
Kate Clark, Mathias Wagner, Evan Weinberg

STRONG SCALING QUDA WITH NVSHMEM

!2

BENCHMARKING TESTBED

DGX-1V
8x V100 GPUs
Hypercube-Mesh NVLink
4x EDR for inter-node communication
Optimal placement of GPUs and NIC for GDR

CUDA 10.1, GCC 7.3, OpenMPI 3.1

NVIDIA Prometheus Cluster

 3

SCALING OPTIMIZATIONS

!4

QUDA’S AUTOTUNER

QUDA includes an autotuner for ensuring optimal kernel performance

virtual C++ class “Tunable” that is derived for each kernel you want to autotune

By default Tunable classes will autotune 1-d CTA size, shared memory size, grid size

Derived specializations do 2-d and 3-d CTA tuning

Tuned parameters are stored in a std::map and dumped to disk for later reuse

Built in performance metrics and profiling

User just needs to
State resource requirements: shared memory per thread and/or per CTA, total number of threads

Specify a tuneKey which gives each kernel a unique entry and break any degeneracy

!5

SINGLE GPU PERFORMANCE
“Wilson Dslash” stencil

Tesla V100
CUDA 10.1
GCC 7.3

“strong scaling”

0

500

1000

1500

2000

2500

3000

8121620242832

GF
LO

PS

Lattice length

half blocksize=32 single blocksize=32 double blocksize-32

half tuned single tuned double tuned

1180 GB/s

1291 GB/s

1312 GB/s

cf Perfect L2 roofline  
~ 1700 GB/s

!6

STRONG SCALING

Multiple meanings
Same problem size, more nodes, more GPUs
Same problem, next generation GPUs
Multigrid - strong scaling within the same run (not discussed here)

To tame strong scaling we have to understand the limiters
Bandwidth limiters
Latency limiters

Look at scaling of a half precision Dslash with 164 local volume on one DGX-1

!7

WHAT IS LIMITING STRONG SCALING

Staging MPI transfers through host memory

classical host staging

D2H copies H2D copy t H2D copy y H2D copy z

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

Interior kernel

Packing kernel

Halo t Halo z Halo y

297 µs

!8

API OVERHEADS

Staging MPI transfers through host memory

CPU overheads and synchronization are expensive

Pack Interior

Halo zD2H copies Halo t Halo y

H2D copy H2D copy H2D copy

Sync

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

!9

P2P TRANSFERS

Staging MPI transfers through host memory

use NVLink, only 1 copy instead of D2H + H2D pair, higher bandwidth

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel

160 µs

Halo t, y, z

!10

FUSING KERNELS

Staging MPI transfers through host memory

halo kernels do not saturate GPU

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel Fused Halo

129 µs

!11

REMOTE WRITE

Staging MPI transfers through host memory

Packing kernel writes to remote GPU using CUDA IPC

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

Interior kernelPacking kernel Fused Halo

Interior kernelPacking kernel Fused Halo

SyncSync

89 µs

!12

MERGING KERNELS

Staging MPI transfers through host memory

Packing and interior merged with remote write (ok for intranode)

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

Fused Packing /interior kernel Fused Halo

Packing + Interior kernel Fused Halo

SyncSync

73 µs

!13

LATENCY OPTIMIZATIONS

a) baseline
b) use P2P copies
c) fuse halo kernels
d) use remote write to neighbor GPU
e) fuse packing and interior

reduces overhead through
fewer API calls
fewer kernel launches

still CPU synchronization and API overheads

Different strategies implemented
Title

0

180

360

540

720

900

a b c d eG
Fl

op
/s

DGX-1,164 local volume, half precision, 1x2x2x2 partitioning

POLICY AUTOTUNING

What policy to use?

(CE vs remote write) ⊗ (Zero copy vs GDR vs staging) ⊗ kernel fusion

extended the autotuner to go beyond kernel tuning

Pe
rfo

rm
an

ce
 v

er
su

s
C

op
y

En
gi

ne
s

0

0.425

0.85

1.275

1.7

Lattice Length per GPU

8 12 16 20 24 28 32

half / remote write
half / fused pack
double / remote write
double / fused pack

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Dslash scaling, DGX-1V

No single optimal policy

!14

!15

CUDA AWARE MPI

preferred over manual host staging
can use CUDA IPC for intra-node
heuristics for transfer protocol

performance is implementation dependent

Great for inter-node
GPUDirect RDMA

data from GPU directly transferred to NIC

Hit or miss for strong scaling

0

500

1,000

1,500

2,000

2,500

8 12 16 20 24 28 32

half single double

G
Fl

op
/s

solid: CUDA IPC 
dashed: CUDA-aware MPI

Lattice length L (volume L4)

!16

MULTI-NODE SCALING

Host staging 

autotuner will pick detailed policy

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

G
Fl

op
/s

DGX-1,643x128 global volume

#GPUs

!16

MULTI-NODE SCALING

Host staging 

Intranode with CUDA IPC

autotuner will pick detailed policy

G
Fl

op
/s

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

DGX-1,643x128 global volume

#GPUs

!16

MULTI-NODE SCALING

Host staging 

Intranode with CUDA IPC
 
CUDA IPC + GPU Direct RDMA

autotuner will pick detailed policy

G
Fl

op
/s

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

DGX-1,643x128 global volume

#GPUs

 17

NVSHMEM

 18

NVSHMEM

Implementation of OpenSHMEM, a Partitioned Global Address Space (PGAS) library
Defines API to (symmetrically) allocate memory that is remotely accessible

Defines API to access remote data
One-sided: e.g. shmem_putmem, shmem_getmem

Collectives: e.g. shmem_broadcast

NVSHMEM features
 Symmetric memory allocations in device memory
 Communication API calls on CPU (standard and stream-ordered)
 Allows kernel-side communication (API and LD/ST) between GPUs
 Interoperable with MPI

GPU centric communication

 19

NVSHMEM STATUS

Research vehicle for designing and evaluating GPU-centric workloads
Early access (EA2) available – please reach out to nvshmem@nvidia.com
Main Features
 NVLink and PCIe support
 InfiniBand support (new)
 X86 and Power9 (new) support
 Interoperability with MPI and OpenSHMEM (new) libraries

Limitation: current version requires device linking (see also S9677)

mailto:nvshmem@nvidia.com
mailto:nvshmem@nvidia.com

 20

DSLASH NVSHMEM IMPLEMENTATION

Keep general structure of packing, interior and exterior Dslash 

Use nvshmem_ptr for intra-node remote writes (fine-grained)

 Packing buffer is located on remote device
Use nvshmem_putmem_nbi to write to remote GPU over IB (1 RDMA transfer)

Need to make sure writes are visible: nvshmem_barrier_all_on_stream

or barrier kernel that only waits for writes from neighbors

Disclaimer: 
Results from an first implementation in QUDA with a pre-release version of NVSHMEM

First exploration

!21

NVSHMEM DSLASH

Staging MPI transfers through host memory

DGX-1,164 local volume, half precision, 1x2x2x2 partioning

Packing kernel Fused Halo

Interior kernel

Barrier kernel

61 µs

!22

NVSHMEM + FUSING KERNELS

Staging MPI transfers through host memory

less Kernel launches

DGX-1,164 local volume, half precision, 1x2x2x2 partioning

Packing + barrier kernel Fused Halo

Interior kernel

56 µs

!23

NVSHMEM + FUSING KERNELS II

Staging MPI transfers through host memory

down to two kernels

DGX-1,164 local volume, half precision, 1x2x2x2 partioning

Barrier + Fused HaloInterior + Pack + Flag kernel

36 µs

!24

LATENCY OPTIMIZATIONS

a) baseline
b) use P2P copies
c) fuse halo kernels
d) use remote write to neighbor GPU
e) fuse packing and interior
f) Shmem
g) Shmem fused packing+barrier
h) shmem fuse packing and interior
i) shmem fuse packing+int, split barrier+ext

Different strategies implemented

0

240

480

720

960

1,200

a b c d e f g h i

half

G
Fl

op
/s

!25

MULTI-NODE SCALING
with NVSHMEM

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

G
Fl

op
/s

#GPUs

dashed: MPI solid: NVSHMEM

DGX-1,643x128 global volume

bandwidth-limited at small node
count

QUDA’s use of NVSHMEM not yet
fully optimized

potential shows at 128 GPUs

more data by Lattice conference

non-optimal topology

!25

MULTI-NODE SCALING
with NVSHMEM

G
Fl

op
/s

#GPUs

dashed: MPI solid: NVSHMEM

DGX-1,643x128 global volume

bandwidth-limited at small node
count

QUDA’s use of NVSHMEM not yet
fully optimized

potential shows at 128 GPUs

more data by Lattice conference

non-optimal topology

!26

NVSHMEM OUTLOOK

Staging MPI transfers through host memory

intra-kernel synchronization and communication

!26

NVSHMEM OUTLOOK

Staging MPI transfers through host memory

intra-kernel synchronization and communication

One kernel to rule them all !  
Communication is handled in the kernel and latencies are hidden.

 27

SUMMARY

!28

NVSHMEM FOR STRONG SCALING LATTICE QCD

API overheads and CPU/GPU synchronization are costly
prevent overlapping communication and compute

reduce kernel launches and API synchronization calls (fused kernels)
enabled by rewrite of QUDA kernels

GPU centric communication with NVSHMEM takes CPU limitations out
Prototype implementation already shows nice speed up for Wilson

Will be extended to all Dslashes when experimentation phase cools down
will be awesome for latency limited Multigrid

Works on x86 and Power

!29

NVSHMEM FOR STRONG SCALING LATTICE QCD
multi-node

0

20,000

40,000

60,000

80,000

100,000

120,000

8 16 32 64 128 256

half single double

G
Fl

op
/s

DGX-1,643x128 global volume

#GPUs

dashed: MPI solid: NVSHMEM

0

240

480

720

960

1,200

IPC
 co

pie
s

IPC
 re

mot
e w

rit
e

IPC
 ke

rn
el

fu
sio

n

NV
SH

MEM

NV
SH

MEM
 w

/o
 b

ar
rie

r

NV
SH

MEM
 ke

rn
el

fu
sio

n

half

DGX-1,164 local volume, half precision, 8 GPUs

single node

NVSHMEM Early-Access 
QUDA prototype implementation

