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Neutrino-nucleus scattering
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J.A. Formaggio and G.P. Zeller, RMP84, 1307 (2012); Teppei Katori’s talkTo understand more about neutrinos, 
new long-baseline neutrino 
experiments are in preparation.

elastic form factors

transition form factors

inclusive hadronic tensor!

theoretical input about nucleon 
structure is needed.

νA → νN 

DUNE@LBNF FERMILAB with 
neutrino energy ~1-~7 GeV, 
including all QE, RES, SIS and DIS



No direct calculation on the lattice
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Lattice QCD: Euclidean field theory using the path-integral formalism

time dependent matrix element can be problematic

Wμν =
1

4π ∫ d4zeiq⋅z ⟨p, s [J†
μ(z)Jν(0)] s, s⟩

W′�μν =
1

4π ∑
n

∫ dte(ν−(En−Ep))t ∫ d3zeiq⋅z⟨p, s |J†
μ(z) |n⟩⟨n |Jν(0) |p, s⟩

=
1

4π ∑
n

e(ν−(En−Ep))T − 1
ν − (En − Ep) ∫ d3zeiq⋅z⟨p, s |J†

μ(z) |n⟩⟨n |Jν(0) |p, s⟩

Euclidean

Minkowski

=
1
2 ∑

n
∫

n

∏
i [ d3pi

(2π)32Ei ]⟨p, s |J†
μ(0) |n⟩⟨n |Jν(0) |p, s⟩(2π)3δ4(q − pn + p)

Wμν =
1

4π ∫ d4zeiq⋅z ⟨p, s [J†
μ(z)Jν(0)] p, s⟩ , Im part of the forward Compton amplitude



Euclidean hadronic tensor
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C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )J†
μ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩

C2 = ∑
xf

e−ip⋅xf ⟨χN(xf, tf )χ̄N(0, t0)⟩

W̃μν( p, q, τ) =
Ep

mN

Tr[ΓeC4]
Tr[ΓeC2]

→ ∑
x2x1

e−iq⋅(x2−x1)⟨p, s |Jμ(x2, t2)Jν(x1, t1) |p, s⟩

= ∑
n

Ane−νnτ, τ ≡ t2 − t1, νn = En − Ep

four-point function with two currents

nucleon two-point function

Euclidean hadronic tensor K.-F. Liu, PRD62, 074501 (2000)
J. Liang et. al., EPJ Web Conf. 175, 14014 (2018)

K.F. Liu and S. J. Dong, PRL 72, 1790 (1994)

Energy transfer is determined by the energy of the intermediate states.



Back to the Minkowski space

�5

Wμν( p, q, ν) =
1
i ∫

c+i∞

c−i∞
dτeντW̃μν( p, q, τ)

W̃μν( p, q, τ) ∼ ∑
n

Ane−νnτ, νn ≡ En − Ep

Euclidean hadronic tensor

several (O(10)) discrete data points

Formally, an inverse Laplace transform will do

Practically, need to solve the inverse problem of the Laplace transform

W̃μν( p, q, τ) = ∫ dνWμν( p, q, ν)e−ντ

continuous function w.r.t. \nu

lack of information, an ill-posed problem (BG, ME, BR…)



Kinematics
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Elastic

RES and SIS

DIS region

ν

|q |
F(ν)

Q2 = 0

x =
Q2

2mν
, Q2 → ∞, ν → ∞

N\pi, \Delta, …, continuous spectrum

photoproduction

          , form factorsx = 1

C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )J†
μ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩

W̃μν( p, q, τ) = ∑
n

Ane−(En−Ep)τ, νn = En − Ep

νmin = En=0 − Ep, E2
n=0 = m2

p + ( p + q)2

νmax = |q |



The elastic case
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W̃44( p = 0, q = 0, τ) τ→∞= |⟨N |J4 |N⟩ |2 e−(Mp−Mp)τ

W̃μν( p, q, τ) = ∫ dνWμν( p, q, ν)e−ντ

= F2
1(q2 = 0) = g2

V = 1

area ~1.18(6) area ~ 1.001(7)

q2=0= δνG2
E(q2 = 0) = δνg2

V = δν

normalized vector current J4 = ψ̄γ4ψ

inverse

delta function at zero

note, different x scale

W44(q2, ν) = δ(q2 + 2mNν)
2mN

1 − q2/4mN
2 (G2

E(q2) −
q2

4M2
N

G2
M(q2))



Case with large momentum transfers
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W̃μν( p, q, τ) = ∑
n

Ane−νnτ Ep ∼ 2.15 GeV

lattice artifacts: finite volume? finite lattice spacing?! unphysical pion mass?

check the effective energy of the Euclidean hadronic tensor νeff = log[W̃(τ)/W̃(τ + 1)]

νmax ∼ En − Ep ∼ 1 GeV En ∼ 3.2 GeV NOT large enough energy transfer!

|q | ∼ 3.57 GeV as ∼ 0.12 fm, ξ = 3.5



Summary and outlook
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Calculating the hadronic tensor on the lattice would be helpful to 
the neutrino experiments.

This might be the only lattice approach that can have inclusive 
results in all the QE, RES and SIS regions.

We can have reasonable results for the elastic contributions.

We find that the lattice spacing plays an important role to reach 
higher excited states (larger energy transfers).

We are working on lattices with smaller lattice spacings (~0.045) 
to have better results.

More applications. E.g., parton physics if we can have large 
enough momentum and energy transfers.

Thank you for your attention!
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backup slides



Contractions
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C4 = ∑
xf

e−ip⋅xf ∑
x2x1

e−iq⋅(x2−x1) ⟨χN(xf, tf )Jμ(x2, t2)Jν(x1, t1)χ̄N(0, t0)⟩
χN = [uT

1 Cγ5d] u2

t0

t1 t2

tf t0 tf

t2t1

t0 tf

t1 t2

t0

t1

t2
tf t0 tf

t1

t2

More contractions if we consider different types of the two currents: vector, axial vector, 
neutral or charged, various quark flavors …
No disconnected insertions are considered in the current plan.
The latter two are suppressed when the momentum and energy transfers are large.



Tests on two-point functions
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C2(τ) = ∫ dωρ(ω)e−ωτ

C2(τ) = e−m1τ + e−m2τ + e−m3τ

Bayesian Reconstruction (BR)
Y. Burnier and A. Rothkopf, PRL 111, 182003 (2013)

Backus-Gilbert (BG)

Maximum Entropy (ME)
E Rietsch et. al., JOURNAL OF GEOPHYSICS, 42:489  (1977)

G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968)

M. Asakawa et. al., Prog. Part. Nucl. Phys. 46, 459 (2001)

bad resolution of BG

BR is shaper and more stable than 
ME

mock two-point function data: 3 
single exponentials with mass 1.0, 
1.5 and 1.8 GeV respectively, a~0.1 
fm, Nt=20, S/N=100 



Lattice setups
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clover anisotropic lattice,

andμ = ν = 1 p1 = q1 = 0 W11(ν) = F1(x, Q2)

243 × 128, at ∼ 0.035 fm, mπ ∼ 380 MeV,
2π
L

∼ 0.42 GeV

(0,3,3) (0,-6,-6) 2.15 2.15 3.57 [2.96, 3.28] [4, 2] [0.16, 0.07]

p q Ep En=0 |q | ν Q2 x

H.-W. Lin et al., PRD 79, 034502 (2009) 

two sequential-sources for each 4-point function 
554 configurations, 16 source positions

The x-range can be reached on this lattice is roughy [0.05, 0.3] by 
combining different kinematic setups.

Wμν = (−gμν +
qμqν

q2 ) F1(x, Q2) +
̂Pμ

̂Pν

P ⋅ q
F2(x, Q2)

t0

t1 t2

tf

This calculation:



Large momentum transfer
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higher intermediate-states 
contribution (exponentially decay)

elastic contribution
(flat)

higher intermediate-states 
contribution (exponentially decay)

elastic contribution
(flat)

very close to sink
excited-states?

W̃μν( p, q, τ) = ∑
n

Ane−(En−Ep)τ

(0,3,3) (0,-6,-6) 2.15 2.15 3.57 [2.96, 3.28] [4, 2] [0.16, 0.07]

p q Ep En=0 |q | ν Q2 x

andμ = ν = 1 p1 = q1 = 0 W11(ν) = F1(x, Q2)

E0 = (m2
N + | p + q |2 ) = Epp + q = − p



Minkowski hadronic tensor (after ME)

�15

Elastic contribution is suppressed by the large momentum transfer.

RES contribution is large and relatively stable.
Large error in the SIS and DIS region, no enough constraint from the data

Q2 ∼ 13 GeV2, G2(0) ∼ 10−5

G2(0) ∝
1

(1 +
Q2

el

Λ2 )
4

elastic contribution

resonance region

shallow and deep 
inelastic scattering region

elastic contribution

resonance region

shallow and deep 
inelastic scattering region


