chiral-continuum fits
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Results: Chiral-continuum fits
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Analysis: Preliminary error budget

Source hV (%) hA1
(%) hA2

(%) hA3
(%)

Statistics 1.1 0.4 4.9 1.9
Isospin effects 0.0 0.0 0.6 0.3
χPT/cont. extrapolation 1.9 0.7 6.3 2.9
Matching 1.5 0.4 0.1 1.5
Heavy quark discretization 1.4∗ 0.4∗ 5.8∗ 1.3∗

∗Estimate, currently subject of intensive study

Bold marks errors to be reduced/removed when using HISQ for light quarks

Italic marks errors to be reduced/removed when using HISQ for heavy quarks

Heavy HISQ would introduce new extrapolation errors
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Analysis: z-Expansion

The BGL expansion is performed on different (more convenient) form factors
Phys.Lett. B769, 441 (2017), Phys.Lett. B771, 359 (2017)

g =
hV (w)
√
mBmD∗

=
1

φg(z)Bg(z)

∑
j

ajz
j

f =
√
mBmD∗(1 + w)hA1

(w) =
1

φf (z)Bf (z)

∑
j

bjz
j

F1 =
√
q2H0 =

1

φF1
(z)BF1

(z)

∑
j

cjz
j

F2 =

√
q2

mD∗
√
w2 − 1

HS =
1

φF2
(z)BF2

(z)

∑
j

djz
j

Constraint F1(z = 0) = (mB −mD∗)f(z = 0)

Constraint (1 + w)m2
B(1− r)F1(z = zMax) = (1 + r)F2(z = zMax)

BGL (weak) unitarity constraints (all HISQ will use strong constraints)∑
j

a2j ≤ 1,
∑
j

b2j + c2j ≤ 1,
∑
j

d2j ≤ 1
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Results: Pure-lattice prediction and joint fit
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Results: Angular bins
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Results: R(D∗)

Pure lattice QCD prediction of R(D∗)

Includes constraint F1(wMax) = 1+r
(1+w)m2

B(1−r)F2(wMax)

1.0 1.1 1.2 1.3 1.4 1.5
w

(B
D

)

Lat = e,
Lat =

Lat + Belle = e,
Lat + Belle =

Preliminary

Alejandro Vaquero (University of Utah) |Vcb| from B̄ → D∗`ν̄ at non-zero recoil April 26th, 2019 20 / 22



Conclusions

What to expect

Errors might not be improved compared to previous lattice estimations

The main new information of this analysis won’t come from the zero-recoil
value, but from the slope

Main sources of errors of our form factor seem to be
χPT-continuum extrapolation
HQ discretization
Matching

The future

Well established roadmap to reduce errors in our calculation with the
all-HISQ ensembles

Light HISQ quarks + heavy Fermilab quarks aim to reduce χPT-cont.
extrapolation errors
Light HISQ quarks + heavy HISQ quarks aim to reduce discretization and
matching errors
Joint B → D and B → D∗ analysis to benefit from strong unitarity constraints

This roadmap is to be followed in other processes involving other CKM
matrix elements
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