I=0 ππ scattering at physical masses on the lattice

Christopher Kelly & Tianle Wang (RBC & UKQCD collaborations)

2019 Lattice Workshop for US - Japan Intensity Frontier Incubation

Motivation

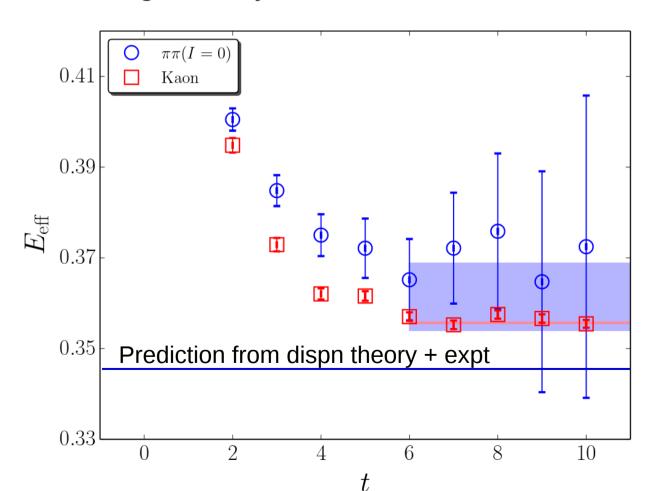
- Significant goal of RBC & UKQCD is physical lattice calculation of ϵ , the measure of direct CP-violation in $K \to \pi\pi$ decays.
- Direct CPV heavily suppressed in Standard Model hence ε' is very sensitive to BSM sources of CPV.
- When compared to experiment, any deviations may help shed light on origin of matter/antimatter asymmetry.
- Understanding ππ system is crucial:
 - Energy is needed for time dependence of correlation function from which extract finite-volume $K \rightarrow \pi\pi$ matrix element.
 - Phase shift enters Lellouch-Luscher finite-volume correction to matrix element.

2015 calculation

- First result published in 2015.
- 216 configurations.
- 32³x64 lattice volume.
- (Mobius) domain wall fermions with physical quark masses.
- Iwasaki+DSDR action allowing coarse lattice spacing of a⁻¹=1.38 GeV and correspondingly large physical volume (4.6 fm)³ while keeping chiral symmetry breaking under control.
- G-parity boundary conditions on quarks such that pions obey antiperiodic BCs : $p_{\pi} = \pm \pi/L$, $\pm 3\pi/L$,
- Lattice size L chosen to make ground-state $\pi\pi$ energy match kaon mass to ensure physical decay.

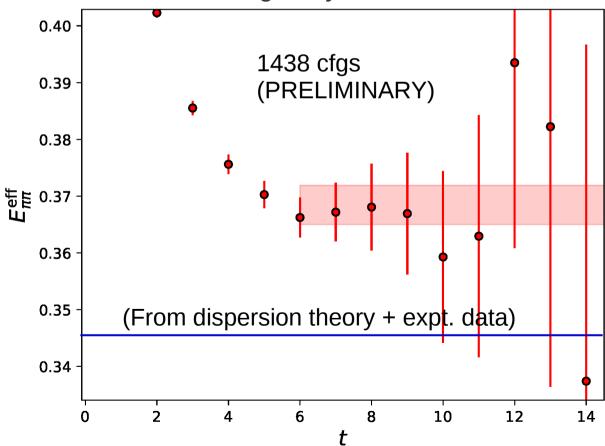
2015 calculation - $\pi\pi$ energy

- Pions generated with momenta $(\pm 1,\pm 1,\pm 1)\pi/L$
- From these construct operator " $\pi\pi(111,111)$ " with total momentum zero (back to back moving pions)
- The two single-pion sources are placed on timeslices separated by 4 which significantly reduces vacuum contribution.



2015 calculation - $\pi\pi$ energy

- Despite showing good stability under changes of t_{\min} and between 1 and 2 state fits, our energy is several σ larger than predicted by dispersion theory.
- Manifests in phase-shift (obtained via Luscher formula from energy): δ_0 =23.8(4.9)(1.2)° vs ~34°
- Persists when data set enlarged by almost 7x!



Resolution of $\pi\pi$ puzzle

- Shortly after 2015 publication we began a program to investigate this discrepancy in more detail.
- Most likely explanation is excited state contamination from a nearby state that the fitter is unable to isolate from the time dependence alone.
- Solution is to add additional operators.
- Matrix of correlators:

$$C_{ij}(t) = \langle 0|O_i^{\dagger}(t)O_j(0)|0\rangle \sim \sum_{\alpha} A_{i,\alpha}A_{j,\alpha}e^{-E_{\alpha}t}$$

 This is very powerful as evidenced by fact that multiple operators can distinguish the presence of excited states even from a single timeslice:

If, e.g 2 operators and only one state

$$\det(C(t)) = \left(A_{00}^2 \times A_{10}^2 - A_{10}A_{00} \times A_{00}A_{10}\right)e^{-E_0t} = 0$$
 6/26

Stationary ππ

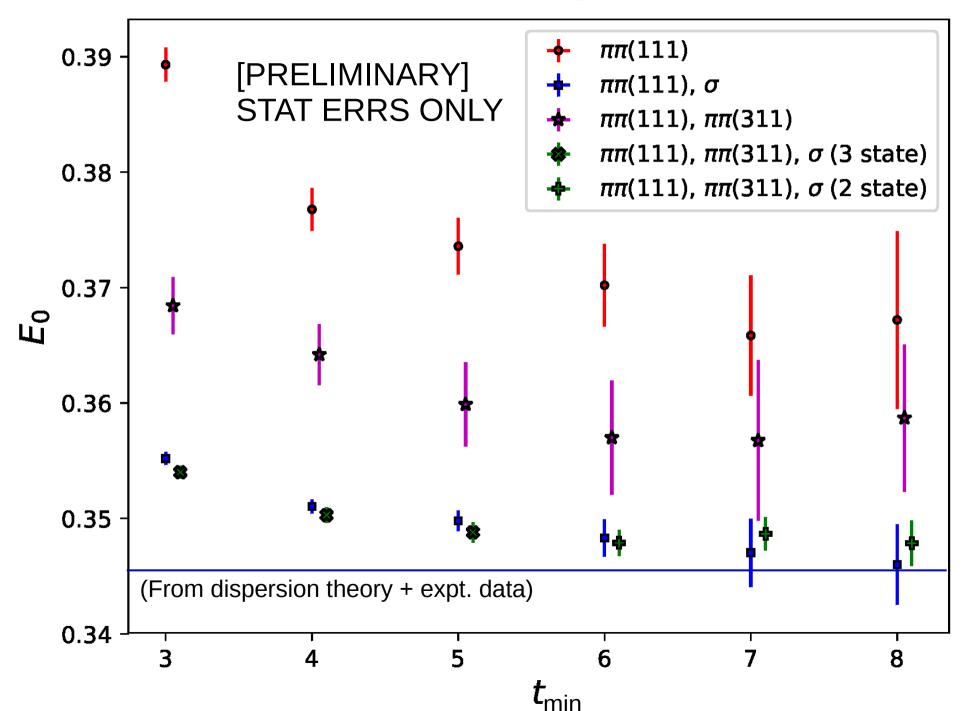
Extra operators

- We added two additional operators with same quantum numbers:
 - Scalar " σ " operator ~ $\bar{u}u+\bar{d}d$
 - " $\pi\pi(311,311)$ " operator comprising back-to-back pions with momenta ($\pm 3,\pm 1,\pm 1$) π/L + cyclic perms.
- We now have 741 measurements with these new operators.
- We perform 3-operator 3-state fits. The correlator matrix is symmetric and comprises 6 independent correlation functions.
- Note that around-the-world effects are expected in these correlators where one pion propagates forwards in time and the other backwards:

$$Ae^{-E_\pi t}e^{-E_\pi(L_T-t-8)} \sim {\rm constant}$$

- For $\pi\pi(111,111)$, $\pi\pi(111,111)$ correlator can estimate constant from single-pion correlator: constant ~ $5x10^{-5}$ vs O(1) amplitude.
 - ~10% contribution at t=15 (most precise data has 25% errs at t=15)

Effect of additional operators



Effect of additional operators (contd.)

- Extra operators have significant impact on ground-state energy resulting in much better agreement with dispersive prediction.
- Phase shift $31.7(6)^{\circ}$ vs $\sim 34^{\circ}$ prediction (5-15, stat errs only).
- Fits are quite tricky however: data are highly correlated and thus correlated fits are desired to minimize errors and provide goodness-of-fit information.
- Covariance matrices are 66x66 for a fit from 5-15! Obtain using double-jackknife procedure.
- Not clear how reliable covariance matrices are given 15 orders-ofmagnitude between lowest and highest eigenvalue.
- Number of fit parameters is large: 3x3 amplitudes, 3 energies and 6 constants = 18 parameters.
- Rapid decay of signal/noise, especially for $\pi\pi(311,311)$, $\pi\pi(311,311)$ correlator which has 100% errors at t=8.

Constant terms and p-values

• For these fits the constants all come out as zero within errors, e.g. 5-15 fit with 3

states:

$$\begin{array}{c|c} C_{\pi\pi(111),\pi\pi(111)} \\ C_{\pi\pi(111),\pi\pi(311)} \\ C_{\pi\pi(111),\pi\pi(311)} \\ C_{\pi\pi(311),\pi\pi(311)} \\ C_{\pi\pi(311),\sigma} \\ C_{\sigma,\sigma} \end{array} \begin{array}{c} -6(12)\times 10^{-5} \\ -11(33)\times 10^{-6} \\ -27(34)\times 10^{-8} \\ -5(95)\times 10^{-7} \\ -37(95)\times 10^{-9} \\ -10(11)\times 10^{-10} \end{array}$$

We can therefore ignore the constants here.

	5-15 (3 state)	$6-15 \ (2-state)$	7-15 (2-state)
χ^2/dof	1.37	1.37	1.17
p-value	0.04	0.06	0.2

- χ^2 /dof look good but p-values (essentially probability data agrees with model) quite poor, particularly for small t: dof ~ O(50), hence χ^2 distribution strongly peaked.
- Not clear how meaningful given knowledge of covariance matrix: $1.37 \rightarrow 1.17$ requires $\Delta \chi^2 \sim 10$ in context where contribution of each of the ~65 eigenmodes varies significantly in range 1×10^{-4} up to 6.5×10^{0} .

Systematic errors

Despite difficulties, agreement between fit parameters is very good.

Param	6 minus 5	7 minus 6
$A^0_{\pi\pi(111)}$	-0.0028(59)	0.0065(80)
$A_{\pi\pi(311)}^{0}$	0.062(69)	-0.132(95)
$A^0_{m{\sigma}}$	-0.0044(57)	-0.0042(82)
E_0	-0.0026(21)	0.0023(29)
$A^1_{\pi\pi(111)}$	-0.027(41)	-0.120(77)
$A^1_{\pi\pi(311)}$	-0.026(50)	-0.025(85)
$A_{m{\sigma}}^{1}$	-0.068(56)	0.052(86)
E_1	-0.019(21)	-0.010(32)

Relative differences between fit parameters at consecutive t_{min}

- Variation indicates systematic error associated with fitting strategy is small, possibly negligible.
- Possibility of further excited state contamination cannot be ruled out and should be estimated.
- Discretization effects and remnant finite-volume errors require estimation.

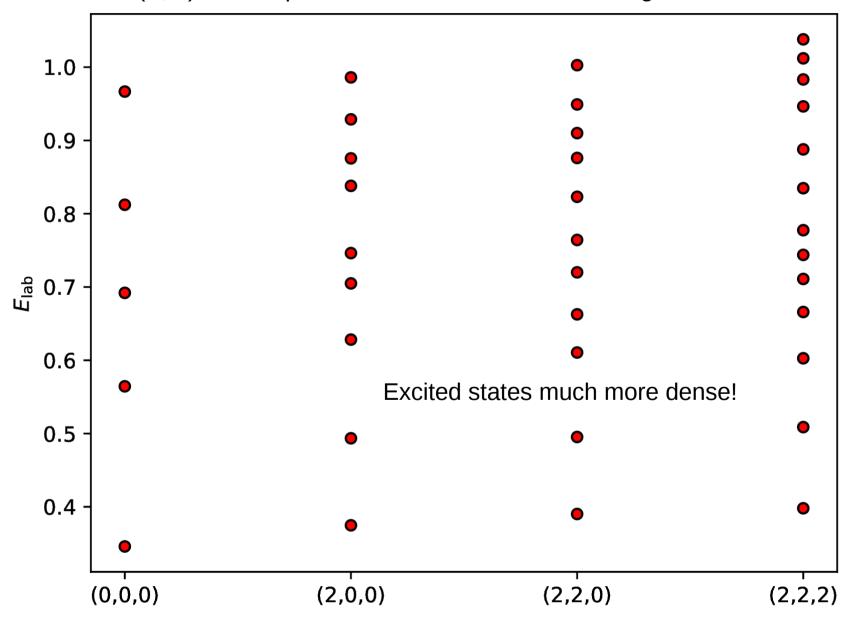
Comoving $\pi\pi$

Comoving ππ

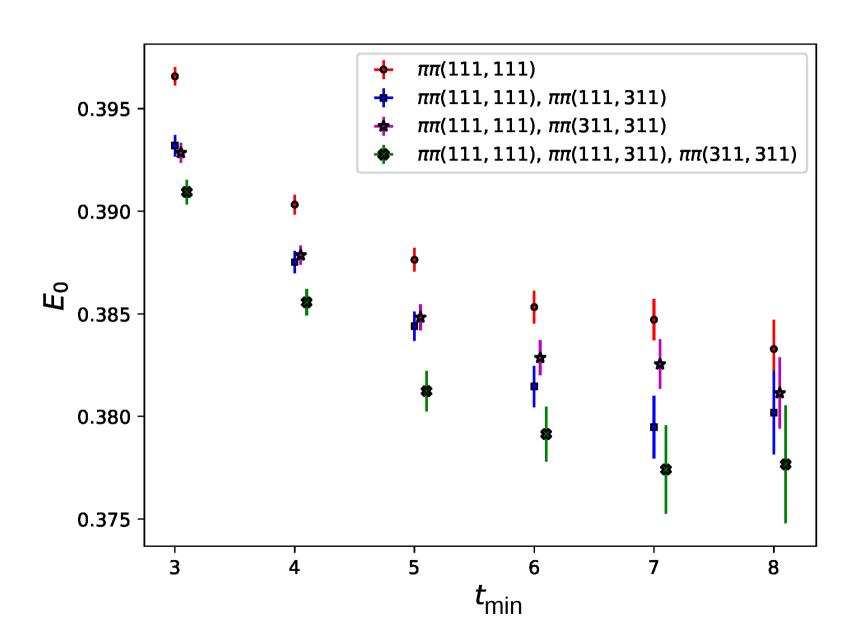
- Due to use of "all-to-all propagator" framework we are also able to compute $\pi\pi$ correlation functions for states of non-zero total momentum for minimal extra cost.
- Combining our pions in $p_{\pi}=(\pm 3,\pm 1,\pm 1)\pi/L$ and $(\pm 1,\pm 1,\pm 1)\pi/L$ momentum sets we can access $\pi\pi$ total momenta $(\pm 2,0,0)\pi/L$, $(\pm 2,\pm 2,0)\pi/L$ and $(\pm 2,\pm 2,\pm 2)\pi/L$
- For each we can construct 3 independent operators: $\pi\pi(111,111)$, $\pi\pi(311,111)$ and $\pi\pi(311,311)$ that contain 0,1 and 2 pion operators in the $(\pm 3,\pm 1,\pm 1)\pi/L$, resp.
- This allows us to compute the I=0 $\pi\pi$ phase shift at 3 additional (lower) center-of-mass energies and thus map out the energy dependence of the phase shift.
- Lellouch-Luscher factor for $K \to \pi\pi$ actually needs the *derivative* of the phase shift wrt. energy: we can now compute this from first principles.
- Potentially improve 11% systematic error on $K \rightarrow \pi\pi$.

Predicted energies

By (numerically) matching dispersion theory curve of $\delta(E)$ and Luscher's $\delta(E; L)$ we can predict allowed finite volume energies



$p_{tot} = (2,0,0)\pi/L$ ground state energy



$p_{tot}=(2,0,0)\pi/L$ discussion

7-15

$C_{gnd,gnd}$	$-40(57) \times 10^{-6}$
$C_{gnd,exc1}$	$-39(28) \times 10^{-6}$
$C_{gnd,exc2}$	$-16(14) \times 10^{-6}$
$C_{exc1,exc1}$	$-24(15) \times 10^{-6}$
	$-110(70) \times 10^{-7}$
$C_{exc2,exc2}$	$-51(37) \times 10^{-7}$

- Constants have wrong sign yet resolvable from 0 at 1.5σ
- Likely just fit artefact: fit without constants as before

Quantity	$t_{\min} = 6$	7 8
χ^2/dof	1.00	0.96 0.87
p-value	0.47 (0.55 0.69

- Fits without constants, χ^2/dof and p-values both very good.
- Why is this so much better behaved than the stationary case? Perhaps it is due to the nature of the operators:

(2	,0	,(<u>)</u>

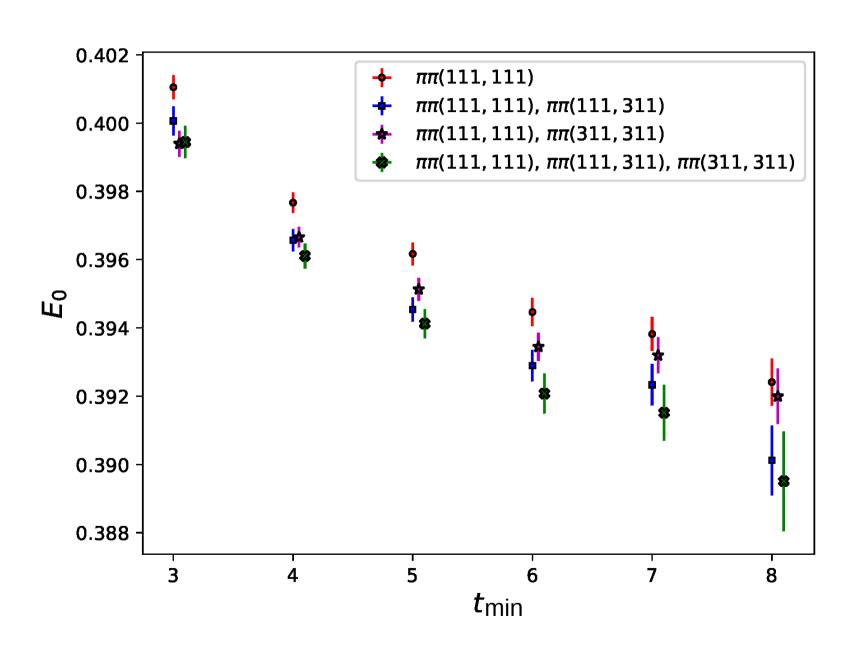
<u>-</u>	(2,0,0)	
Ī	Param	7-15
	A_{gnd}^0	1.0(0.0)
пп(111,111)	A_{gnd}^1	-0.306(45)
	A_{gnd}^2	-0.138(18)
	A_{exc1}^0	0.086(21)
пп(311,111)	A^1_{exc1}	1.0(0.0)
	A_{exc1}^2	-0.30(10)
	A_{exc2}^0	0.013(12)
пп(311,311)	A^1_{exc2}	0.092(46)
	A_{exc2}^2	1.0(0.0)

/ 0		\cap		\cap	١
(0	٠,	U	,	U	4

Param	4-15
$A^0_{\pi\pi(111)}$	1.0(0.0)
$A_{\pi\pi(111)}^{1}$	0.470(20)
$A_{\pi\pi(111)}^2$	0.311(73)
$A_{\pi\pi(311)}^{0}$	0.0528(86)
$A^1_{\pi\pi(311)}$	-0.84(12)
$A_{\pi\pi(311)}^{2}$	1.0(0.0)
A_{σ}^{0}	1.0(0.0)
A^1_σ	-0.830(28)
A_{σ}^2	-0.87(22)

- Relative couplings (to favored) indicate considerably less intercoupling between states and operators
- More diagonal amplitude matrix suggests simpler covariance matrix.
- Also perhaps more exposure to excited state contamination?

$p_{tot} = (2,2,0)\pi/L$ ground state energy



$p_{tot}=(2,2,0)\pi/L$ discussion

- \bullet Adding operators does not appear to improve almost-linear dependence of energy on $t_{\mbox{\tiny min}}$
 - excited state contamination?

- Constants unresolved from 0 apart from in one case where it has correct sign and is consistent with expectation.
- p-value strongly supports including constants, eg. 6-15: p=0.1 (with) vs 3x10⁻⁷ (without).
- Nevertheless I will *not* include constants as I believe that these extra 6 parameters are spurious and just act to absorb some excited state contamination.

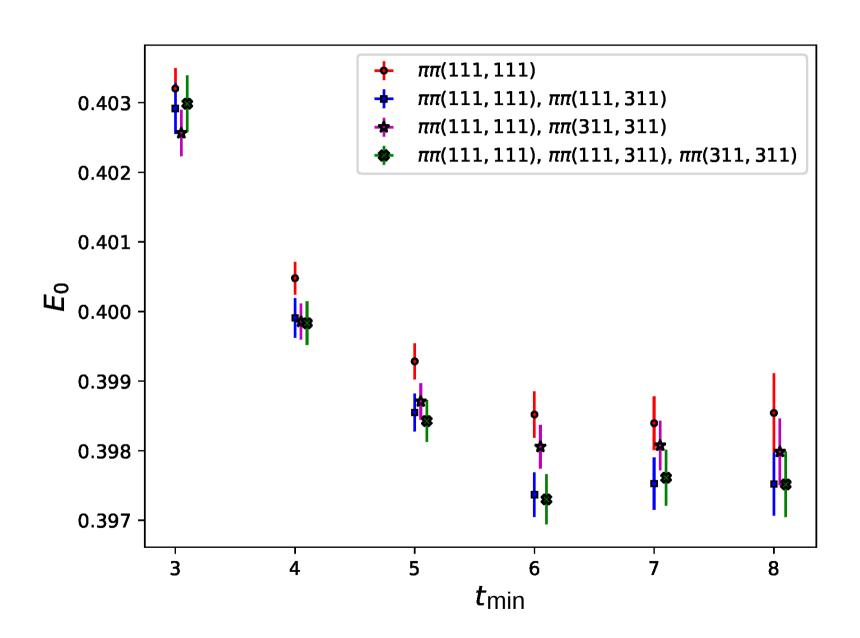
(supported by the (2,2,2) case as we will see)

• Why is (2,2,0) worse than (2,0,0) or (0,0,0)? Again this appears due to the nature of the operators:

	Param	6-15
	A_{gnd}^0	1.0(0.0)
пп(111,111)	A_{gnd}^{1}	-0.160(15)
	A_{gnd}^2	-0.0790(64)
	A_{exc1}^0	0.0173(76)
пп(311,111)	A^1_{exc1}	1.0(0.0)
, , , ,	A_{exc1}^2	-0.186(43)
	A_{exc2}^0	-0.0082(33)
пп(311,311)	A^1_{exc2}	0.045(20)
	A_{exc2}^2	1.0(0.0)

- Amplitude matrix is much more diagonal, little intercoupling between operators and states.
- Suggests a 4th state could easily be present that couples strongly only to 1st operator.
- Would explain fact that adding operators does not seem to improve t_{min} dep.

$p_{tot} = (2,2,2)\pi/L$ ground state energy



$p_{tot}=(2,2,2)\pi/L$ discussion

Results appear to plateau at t_{min}=6.

- p-values strongly favor including constants:
 6-15 p=0.25 (with), p=3x10⁻⁸ (without)
- However values have the wrong sign.
- Despite apparent plateau, amplitude matrix is again very close to diagonal

Param	6-15
A_{gnd}^0	1.0(0.0)
A_{gnd}^1	-0.073(11)
A_{gnd}^2	-0.0352(80)
A_{exc1}^0	-0.0125(57)
A_{exc1}^1	1.0(0.0)
A_{exc1}^2	-0.189(49)
A_{exc2}^0	-0.0151(27)
A^1_{exc2}	0.049(24)
A_{exc2}^2	1.0(0.0)

(relative couplings)

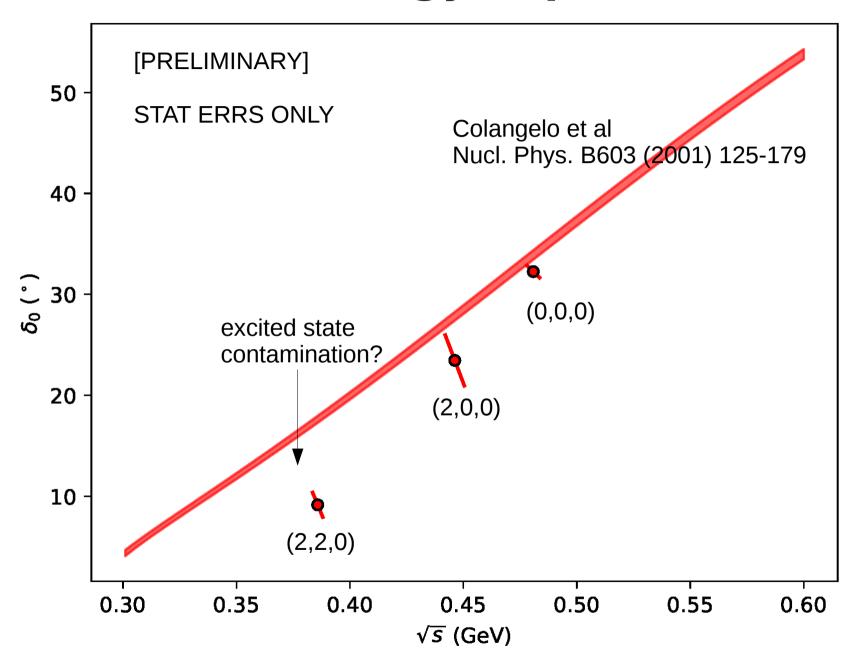
(relative diffs. const/no const)

Param	6-15
A^0_{gnd}	0.00151(82)
A_{exc1}^0	-0.18(31)
A^0_{exc2}	-0.09(13)
E_0	0.00099(63)
A_{gnd}^1	0.061(93)
A_{exc1}^{\dagger}	-0.0021(69)
A^1_{exc2}	0.61(44)
$E_{ extsf{1}}$	-0.0010(43)
A_{gnd}^{-1}	-0.04(13)
Λ_{ama1}	0.25(16)
A_{exc2}^2	-0.010(14)
E_2	-0.0074(74)

- Likelihood then is constants are spurious and just help account for breakdown of 3-state model.
- This lends support for dropping the constants for the (2,2,0) case where the amplitude matrix is similarly near-diagonal.
- Ultimately a sys. error will be required to account for the excited state contamination that will likely be larger than any difference we see between including/excluding constants.

Phase shift energy dependence

Phase shift energy dependence



j

Conclusions

Conclusions

- For stationary $\pi\pi$, adding 2 more operators significantly reduces excited state contamination and improves agreement with dispersive result.
 - Vastly improved understanding of $\pi\pi$ system at ~500 MeV
- Comoving $\pi\pi$ allow direct measurement of energy dependence of phase-shift: Potentially improve 11% Lellouch-Luscher systematic on $K \to \pi\pi$.
- For comoving $\pi\pi$, particularly at larger total momenta, our 3 operators appear to only weakly intercouple between the 3 states.
- Excited state systematic errors on comoving $\pi\pi$ energies likely remain significant, reducing their value in mapping out the phase-shift energy dependence.
- Multi-state correlated fits to noisy data are very difficult. However varying the fit strategy appears to have little effect on the results.
- GEVP may allow us to circumvent many of these difficulties, and is under active consideration. Correct treatment of constants acts as stumbling block here.

Conclusions (contd.)

- Impact of significant improvement in understanding of stationary $\pi\pi$ system upon $K \rightarrow \pi\pi$ is under examination.
- Matrix elements with all 3 operators have been computed and therefore we expect to be able to isolate the ground-state contribution much more effectively.
- Expect results in the next few months.