Julia and Singularity discussion

April 27, 2019

AHM 2019 April 27, 2019 1/16

Discussion plan

@ Overview of Julia

» multi-architecture development platform
> interoperability with QUDA

@ Singularity containers

AHM 2019

April 27, 2019

2/16

Julia intro

@ Open-source and free programming language:

> https://julialang.org
> Developed since 2012 (MIT licencse)
> Multi-platform (GNU/Linux, Mac OS X, Windows)

@ Desinged for performance and usability

» Matches Python in terms of ease of code and maintenance, while
targets to achieve the speeds of C

» Multi-core, clusters, GPUs

> Easy learning, support dynamic typing etc. (python-like)

> Support an interactive shell (REPL, "Read-Eval-Print-Loop")

@ Interoperable with the outside world:

> Allows to import C / Python code directly

AHM 2019 April 27, 2019 3/16

Julia intro

@ Uses JIT compilation

» LLVM compiler framework to generate native machine code
» @code_llvm macro outputs LLVM IR

e Easy to install

» Can be extended with modules (Pkg.add("..."))
» E.g., CUDA support via CUDAdrv and CUDAnative modules

AHM 2019 April 27, 2019 4/16

Julia language

@ Supports both dynamic and static type systems

» All basic data type (Int8, Float64 etc.)
> Abstract types (Numeric, Integer, Signed)
» Composite types

@ Types can take type parameters, so that type declarations can
actually introduce a whole family of new types (conceptually similar
to templates in C++)

@ Supports multi-dim. arrays
@ Supports views into arrays, reshaping, slicing etc.

@ Uses multiple dispatch as a paradigm to express many object-oriented
and functional programming patterns

AHM 2019 April 27, 2019 5/16

Interoperability with C

@ Main features

» Make calls to C without any hassle

» No overhead

> No further processing or compilation needed before calling the C
function, hence it can be used directly!

@ Syntax:
ccall((:name,"lib"), return_type, (argl_type, arg2_type...), argl,
arg2)

e Iteroperability with C++ libs is more involved but doable (requires
external modules)

AHM 2019 April 27, 2019 6/16

Calling QUDA routines from Julia

@ QUDA provides with C interface to all major computational routines

e Main interface structures (QudalnvertParam,QudaGaugeParam etc)
can be mirrored in Julia

AHM 2019 April 27, 2019 7/16

Using CUDA in Julia
o CUDA programming via CUDAnative module
@ memory management, kernel generation etc.

@ GPU specific memory objects: CuArray

AHM 2019 April 27, 2019 8/16

Simple SU3xSU3 test

function su3_test(x, v)
i = (blockIdx().x-1) * blockDim{).x + threadIdx().x

y_site_view
x_site_view

= wiew(y,1,:,:,1)
= wiew(x,i,:,:,1)
for rin 1:3
for c in 1:3
temp = ComplexF32{0.0f0, 0.0f0)
for j in 1:3;
temp += x_site_viewlr, j1* y_site_view[], c]
end
v_site_wview[r, ¢] = temp
end
end
return
end

csGrid = QluliaGrid.QJuliaGridbescr_gj{ComplexF32} (QJuliaEnums. QJULIA_CUDA_FIELD_LOCATION, O, (N,M,M,N,J):
gaugeParam = QJuliaGrid. CreateGaugeParams(csGrid)

cuda_su3_ml = QJuliaCUDAFields.CreateGenericField{ gaugeParam)
cuda_su3_m2 = QJuliaCUDAFields.CreateGenericField{ gaugeParam)

cuda_su3_ml_accessor = QJuliaFields.create_field_accessor(cuda_su3_ml)
cuda_su3_m2_accessor = QJuliaFields. create_field_accessor(cuda_su3_m2)

accessor_dims = size{ cuda_su3_ml_accessor[1l])
len = accessor_dims[1]; nthreads = 128; nblocks= ceil.(Int, len ./ nthreads)

@cuda blocks=nblocks threads=nthreads sun_test(cuda_su3_ml_accessor[l], cuda_su3_m2_accessor[l])

AHM 2019 April 27, 2019 9/16

Singularity containers for HPC applications

@ What brought us to containers
@ Quick overview of Singularity

@ Challenges and future perspectives

AHM 2019 April 27, 2019 10/16

Why containers

@ There are applications/workflows that difficult to maintain

> e.g., legacy codes are working on old OS, new codes require new OS
> e.g., applications with complicated dependencies
> e.g., Tensorflow may need newer GLIBC than that is on the host system

@ ML frameworks at FNAL are provided within containers

AHM 2019 April 27, 2019 11/16

Singularity (basic) facts

o (starting from ver 3.1.0) Fully compliant with the Open Containers
Initiative (OCI) standards

@ Not Docker but supports docker containers/hub

@ You can get into an image shell, execute commands, have access to
local FS etc.

@ Image can be running on different OS:

» containers are kernel-independent

> well, in some cases they does not

» for kernel-dependent features, a container platform may not be the
right solution

AHM 2019 April 27, 2019 12/16

Singularity (basic) facts cont.

Limits user privileges and access from within the container

Multi-process execution

» container and host MPI impl. and version must match
» for multi-node performance: e.g., container must be built with the
proper OFED as the host

@ running on NVIDIA gpus requires —nv option for the exec command

container and host MPI impl. and version must match

for multi-node performance: e.g., container must be built with the
proper OFED as the host

AHM 2019 April 27, 2019 13/16

Definition file

Ubuntu MILC container

BootStrap: docker
From: nvcr.io/hpc/milc:quda®. &-patchd0ct2017
IncludeCmd: false

%labels

Based on NVWCloud image
Date: 2019-01-25 (A.35)

%environment
set these environment wvariables
export PATH=$PATH:$CUDA_ROUT/bin
export LD_LIBRARY_PATH=§CUDA_RODT/1ib64

%runscript
Check the current environment
chk_nvidia_uvm=%(grep nvidia_uvm fproc/modules)
if [-z "$chk_nvidia_uvm" 1; then
echo "Problem detected on the host: the Linux kernel module nvidia_uwvm is not loaded"
i
exec /bin/bash

Usetup
Runs from outside the container during Bootstrap
workdir=§{pwd)

%post
Runs within the container during Bootstrap
make lqcd filesystem mount points
mkdir /scratch /data /project /lgcdproj

AHM 2019 April 27, 2019 14/16

Building containers

Building from scratch (e.g., pre-build HPC rpm, OpenHPC)

Using pre-build docker/singularity images (docker hub or NVIDIA cloud)
@ sudo singularity build test.simg deffile.def
@ singularity exec —nv test.simg

@ mpirun np n singularity exec test.img testprog

AHM 2019 April 27, 2019 15/16

Conclusion

@ Julia is a convenient framework for code prototyping:

> easy to use
» can be even optimized for performance if necessary
> can interoperate with existing libraries

@ Singularity containers needs more testing for POWER9 env.

AHM 2019 April 27, 2019 16/16

