
Julia and Singularity discussion

April 27, 2019

AHM 2019 April 27, 2019 1/16



Discussion plan

Overview of Julia
I multi-architecture development platform
I interoperability with QUDA

Singularity containers

AHM 2019 April 27, 2019 2/16



Julia intro

Open-source and free programming language:
I https://julialang.org
I Developed since 2012 (MIT licencse)
I Multi-platform (GNU/Linux, Mac OS X, Windows)

Desinged for performance and usability
I Matches Python in terms of ease of code and maintenance, while

targets to achieve the speeds of C
I Multi-core, clusters, GPUs
I Easy learning, support dynamic typing etc. (python-like)
I Support an interactive shell (REPL, "Read-Eval-Print-Loop")

Interoperable with the outside world:
I Allows to import C / Python code directly

AHM 2019 April 27, 2019 3/16



Julia intro

Uses JIT compilation
I LLVM compiler framework to generate native machine code
I @code_llvm macro outputs LLVM IR

Easy to install
I Can be extended with modules (Pkg.add("..."))
I E.g., CUDA support via CUDAdrv and CUDAnative modules

AHM 2019 April 27, 2019 4/16



Julia language

Supports both dynamic and static type systems
I All basic data type (Int8, Float64 etc.)
I Abstract types (Numeric, Integer, Signed)
I Composite types

Types can take type parameters, so that type declarations can
actually introduce a whole family of new types (conceptually similar
to templates in C++)
Supports multi-dim. arrays
Supports views into arrays, reshaping, slicing etc.
Uses multiple dispatch as a paradigm to express many object-oriented
and functional programming patterns

AHM 2019 April 27, 2019 5/16



Interoperability with C

Main features
I Make calls to C without any hassle
I No overhead
I No further processing or compilation needed before calling the C

function, hence it can be used directly!

Syntax:
ccall((:name,"lib"), return_type, (arg1_type, arg2_type...), arg1,
arg2)
Iteroperability with C++ libs is more involved but doable (requires
external modules)

AHM 2019 April 27, 2019 6/16



Calling QUDA routines from Julia

QUDA provides with C interface to all major computational routines
Main interface structures (QudaInvertParam,QudaGaugeParam etc)
can be mirrored in Julia

AHM 2019 April 27, 2019 7/16



Using CUDA in Julia
CUDA programming via CUDAnative module
memory management, kernel generation etc.
GPU specific memory objects: CuArray

AHM 2019 April 27, 2019 8/16



Simple SU3xSU3 test

AHM 2019 April 27, 2019 9/16



Singularity containers for HPC applications

What brought us to containers
Quick overview of Singularity
Challenges and future perspectives

AHM 2019 April 27, 2019 10/16



Why containers

There are applications/workflows that difficult to maintain
I e.g., legacy codes are working on old OS, new codes require new OS
I e.g., applications with complicated dependencies
I e.g., Tensorflow may need newer GLIBC than that is on the host system

ML frameworks at FNAL are provided within containers

AHM 2019 April 27, 2019 11/16



Singularity (basic) facts

(starting from ver 3.1.0) Fully compliant with the Open Containers
Initiative (OCI) standards
Not Docker but supports docker containers/hub
You can get into an image shell, execute commands, have access to
local FS etc.
Image can be running on different OS:

I containers are kernel-independent
I well, in some cases they does not
I for kernel-dependent features, a container platform may not be the

right solution

AHM 2019 April 27, 2019 12/16



Singularity (basic) facts cont.

Limits user privileges and access from within the container
Multi-process execution

I container and host MPI impl. and version must match
I for multi-node performance: e.g., container must be built with the

proper OFED as the host
running on NVIDIA gpus requires –nv option for the exec command

container and host MPI impl. and version must match
for multi-node performance: e.g., container must be built with the
proper OFED as the host

AHM 2019 April 27, 2019 13/16



Definition file

AHM 2019 April 27, 2019 14/16



Building containers

Building from scratch (e.g., pre-build HPC rpm, OpenHPC)
Using pre-build docker/singularity images (docker hub or NVIDIA cloud)

sudo singularity build test.simg deffile.def
singularity exec –nv test.simg
mpirun np n singularity exec test.img testprog

AHM 2019 April 27, 2019 15/16



Conclusion

Julia is a convenient framework for code prototyping:
I easy to use
I can be even optimized for performance if necessary
I can interoperate with existing libraries

Singularity containers needs more testing for POWER9 env.

AHM 2019 April 27, 2019 16/16


