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BENCHMARKING TESTBED

DGX-1V 
8x V100 GPUs  
Hypercube-Mesh NVLink 
4x EDR for inter-node communication 
Optimal placement of GPUs and NIC for GDR 

CUDA 10.1, GCC 7.3, OpenMPI 3.1 

NVIDIA Prometheus Cluster
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SCALING OPTIMIZATIONS 
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QUDA’S AUTOTUNER

QUDA includes an autotuner for ensuring optimal kernel performance 

virtual C++ class “Tunable” that is derived for each kernel you want to autotune 

By default Tunable classes will autotune 1-d CTA size, shared memory size, grid size 

Derived specializations do 2-d and 3-d CTA tuning 

Tuned parameters are stored in a std::map and dumped to disk for later reuse 

Built in performance metrics and profiling 

User just needs to 
State resource requirements: shared memory per thread and/or per CTA, total number of threads 

Specify a tuneKey which gives each kernel a unique entry and break any degeneracy 
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SINGLE GPU PERFORMANCE
“Wilson Dslash” stencil

Tesla V100 
CUDA 10.1 
GCC 7.3

“strong scaling”
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STRONG SCALING

Multiple meanings 
Same problem size, more nodes, more GPUs 
Same problem, next generation GPUs 
Multigrid - strong scaling within the same run (not discussed here) 

To tame strong scaling we have to understand the limiters 
Bandwidth limiters 
Latency limiters 

Look at scaling of a half precision Dslash with 164 local volume on one DGX-1
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WHAT IS LIMITING STRONG SCALING

Staging MPI transfers through host memory

classical host staging

D2H copies H2D copy t H2D copy y H2D copy z

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

Interior kernel

Packing kernel

Halo t Halo z Halo y

297 µs
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API OVERHEADS

Staging MPI transfers through host memory

CPU overheads and synchronization are expensive

Pack Interior

Halo zD2H copies Halo t Halo y

H2D copy H2D copy H2D copy

Sync

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning
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P2P TRANSFERS

Staging MPI transfers through host memory

use NVLink, only 1 copy instead of D2H + H2D pair, higher bandwidth

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel

160 µs

Halo t, y, z
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FUSING KERNELS

Staging MPI transfers through host memory

halo kernels do not saturate GPU

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel Fused Halo

129 µs
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REMOTE WRITE

Staging MPI transfers through host memory

Packing kernel writes to remote GPU using CUDA IPC

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

Interior kernelPacking kernel Fused Halo

Interior kernelPacking kernel Fused Halo

SyncSync

89 µs
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MERGING KERNELS

Staging MPI transfers through host memory

Packing and interior merged with remote write (ok for intranode)

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

Fused Packing /interior kernel Fused Halo

Packing + Interior kernel Fused Halo

SyncSync

73 µs
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LATENCY OPTIMIZATIONS

a) baseline 
b) use P2P copies 
c) fuse halo kernels  
d) use remote write to neighbor GPU 
e) fuse packing and interior 

reduces overhead through 
fewer API calls 
fewer kernel launches 

still CPU synchronization and API overheads

Different strategies implemented
Title
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POLICY AUTOTUNING

What policy to use? 

(CE vs remote write) ⊗ (Zero copy vs GDR vs staging) ⊗ kernel fusion 

extended the autotuner to go beyond kernel tuning
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!14



!15

CUDA AWARE MPI

preferred over manual host staging 
can use CUDA IPC for intra-node 
heuristics for transfer protocol 

performance is implementation dependent 

Great for inter-node 
GPUDirect RDMA 

data from GPU directly transferred to NIC

Hit or miss for strong scaling
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MULTI-NODE SCALING

Host staging 

autotuner will pick detailed policy
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MULTI-NODE SCALING

Host staging 

Intranode with CUDA IPC

autotuner will pick detailed policy
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MULTI-NODE SCALING

Host staging 

Intranode with CUDA IPC
 
CUDA IPC + GPU Direct RDMA 

autotuner will pick detailed policy
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NVSHMEM 
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NVSHMEM

Implementation of OpenSHMEM, a Partitioned Global Address Space (PGAS) library 
Defines API to (symmetrically) allocate memory that is remotely accessible 

Defines API to access remote data 
One-sided: e.g. shmem_putmem, shmem_getmem 

Collectives: e.g.  shmem_broadcast 

NVSHMEM features 
        Symmetric memory allocations in device memory 
        Communication API calls on CPU (standard and stream-ordered) 
        Allows kernel-side communication (API and LD/ST) between GPUs 
        Interoperable with MPI

GPU centric communication
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NVSHMEM STATUS

Research vehicle for designing and evaluating GPU-centric workloads  
Early access (EA2) available – please reach out to nvshmem@nvidia.com   
Main Features 
 NVLink and PCIe support 
 InfiniBand support (new) 
 X86 and Power9 (new) support  
 Interoperability with MPI and OpenSHMEM (new) libraries 

Limitation: current version requires device linking (see also S9677)

mailto:nvshmem@nvidia.com
mailto:nvshmem@nvidia.com
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DSLASH NVSHMEM IMPLEMENTATION

Keep general structure of packing, interior and exterior Dslash 

Use nvshmem_ptr for intra-node remote writes (fine-grained) 

 Packing buffer is located on remote device 
Use nvshmem_putmem_nbi to write to remote GPU over IB (1 RDMA transfer) 

Need to make sure writes are visible: nvshmem_barrier_all_on_stream 

or  barrier kernel that only waits for writes from neighbors 

Disclaimer: 
Results from an first implementation in QUDA with a pre-release version of NVSHMEM

First exploration
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NVSHMEM DSLASH

Staging MPI transfers through host memory

DGX-1,164  local volume, half precision, 1x2x2x2 partioning

Packing kernel Fused Halo

Interior kernel

Barrier kernel

61 µs
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NVSHMEM + FUSING KERNELS

Staging MPI transfers through host memory

less Kernel launches

DGX-1,164  local volume, half precision, 1x2x2x2 partioning

Packing + barrier kernel Fused Halo

Interior kernel

56 µs
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NVSHMEM + FUSING KERNELS II

Staging MPI transfers through host memory

down to two kernels

DGX-1,164  local volume, half precision, 1x2x2x2 partioning

Barrier + Fused HaloInterior + Pack + Flag kernel

36 µs
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LATENCY OPTIMIZATIONS

a) baseline 
b) use P2P copies 
c) fuse halo kernels  
d) use remote write to neighbor GPU 
e) fuse packing and interior 
f) Shmem 
g) Shmem fused packing+barrier 
h) shmem fuse packing and interior 
i) shmem fuse packing+int, split barrier+ext

Different strategies implemented
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MULTI-NODE SCALING
with NVSHMEM
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MULTI-NODE SCALING
with NVSHMEM
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NVSHMEM OUTLOOK

Staging MPI transfers through host memory

intra-kernel synchronization and communication
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NVSHMEM OUTLOOK

Staging MPI transfers through host memory

intra-kernel synchronization and communication

One kernel to rule them all !  
Communication is handled in the kernel and latencies are hidden.



 27

SUMMARY 
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NVSHMEM FOR STRONG SCALING LATTICE QCD

API overheads and CPU/GPU synchronization are costly 
prevent overlapping communication and compute 

reduce kernel launches and API synchronization calls (fused kernels) 
enabled by rewrite of QUDA kernels 

GPU centric communication with NVSHMEM takes CPU limitations out 
Prototype implementation already shows nice speed up for Wilson 

Will be extended to all Dslashes when experimentation phase cools down 
will be awesome for latency limited Multigrid 

Works on x86 and Power
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NVSHMEM FOR STRONG SCALING LATTICE QCD
multi-node
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NVSHMEM Early-Access 
QUDA prototype implementation




