π^0 exchange in the long-distance HLbL contribution to $g_{\mu} - 2$

Cheng Tu

UCONN

March 25, 2019

2019 Lattice Workshop for US - Japan Intensity Frontier Incubation

- ① Construct formula of π^0 exchange in the long-distance HLbL contribution
- 2 Point-point-wall correlator
- 3 Preliminary results
- 4 Conclusion

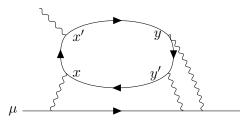
- ① Construct formula of π^0 exchange in the long-distance HLbL contribution
- 2 Point-point-wall correlator
- 3 Preliminary results
- 4 Conclusion

Hadronic light-by-light contribution to the muon g-2

The formula that obtain the connected hadronic light-by-light contribution to the $g_{\mu}-2$ is given by [Blum et al., 2016]:

$$F_2 = 2m_{\mu}e^6 \sum_{y,y'} 3 \sum_{x'} \frac{1}{2} \epsilon_{ij\mu'} x'_j$$

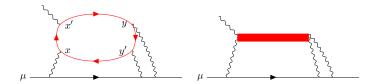
$$\times 6i^4 H_{\nu\nu'\mu\mu'}(y,y',x,x') M_{i\nu\nu'\mu}(y,y',x)/3$$



π^0 exchange

 π^0 exchange will dominate the long-distance part of the HLbL contribution. The four-point hadronic function can be replaced by long distance π^0 four-point function:

$$6i^4 H_{\nu,\nu',\mu,\mu'}(y,y',x,x') \to A_{\nu,\nu',\mu,\mu'}^{\pi^0}(y,y',x,x')$$
 (1)



π^0 intermediate state

Apply the Källén-Lehmann representation but keep only the single π^0 intermediate state:

$$A^{\pi^{0}}_{\mu,\mu',\nu,\nu'}(x,x',y,y') = \frac{1}{(2\pi)^{3}} \int \frac{d^{3}p}{2E_{\pi}(p)} \left\langle 0|T\{J_{\mu}(x)J_{\mu'}(x')\}|\pi^{0}(\vec{p})\right\rangle$$

$$\left\langle \pi^{0}(\vec{p})|T\{J_{\nu}(y)J_{\nu'}(y')\}|0\right\rangle$$
(2)

Then use four-dimensional translational invariance to remove the variables x and y from the current-current- π^0 amplitudes:

$$\langle 0|T\{J_{\mu}(x)J_{\mu'}(x')\}|\pi^{0}(\vec{p})\rangle = \langle 0|T\{J_{\mu}(0)J_{\mu'}(\tilde{x})\}|\pi^{0}(\vec{p})\rangle e^{i\vec{p}\cdot\vec{x}-E_{p}x_{0}}$$
$$= \mathcal{F}_{\mu\mu'}(\tilde{x}, -i\vec{\nabla}_{x})e^{i\vec{p}\cdot\vec{x}-E_{p}x_{0}}$$
(3)

Combine these results to obtain:

$$A^{\pi^0}_{\mu,\mu',\nu,\nu'}(x,x',y,y') = \mathcal{F}_{\mu\mu'}(\tilde{x},-i\vec{\nabla}_x)\mathcal{F}_{\nu\nu'}(\tilde{y},i\vec{\nabla}_y)\Delta_F(x-y,M_\pi), \quad (4)$$

where

$$\Delta_F(x-y, M_\pi) = \frac{1}{(2\pi)^4} \int d^4p \frac{e^{ip(x-y)}}{p_0^2 + \bar{p}^2 + M_\pi^2}$$
 (5)

Long-distance Approximation

Now we will evaluate the derivatives with respect to x and y which appear in these equations but keep only the leading term in an expansion powers of 1/L:

$$\prod_{i=1}^{N} \left(\frac{\partial}{\partial x_{\rho_i}} \right) \Delta_F(x - y, M_\pi) \approx \left\{ \prod_{i=1}^{N} \left(-M_\pi \frac{(x - y)_{\rho_i}}{|x - y|} \right) \right\} \left(\frac{M_\pi}{2\pi |x - y|} \right)^{(3/2)} e^{-|x - y| M_\pi}$$
 (6)

Then the four-point correlation reads:

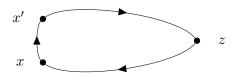
$$A^{\pi^0}_{\mu,\mu',\nu,\nu'}(x,x',y,y') = \mathcal{F}_{\mu\mu'}(\tilde{x},-iM_{\pi}\hat{n})\mathcal{F}_{\nu\nu'}(\tilde{y}-iM_{\pi}\hat{n})\Delta_F(x-y,M_{\pi}),$$
 (7)

where \hat{n} is a unit Euclidean four-vector.

$\gamma\gamma - \pi$ correlator in position space

To find to amplitude $\mathcal{F}_{\mu\mu'}(\tilde{x}, -iM_{\pi}\hat{n})$, consider the $\gamma\gamma - \pi$ correlator in position space:

$$\mathcal{B}_{\mu\mu'}(x, x', z) = \langle 0 | T\{J_{\mu}(x)J_{\mu'}(x')\pi^{0}(z)\} | 0 \rangle$$
 (8)



By using the same steps as the four-point function, we can find the same $\gamma\gamma - \pi$ vertex:

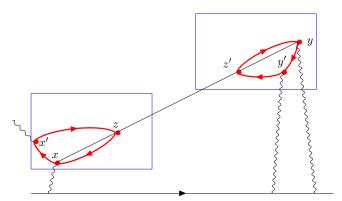
$$\mathcal{B}_{\mu\mu'}(x, x', z) = \mathcal{F}_{\mu\mu'}(\tilde{x}, iM_{\pi}\hat{n}) Z_{\pi^0}^{1/2} \Delta_F(x - z, M_{\pi}), \tag{9}$$

where $Z_{\pi^0}^{1/2} = \langle \pi^0(\vec{p} = 0) | \pi^0(0) | 0 \rangle$.

Lattice calculation

Combining all results, we get the hadronic light-by-light amplitude from π^0 contribution, which associate with two three-point correlators and pion propagators:

$$A^{\pi^0}_{\mu,\mu',\nu,\nu'}(x,x',y,y') = \Delta_F(x-y,M_\pi) \frac{1}{Z_{\pi^0}} \frac{\mathcal{B}_{\mu\mu'}(x,x',z)}{\Delta_F(x-z,M_\pi)} \frac{\mathcal{B}_{\nu\nu'}(y,y',z')}{\Delta_F(z'-y,M_\pi)}$$
(10)

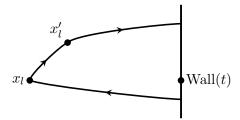


- ① Construct formula of π^0 exchange in the long-distance HLbL contribution
- 2 Point-point-wall correlator
- 3 Preliminary results
- 4 Conclusion

Point-point-wall correlator

$$\frac{B_{\mu\mu'}(0,x,Z=(\vec{0},t))}{\langle \pi(0)\pi^{\text{lat}}(Z)\rangle} = \frac{B_{\mu\mu'}^{W}(0,x,t)}{\langle \pi(0)\pi_{W}^{\text{lat}}(t)\rangle},\tag{11}$$

where $B_{\mu\mu'}^W(0,x,t) = \langle J_{\mu}(0)J_{\mu'}(x)\pi_W^{\text{lat}}(t)\rangle$, $\pi_{\text{w}}(t) = \sum_{\vec{x},\vec{y}} \bar{\psi}(\vec{x},t)\gamma_5\psi(\vec{y},t)$.

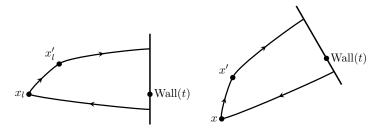


Rotational Matrix

The point-point-wall correlator $B_{\alpha\alpha'}^{l,W}(x_l,x_l',t)$ can be computed before rotation.

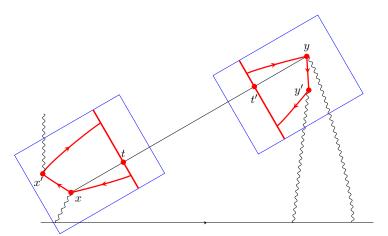
$$x = \Lambda x_l, \quad x' = \Lambda x_l' \tag{12}$$

$$B_{\mu\mu'}^{W}(x,x',t) = \Lambda_{\mu\alpha}\Lambda_{\mu'\alpha'}B_{\alpha\alpha'}^{l,W}(x_l,x_l',t)$$
(13)



Lattice implementation with point-point-wall correlator

$$A_{\mu,\mu',\nu,\nu'}^{\pi^0}(x,x',y,y') = \Delta_F(x-y,M_\pi) \frac{B_{\mu\mu'}^W(x,x',t)}{\left(\pi(0)\pi_w^{\text{lat}}(t)\right)} \frac{B_{\mu\mu'}^W(y,y',t')}{\left(\pi(0)\pi_w^{\text{lat}}(t')\right)}$$
(14)



- ① Construct formula of π^0 exchange in the long-distance HLbL contribution
- 2 Point-point-wall correlator
- 3 Preliminary results
- 4 Conclusion

Preliminary results: ensembles

Observable	Fit	% err.
$am'_{res}(m_l)$	0.0022824(70)	0.31
am_{π}	0.13975(10)	0.07
am_K	0.504154(89)	0.02
am_{Ω}	1.6726(25)	0.15
am'_{Ω}	2.040(63)	3.09
af_{π}	0.13055(11)	0.09
af_K	0.15815(13)	0.09
Z_A	0.73457(11)	0.02
Z_V^{π}	0.72672(35)	0.05
Z_V^K	0.7390(11)	0.15
$aE_{\pi\pi}^2$	0.28175(21)	0.08
$a\delta E_{\pi}^{2}$	0.002246(52)	2.31
ap	0.01775(21)	1.16
$\delta_0^2(p)$	-0.339(12)°	3.40
$m_{\pi}a_{0}^{2}$	-0.0464(10)	2.23

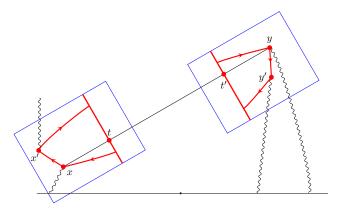
24D Ensemble

Observable	Fit	% err.
$am'_{res}(m_l)$	0.0020539(96)	0.47
am_{π}	0.13412(27)	0.20
am_K	0.31498(20)	0.06
am_{Ω}	1.3316(43)	0.32
am'_{Ω}	1.832(56)	3.04
af_{π}	0.12435(21)	0.17
af_K	0.13734(22)	0.16
Z_A	0.72959(25)	0.03
Z_V^{π}	0.7242(11)	0.15
Z_V^K	0.7270(12)	0.17
$aE_{\pi\pi}^2$	0.26916(61)	0.23
$a\delta E_{\pi}^{2}$	0.00092(14)	14.86
ap	0.01110(83)	7.45
$\delta_0^2(p)$	-0.199(44)°	22.16
$m_{\pi}a_{0}^{2}$	-0.0418(61)	14.61

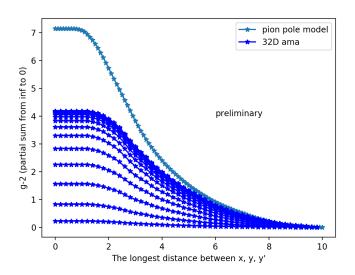
32D Ensemble

Preliminary results: parameters

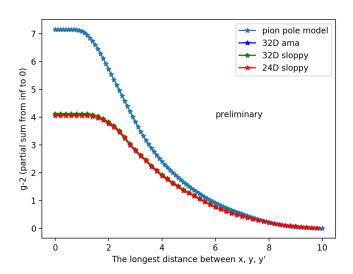
$$t$$
-min = 10
 xx' -limit = 10



Preliminary results: plots



Preliminary results: plots



- ① Construct formula of π^0 exchange in the long-distance HLbL contribution
- 2 Point-point-wall correlator
- 3 Preliminary results
- 4 Conclusion

Conclusion

- The π^0 exchange in the long-distance part of the HLbL contribution can be evaluated in a "QCD volume" of arbitrary size.
- The point-point-wall correlator is a better estimation of current-current- π^0 amplitude $\mathcal{F}_{\mu\mu'}(\hat{x}, -iM_{\pi}\hat{n})$.
- The statistical average of point-point-wall correlator can be evaluated in each lattice configuration before computing the hadronic amplitude.
- The point-point-wall correlator make the AMA correction much easier.