Neutrinoless Double-Beta Decay in Effective Field Theory

Jordy de Vries

"A new leading contribution to $0\nu\beta\beta$ ", 1802.10097, PRL "A 0 $\nu\beta\beta$ master formula from effective field theory" 1806.02780, JHEP "A renormalized approach to $0\nu\beta\beta$ ", arXiv:1904.xxxxx

With: V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa

Neutrinoless double beta decay in EFT

Part I: What is neutrinoless double beta decay and why bother?

- Part II: An effective field theory approach: SM-EFT + chiral EFT
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-perturbative renormalization
 - 3. Higher-dimensional lepton number violation

The puzzle of the neutrino mass

- The Standard Model does not allow for a neutrino mass
- But of course neutrino oscillations $P_{i \to j} \sim \sin^2 \left(\frac{\Delta m_{ij} L}{2E} \right)$
- Easiest solution: add the gauge singlet v_R and use Higgs mechanism

$$L_{v} = -y_{v} \, \overline{L} \widetilde{\varphi} v_{R} + h.c. \rightarrow -\frac{y_{v} \, v}{\sqrt{2}} \overline{v}_{L} v_{R} \qquad y_{v} \sim 10^{-12} \rightarrow m_{v} \sim 0.1 \, eV$$

Nothing wrong with this!

The puzzle of the neutrino mass

- The Standard Model does not allow for a neutrino mass
- But of course neutrino oscillations $P_{i \to j} \sim \sin^2 \left(\frac{\Delta m_{ij} L}{2E} \right)$
- Easiest solution: add the gauge singlet v_R and use Higgs mechanism

$$L_{v} = -y_{v} \, \overline{L} \tilde{\varphi} v_{R} + h.c. \implies -\frac{y_{v} \, v}{\sqrt{2}} \overline{v}_{L} v_{R} \qquad y_{v} \sim 10^{-12} \implies m_{v} \sim 0.1 \, eV$$

• Nothing wrong with this! But nothing forbids a new mass term!

$$L_v = -M_R v_R^T C v_R$$
 M_R New mass scale not linked to EW scale

• Diagonalize the neutrino mass matrix. If $M_R >> y_v v$

$$M_{diag} \approx \begin{pmatrix} (y_{\nu}v)^2 / M_R & 0 \\ 0 & M_R \end{pmatrix}$$

$$\mathbf{v} = \mathbf{v}_L + \mathbf{v}_L^c \qquad \qquad N = \mathbf{v}_R + \mathbf{v}_R^c$$

Double beta decay with and without V's

• Normal double beta decay $(2\nu\beta\beta)$ has been observed

$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-} + 2 \overline{\nu}_{e}$$

$$T_{1/2}^{2\nu} ({}^{76}Ge \rightarrow {}^{76}Se) = (1.84^{+0.14}_{-0.10}) \times 10^{21} yr \qquad \text{Gerda collaboration '15}$$

• Neutrinoless double beta decay $(0\nu\beta\beta)$ looks similar

$$(A,Z) \rightarrow (A,Z+2)+2e^{-}$$
 Furry '39 $\Delta L=2$

• Violates Lepton Number by two units and never been observed (yet) ...

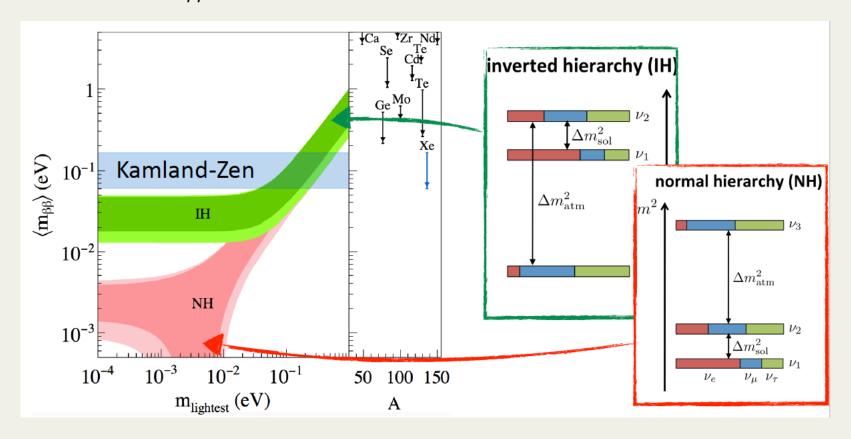
	Life time	Collaboration	year
76 Ge	$8.0 \times 10^{25} \text{ yr}$	GERDA	2018
¹³⁰ Te	$1.3 \times 10^{25} \text{ yr}$	CUORE	2017
¹³⁶ Xe	$1.1 \times 10^{26} \text{ yr}$	KamLAND-Zen	2016

Improvements upcoming

Standard interpretation

- $0\nu\beta\beta$ induced by a light-neutrino exchange $m_{\beta\beta} = \sum_{e} U_{ei}^2 m_e$
- Function of neutrino masses + mixing angles + Majorana phases

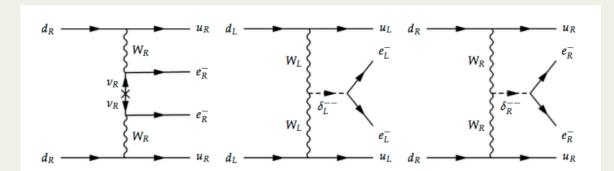
$$m_{\beta\beta} = m_{v1}c_{12}^2c_{13}^2 + m_{v2}s_{12}^2c_{13}^2e^{2i\lambda_1} + m_{v3}s_{13}^2e^{2i(\lambda_2 - \delta_{13})}$$



• Interpretation of experimental results requires theory

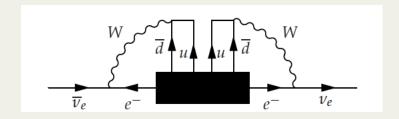
Non-Standard interpretation

- 0νββ does not have to be induced by light-neutrino exchange
- Many models induce lepton-number violation in different ways
- Example: in LR symmetric models (but also RPV SUSY, LQs, ...)



Thesis Duerr '10

• No direct link to neutrino mass. Note **Schechter-Valle** theorem '82



The anatomy of the decay

• Decay can be roughly factorized into $\frac{1}{T_{1/2}^{0v}} \sim m_{\beta\beta}^2 \cdot g_A^4 \cdot |M|^2 \cdot G$

Energy

 $\sim 100 MeV$

 $\sim 10 MeV$

>
$$TeV$$
 $m_{\beta\beta}^2$ Lepton-number-violating (LNV) source (not necessarily neutrino mass)

$$\sim GeV$$
 g_A^4 Hadronic ME: quarks → hadrons (domain of ChPT and lattice-QCD)

$$|M|^2 = |\langle 0^+ | V_v | 0^+ \rangle|^2$$
 Depends on 'neutrino-potential' (ChEFT) and many-body calculations

Phase space factor, depends on Q value
$$\sim$$
 Q⁵ (of order 2-5 MeV for experimental targets)

This talk: neutrinoless double beta decay

Part I: What is neutrinoless double beta decay and why bother?

- Part II: An effective field theory approach: SM-EFT + chiral EFT
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-perturbative renormalization
 - 3. Higher-dimensional lepton number violation

Effective lepton number violation

- Lepton number = **accidental** symmetry in Standard Model (at zero T)
- But no longer once we allow for operators of dim>4
- Consider the SM as an EFT $L_{new} = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$
- Contain SM fields only and obey SM gauge and Lorentz symmetry
- At energy E, operators of dimension (4+n) contribute as $(E/\Lambda)^n$
- Gauge symmetry is restrictive: only 1 dim-5 operator Weinberg '79

$$L_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L) \qquad L^T = (v_L e_L) \qquad \Delta L = 2$$

• Majorana neutrino mass term after EWSB

$$m_{\nu} \sim eV \qquad \rightarrow \qquad \Lambda \sim c_5 \cdot 10^{14} GeV$$

Higher-order in the SM-EFT

operators only appear at odd dimensions 5, 7,

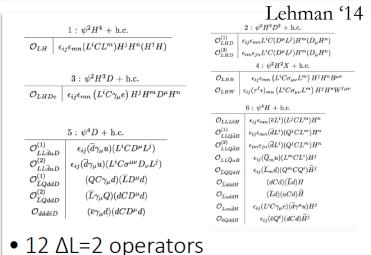
Kobach '16

Dimension-five

$$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$$

- One operator
- Induces Majorana mass

Dimension-seven



Dimension-nine

Graesser '16 JdV et al '18

Full basis not known

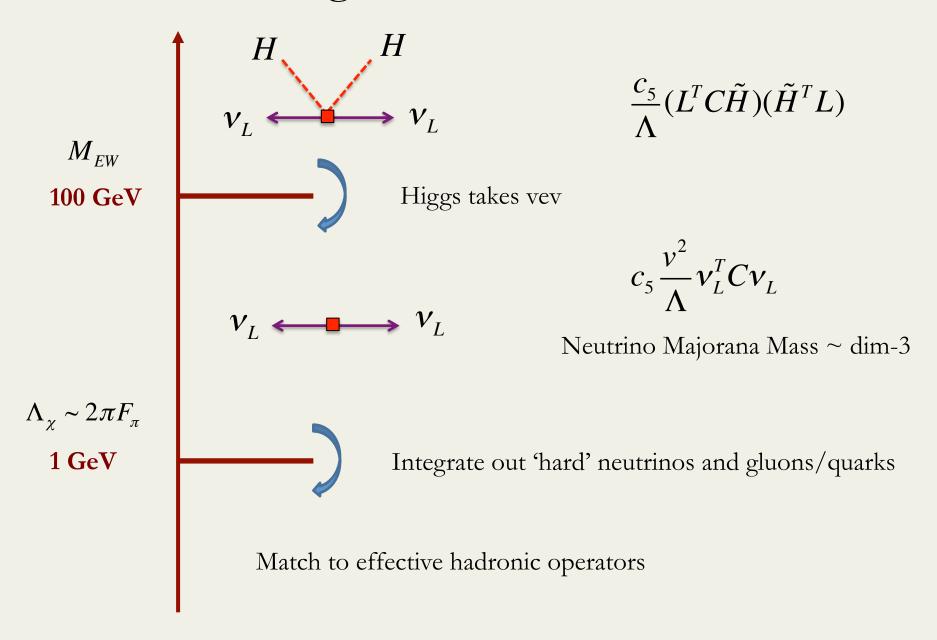
19 4-quark 2-lepton operators after EWSB

Seems crazy to go to dim-7 if expansion parameter is

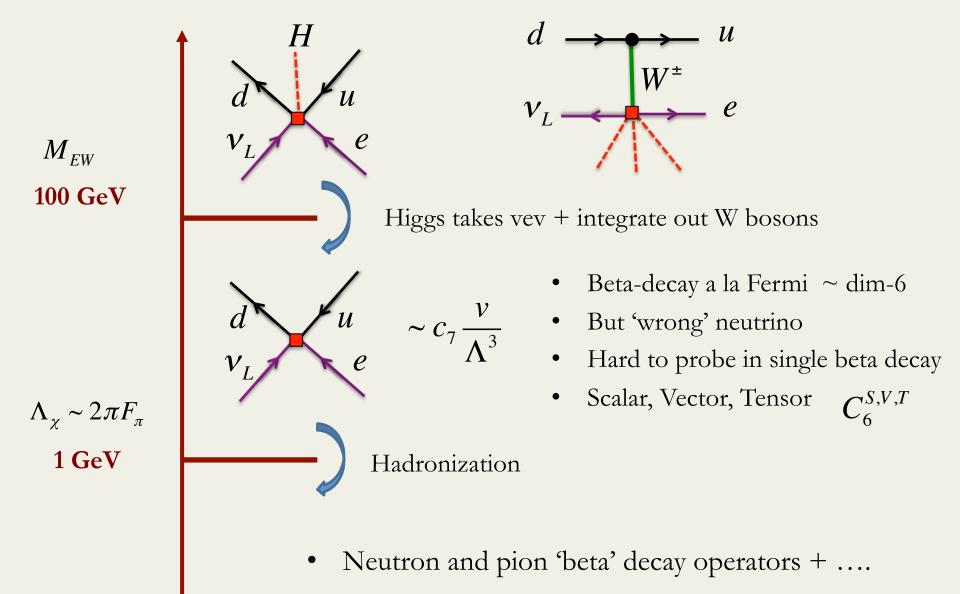
Seems crazy to go to dim-7 if expansion parameter is
$$\left(\frac{v}{\Lambda}\right)^2 \sim 10^{-24}$$

- Prezeau et al '03 Various models (left-right symmetry, RPV SUSY)
- Example: in LR symmetry $c_5 \sim y_e^2 \sim 10^{-10}$ $c_7 \sim y_e \sim 10^{-5}$ $c_9 \sim y_e^0 \sim 1$
- Then if scale is low $\sim \Lambda \sim (10-100) TeV$ $\dim 5 \sim \dim 7 \sim \dim 9$

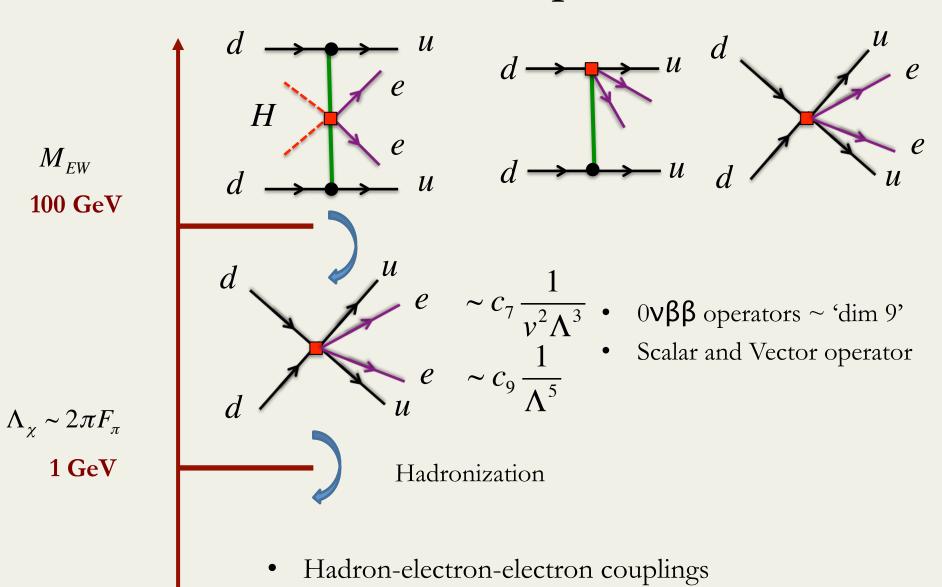
Crossing the electroweak scale



Dimension-7 operators



Dimension-9 operators



Neutrinoless double beta decay in EFT

Part I: What is neutrinoless double beta decay and why bother?

- Part II: An effective field theory approach: SM-EFT + chiral EFT
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-perturbative renormalization
 - 3. Higher-dimensional lepton number violation

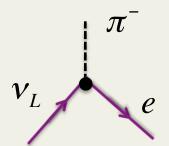
Chiral effective field theory

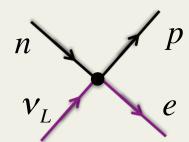
~ GeV
$$L = L_{QCD} + L_{Fermi}$$

~100 MeV LO strong:
$$L_{\chi} = L_{kin} - m_N \overline{N} N - \frac{1}{2} m_{\pi}^2 \pi^2 + \frac{g_A}{f_{\pi}} D_{\mu} \vec{\pi} \cdot \overline{N} \gamma^{\mu} \gamma^5 \vec{\tau} N$$

Weak interactions

$$L_{\chi,Fermi} = G_F f_{\pi} \left(\partial_{\mu} \pi^- \overline{e}_L \gamma^{\mu} \nu_L \right) + G_F \overline{p} \left(\gamma^{\mu} - g_A \gamma^{\mu} \gamma^5 \right) n \overline{e}_L \gamma^{\mu} \nu_L + \cdots$$





Fermi (F) Gamow-Teller (GT)

Chiral effective field theory

$$L = L_{QCD} + L_{Fermi} - m_{\beta\beta} v_L^T C v_L$$

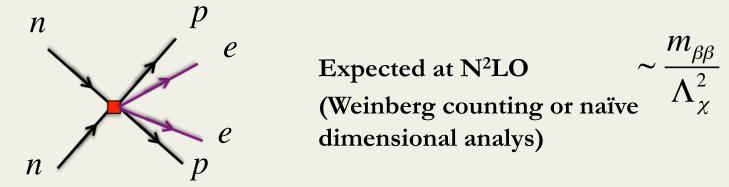
~100 MeV

Neutrinos are still degrees of freedom in the low-energy EFT

LO interaction :
$$V_L \longleftrightarrow V_L \sim m_{\beta\beta}$$
 $n \longleftrightarrow p$

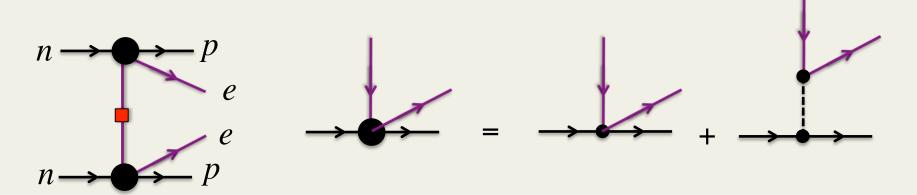
Leads to long-range $nn \to pp + ee$ $\sim \frac{m_{\beta\beta}}{q^2}$ $q \sim k_F \sim m_{\pi}$ $p \to p$

'Hard' neutrino exchange $(E, |\vec{p}| > \Lambda_{\chi}) \rightarrow$ short-range operators



Majorana mass contribution

- Apply chiral EFT to construct a 'neutrino potential'
- Standard mechanism: leading order



$$V_{v} = (2G_{F}^{2}m_{\beta\beta})\tau_{1}^{+}\tau_{2}^{+}\frac{1}{\vec{q}^{2}}\left[1 - g_{A}^{2}\left(\vec{\sigma}_{1}\cdot\vec{\sigma}_{2} - \vec{\sigma}_{1}\cdot\vec{q}\vec{\sigma}_{2}\cdot\vec{q}\frac{2m_{\pi}^{2} + \vec{q}^{2}}{(m_{\pi}^{2} + \vec{q}^{2})^{2}}\right)\right] \otimes \overline{e}_{L}e_{L}^{c}$$

- LO long-range Coulomb-like potential $\sim 1/q^2$
- Close to 'standard' approach but no Form Factors or Closure terms
- All other contributions are higher order \rightarrow pretty simple at LO

Quick look at higher orders

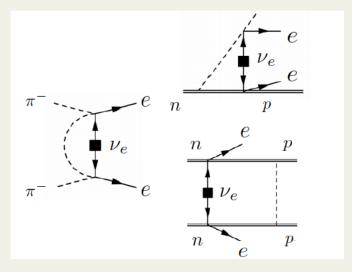
- The EFT approach allows for systematic corrections
 - 1. Factorizable 'one-body' corrections (form factors)

$$g_A \longrightarrow g_A(q^2)$$

- The EFT approach allows for systematic corrections
 - Factorizable 'one-body' corrections

$$g_A \longrightarrow g_A(q^2)$$

New non-factorizable pieces + associated **counter terms**



Some diagrams are UV divergent.....

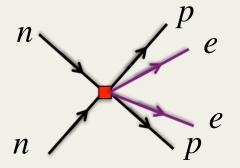
$$V_{v}^{N2LO} = \tau_{1}^{+} \tau_{2}^{+} \left(V_{loops,finite} + V_{UV} \log \frac{m_{\pi}^{2}}{\mu_{UV}^{2}} + V_{CT} \right) \otimes \overline{e}_{L} e_{L}^{c}$$

- Counter terms appear at N²LO
- Right size to absorb UV divergencies

since loops bring factor
$$\sim \frac{g_A^2 m_\pi^2}{(4\pi f_\pi^2)} \sim \frac{m_\pi^2}{\Lambda_\chi^2}$$

$$\sim \frac{g_A^2 m_\pi^2}{(4\pi f_\pi^2)} \sim \frac{m_\pi^2}{\Lambda_\chi^2}$$

As expected: short-range at N^2LO



 $L_{CT} = C_{v}(\overline{p}n)(\overline{p}n) \otimes \overline{e}_{I}e_{I}^{c}$

Quick look at higher orders

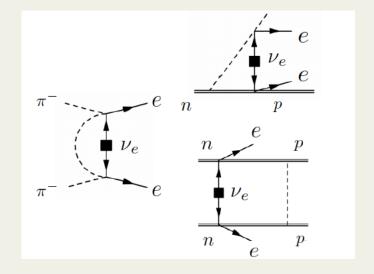
Cirigliano et al '17

- The EFT approach allows for systematic corrections
 - 1. Factorizable 'one-body' corrections

$$g_A \longrightarrow g_A(q^2)$$

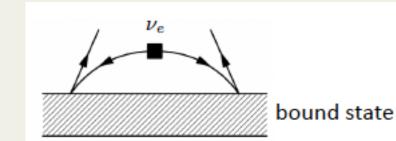
2. New non-factorizable pieces

+ associated **counter terms**



- Closure corrections from ultrasoft neutrino exchange
- Depends on nuclear excited states

• Appear at N²LO ~
$$\frac{(E_n - E_0)}{(4\pi k_F)} \sim \frac{q^2}{\Lambda_{\chi}^2}$$

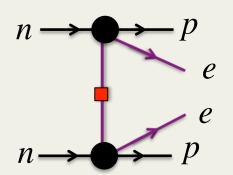


Correspond to so-called 'closure corrections'

Review by Doi et al '83

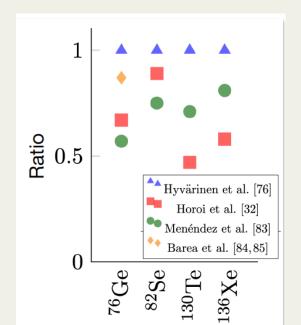
The neutrino amplitude

• At LO the 'standard' mechanism is long-range



$$V_{v} = (2G_{F}^{2}m_{\beta\beta})\tau_{1}^{+}\tau_{2}^{+}\frac{1}{\vec{q}^{2}}\left[1 - g_{A}^{2}\left(\vec{\sigma}_{1}\cdot\vec{\sigma}_{2} - \vec{\sigma}_{1}\cdot\vec{q}\vec{\sigma}_{2}\cdot\vec{q}\frac{2m_{\pi}^{2} + \vec{q}^{2}}{(m_{\pi}^{2} + \vec{q}^{2})^{2}}\right)\right] \otimes \overline{e}_{L}e_{L}^{c}$$

- All other corrections at least N^2LO ! Confirmed by many-body calculations
- Different methods have roughly a factor 2 to 3 'many-body spread'



Nuclear structure problem?

QPRA (Hyvarinen/Suhonen '15)
Shell model (Horoi/Neacsu '17 & Menendez '18)
IBM (Barea et al '15 '18)

Or could there be other problem?

Back to the basics

- Size of short-range piece was estimated by perturbation theory (NDA)
- Let's test this by studying the most simple process: $nn \rightarrow pp + ee$

"A new leading contribution to $0\nu\beta\beta$ ", 1802.10097, PRL 120

Back to the basics

- Size of short-range piece was estimated by perturbation theory (NDA)
- Let's test this by studying the most simple process: $nn \rightarrow pp + ee$

"A new leading contribution to $0\nu\beta\beta$ ", 1802.10097, PRL 120

• First describe NN scattering by solving LS equation

$$T = V + VG_0T$$

- The potential calculated in perturbation theory from chiral Lagrangian
- Leading-order potential is simple (corrections discussed later)

$$L_{\chi} = L_{kin} - m_N \overline{N}N + \frac{g_A}{f_{\pi}} D_{\mu} \vec{\pi} \cdot \overline{N} \gamma^{\mu} \gamma^5 \vec{\tau} N + C_0 \overline{N} N \overline{N} N$$

$$V_{strong}^{1S_0}(LO) = C_0 - \frac{g_A^2}{4f_\pi^2} \frac{m_\pi^2}{\vec{q}^2 + m_\pi^2} + \cdots$$

Need to 'regulate' the potential (physics should be regulator independent!)

$$V_{strong}^{1S_{0}} = C_{0} - \frac{g_{A}^{2}}{4f_{\pi}^{2}} \frac{m_{\pi}^{2}}{\vec{q}^{2} + m_{\pi}^{2}} \qquad V \rightarrow e^{-\frac{p^{6}}{\Lambda^{6}}} V e^{-\frac{p^{6}}{\Lambda^{6}}} C_{0}(\Lambda)$$

$$T(p', p, E) = V(p', p) + \int dl \ V(p', l) \frac{l^{2}}{E - l^{2}/m_{N} + i\varepsilon} T(l, p)$$

- The counter term is fitted to low-energy data (**scattering lengths**)
- Predictions are made for nucleon-nucleon phases shifts (all energies)

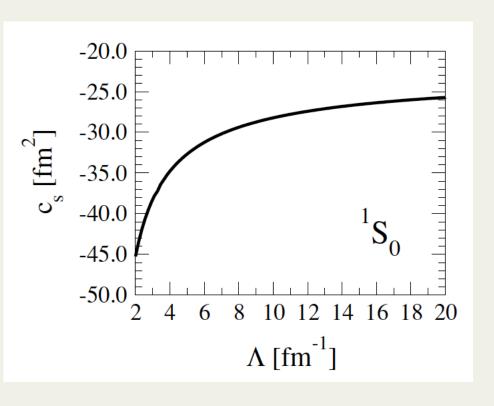
• Need to 'regulate' the potential (physics should be regulator independent!)

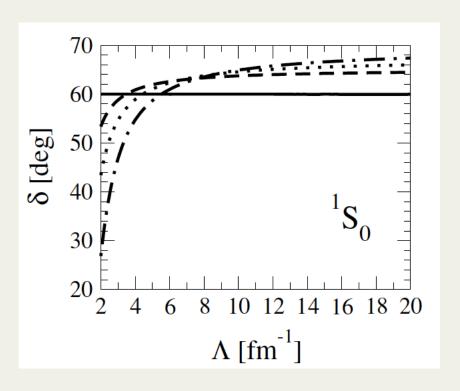
$$V_{strong}^{1S_{0}} = C_{0} - \frac{g_{A}^{2}}{4f_{\pi}^{2}} \frac{m_{\pi}^{2}}{\vec{q}^{2} + m_{\pi}^{2}} \qquad V \rightarrow e^{-\frac{p^{6}}{\Lambda^{6}}} V e^{-\frac{p^{16}}{\Lambda^{6}}} C_{0}(\Lambda)$$

$$T(p', p, E) = V(p', p) + \int dl \ V(p', l) \frac{l^{2}}{E - l^{2}/m_{N} + i\varepsilon} T(l, p)$$

- The counter term is fitted to low-energy data (scattering lengths)
- Predictions are made for nucleon-nucleon phases shifts (all energies)
- Λ is a momentum cut-off. It should be $\Lambda \ge M_{high}$ so that we do not miss soft physics. In practice $\Lambda \cong M_{high}$ is often useful.
- But one should check first that $\Lambda >> M_{high}$ can be taken in principle!!
- Note: 3 different regulators used in actual calculations (dim-reg, coordinate space cut-off, momentum space cut-off)

- Counter term shows a logarithmic dependence on cut-off
- But phase shifts are cut-off independent (for Lambda > 600 MeV)





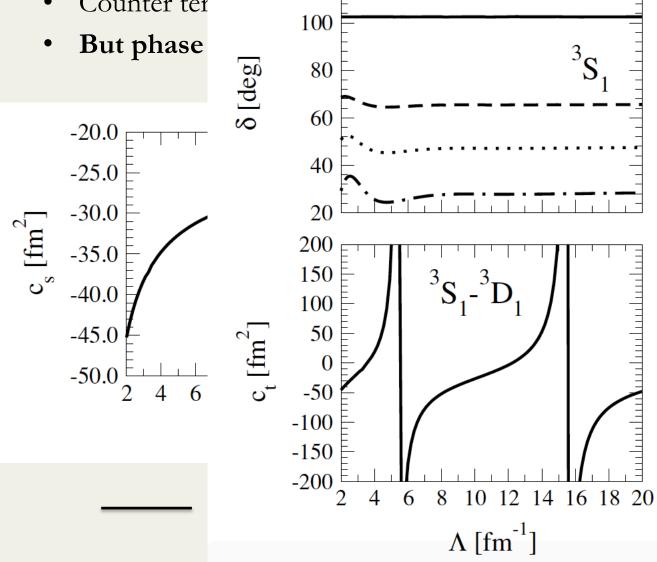
Fit to 10 MeV data

---- 50 MeV 100 MeV ---- 190 MeV

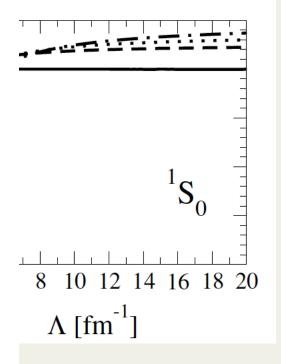
Nogga et al '05

120

Counter ter



ut-off lmbda > 600 MeV)

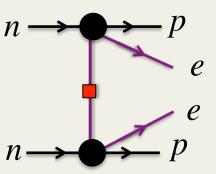


50 MeV **100 MeV** 190 MeV

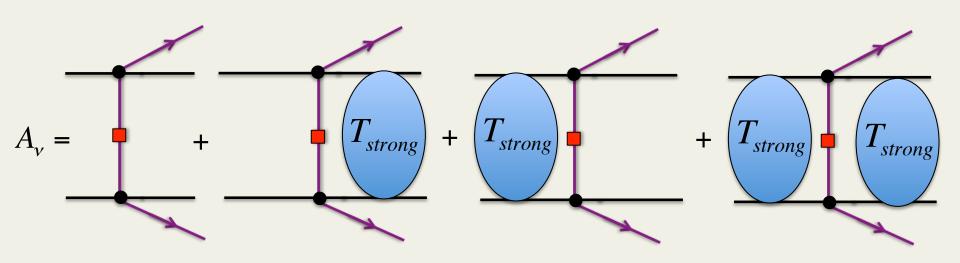
Nogga et al '05

The neutrino amplitude

Now insert the neutrino potential



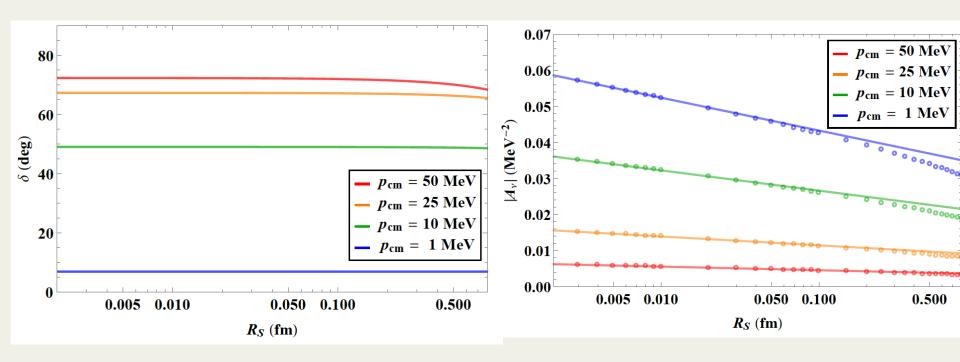
$$A_{v} = V_{v} + V_{v}G_{0}T_{LO} + T_{LO}G_{0}V_{v} + T_{LO}G_{0}V_{v}G_{0}T_{LO}$$



Can be measured in principle

should be independent of regulator !!

The neutrino amplitude

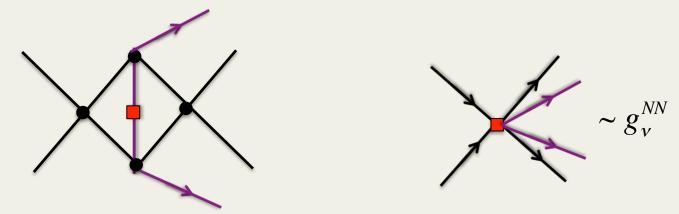


But it is not... The amplitude depends logarithmically on the regulator.

$$\sim (1+2g_A^2) \left(\frac{m_N C_0}{4\pi}\right)^2 \left(\frac{1}{\varepsilon} + \log \frac{\mu^2}{p^2}\right)$$

Non-perturbative renormalization

- Now a divergence is nothing scary in an EFT calculation
- It just signals dependence on hard scales \rightarrow need a counter term
- The surprising thing perhaps is that it violates NDA (but happens in other cases too)

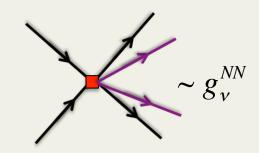


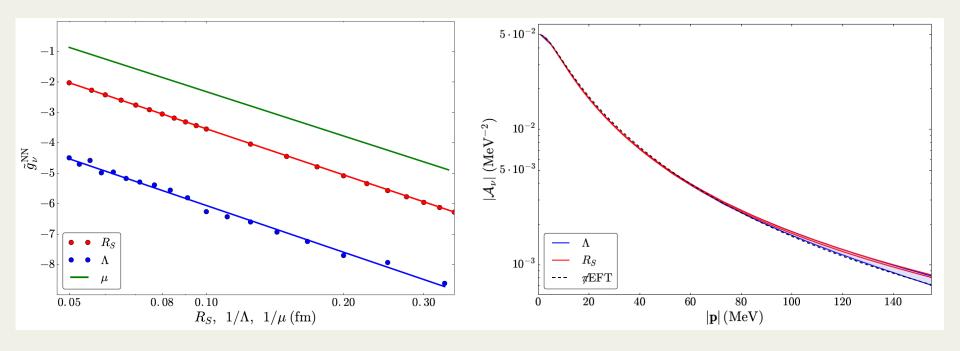
- Contact term comes with new LEC ~ QCD dynamics at $<(\Lambda_{\chi})^{-1}$
- Neutrino mass $m_{\beta\beta}$ not directly connected to decay rate
- This is not expected to be a small correction! It is leading order!
- A counter term gets the job done though!

Non-perturbative renormalization

Fit the counter term to a 'measurement' at some kinematic point

$$\frac{1}{G_F^2 m_{\beta\beta}} A_{\nu}(p = 1 \, MeV) = 0.05 \, MeV^{-2}$$





Determining the counter term

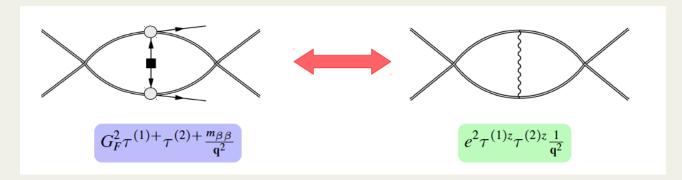
- Can we determine the LEC of the counter term in absence of data? We have identified **two potential strategies to get** g_v^{NN}
 - 1. Lattice QCD calculations of $nn \rightarrow pp + ee$ (obvious but hard). Interesting progress on $\pi\pi\rightarrow ee$ Nicholson et al '18, Feng et al '18

CAN THIS BE DONE ??

- 2. Chiral symmetry to connect to measured isospin-violating processes
 - Convincingly (IMO) demonstrates need for LO counterterm
 - So far cannot give the full determination of g_v^{NN}

Using chiral symmetry

• The shape of the neutrino potential is very similar to photon exchange



- LO scattering of nn, pp, and np is the same
- EM and isospin-breaking changes the picture
- Dominant contributions from photon exchange + pion-mass splitting

$$V_{\text{CIB}}^{1_{S_0}} = \frac{e^2}{4} \left(\tau_3^{(1)} \tau_3^{(2)} - \frac{1}{3} \boldsymbol{\tau}^{(1)} \cdot \boldsymbol{\tau}^{(2)} \right) \frac{1}{\mathbf{q}^2} \left\{ 1 + \frac{g_A^2}{F_\pi^2} \frac{m_{\pi^{\pm}}^2 - m_{\pi^0}^2}{e^2} \left(\frac{\mathbf{q}^2}{\mathbf{q}^2 + m_{\pi}^2} \right)^2 \right\}.$$

• In Weinberg counting short-range operators at N²LO

Charge-independence breaking

• So the idea is: we calculate the scattering lengths

0.10

 $R_S(\mathrm{fm})$

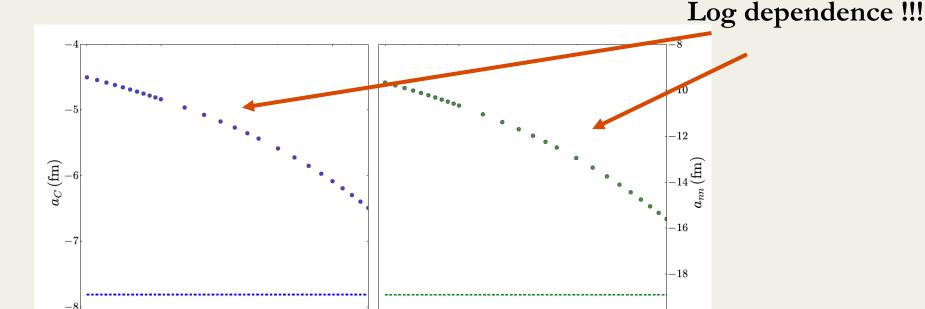
0.05

$$a_{nn}$$
 a_{np} a_{pp}

• Weinberg counting: once LO strong counter term is fitted to a_{np} then a_{nn} and a_{pp} are predicted. They should be cut-off independent

20

0.50



0.05

0.10

 $R_S(\mathrm{fm})$

0.50

Charge-independence breaking

• So the idea is: we calculate the scattering lengths

$$a_{nn}$$
 a_{np} a_{pp}

• Weinberg counting: once LO strong counter term is fitted to a_{np} then a_{nn} and a_{pp} are predicted. They should be cut-off independent

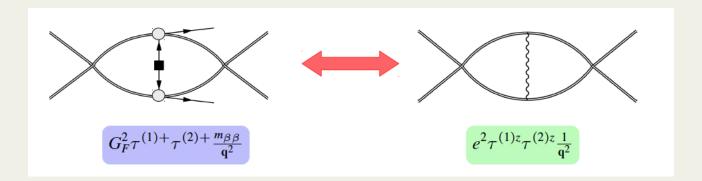
- We need to add a short-range CIB operator to describe data
- In fact: **high-quality potentials** include that term (also chiral ones)

$$C_{CIB} \sim fm^2 \sim O\left(\frac{1}{f_{\pi}^2}\right) >> O\left(\frac{1}{\Lambda_{\chi}^2}\right)$$

- Weinberg counting failure confirmed by data
- Conclusion: Coulomb-like potentials in ¹S₀-waves need counter terms

A bit deeper

• The connection can be deepened



• Construct contact operators from EM I=2 operators

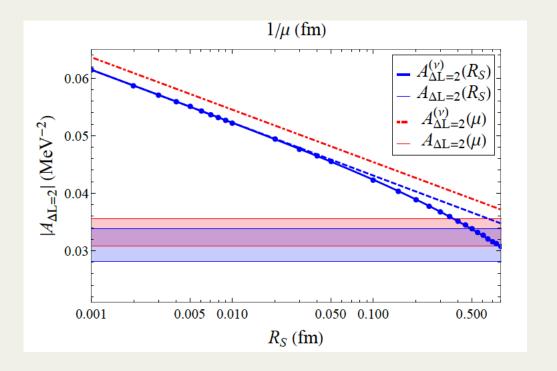
$$C_{1}\left(\bar{N}Q_{L}N\ \bar{N}Q_{L}N - \frac{Tr[Q_{L}^{2}]}{6}\bar{N}\vec{\tau}N \cdot \bar{N}\vec{\tau}N + L \Leftrightarrow R\right) \quad Q_{L,R} = u^{\dagger}Q_{L,R}u$$

$$C_{2}\left(\bar{N}Q_{L}N\ \bar{N}Q_{R}N - \frac{Tr[Q_{L}Q_{R}]}{6}\bar{N}\vec{\tau}N \cdot \bar{N}\vec{\tau}N + L \Leftrightarrow R\right)$$

- Fit to the CIB data gives us $C_1 + C_2$ for each value of regulator
- for neutrinoless double beta we need $g_v^{NN} = C_2$
- For now we assume $C_1 = C_2$ but this gives an **undetermined error**

Partial success

Recalculate amplitude with modified neutrino potential including CT



Cirigliano et al, PRL '18

- Total amplitude is regulator independent: data-driven!
- For regulators $R_S \sim (0.3\text{-}0.8)$ fm (Lambda $\sim 0.4-1$ GeV) about 20-30% corrections (but based on $C_1=C_2!!$)
- The effect is amplified in $\Delta I=2$ transitions

Ab initio calculations of light nuclei

- We study neutrinoless double beta decay in light nuclei Pastore et al, PRC '17 $^6He \rightarrow ^6Be + e + e$ $^{12}Be \rightarrow ^{12}C + e + e$
- Wave functions from QMC calculations with chiral potential Piarulli et al, PRC '14
- The CIB counter term extracted from potential $\rightarrow g_v^{NN} = C_{CIB}$
- Study impact of short-range versus long-range neutrino potential

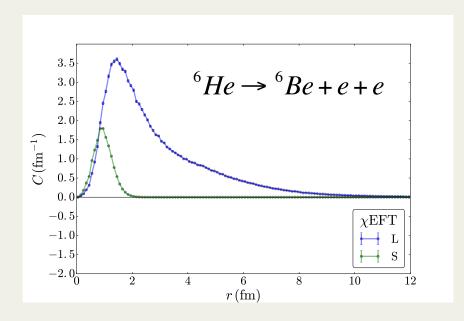
Dimensionless NME	Long range	Short range
$^{6}He \rightarrow ^{6}Be + e + e$	7.8	1.2
$^{12}Be \rightarrow ^{12}C + e + e$	0.7	0.55

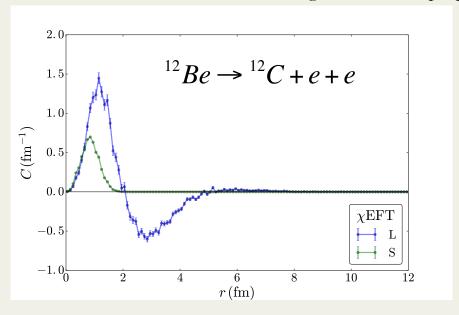
- Confirms that new CT is bigger than N²LO
- In both cases significant but relatively much bigger for ¹²Be
- We checked that other corrections are really N²LO (few percent level)

Ab initio calculations of light nuclei

$$A_{v} = \int dr \, C(r) \qquad C(r) = C_{Long}(r) + C_{Short}(r)$$

Cirigliano et al, in prep





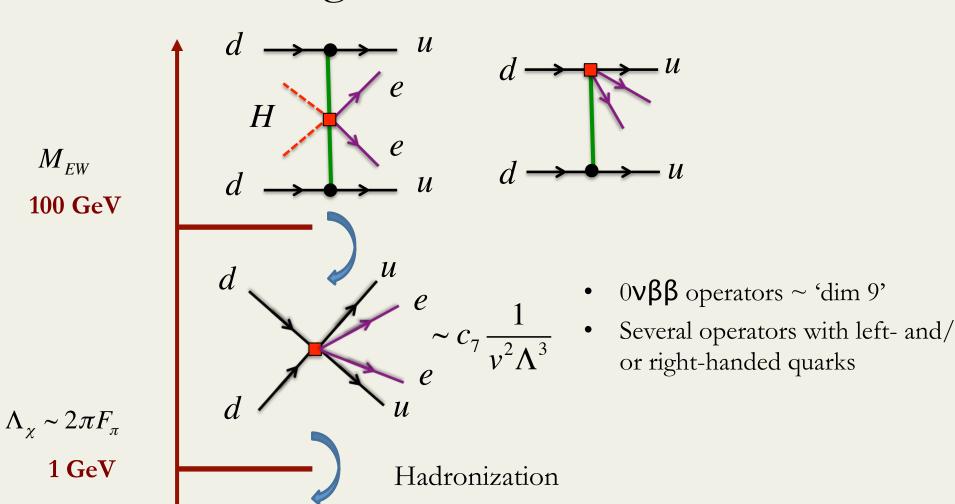
- $\Delta I=2$ transitions: orthogonal initial and final-state wave functions
- Feature of all isotopes of experimetral interest
- Node causes cancellation in the long-range matrix elements
- All together: Strong evidence for significance of g_v^{NN}

Neutrinoless double beta decay in EFT

Part I: What is neutrinoless double beta decay and why bother?

- Part II: An effective field theory approach: SM-EFT + chiral EFT
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-perturbative renormalization
 - 3. Higher-dimensional lepton number violation

Crossing the electroweak scale



• Difficult as similar operators not in 'standard' beta decay

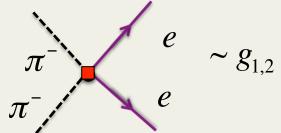
Chiral effective field theory

~ GeV
$$L = L_{QCD} + L_{Fermi} - m_{\beta\beta} v_L^T C v_L + C_{\Gamma} \overline{e} \Gamma \overline{v}^T O_{2q}^{\Gamma} + C_{\Gamma'} \overline{e} \Gamma' e^c O_{4q}^{\Gamma'}$$

~100 MeV Neutrinos are still degrees of freedom in the low-energy EFT

Higher-dimensional LNV sources

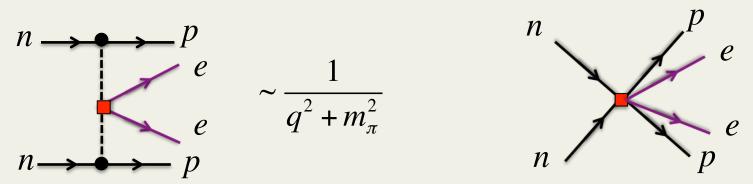
- Certain dim-7 and dim-9 LNV operators lead to
- Quite some nice lattice progress Nicholson et al '18



$$L_{\Delta L=2}^{(9)} = \left\{ C_1^{(9)} \overline{u}_L \gamma^{\mu} d_L \ \overline{u}_L \gamma^{\mu} d_L + C_4^{(9)} \overline{u}_L \gamma^{\mu} d_L \ \overline{u}_R \gamma^{\mu} d_R \right\} \frac{\overline{e}_L e_L^c}{v^5}$$

$$g_1 = -(1.9 \pm 0.2) \ GeV^2 \qquad g_2 = -(8 \pm 0.6) \ GeV^2$$

In Weinberg Counting the LO neutrino potential becomes



- Same UV behaviour as light-neutrino exchange → Need a LO counter term
- But in many cases the LECs were poorly known anyway

Higher-dimensional LNV sources

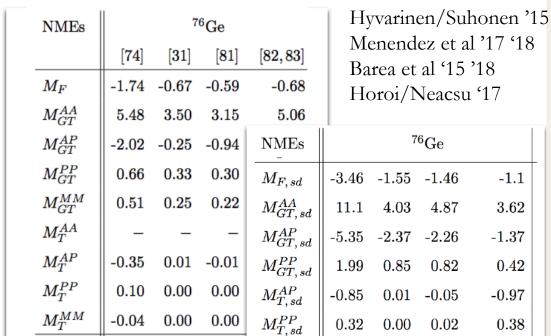
						*		2	
•	Ce	$n \to pe\nu, \ \pi \to e\nu$		$\pi\pi \to ee$?	$\sim g_{1,2}$	
•	Qu	g_A	1.271 ± 0.002	[58]	$g_1^{\pi\pi}$	0.36 ± 0.02	[44]		,
	Qu	g_S	0.97 ± 0.13	[59]	$g_2^{\pi\pi}$	$2.0 \pm 0.2 ~{ m GeV^2}$	[44]		
	7 (9)	g_M	4.7	[58]	$g_3^{\pi\pi}$	$-(0.62 \pm 0.06)$ GeV ²	[44]		
	$L_{\scriptscriptstyle\Delta\! L}^{(9)}$	g_T	0.99 ± 0.06	[59]	$g_4^{\pi\pi}$	$-(1.9 \pm 0.2) ~{\rm GeV^2}$	[44]		
		$ g_T' $	$\mathcal{O}(1)$		$g_5^{\pi\pi}$	$-(8.0 \pm 0.6) \text{ GeV}^2$	[44]		
		B	$2.7\mathrm{GeV}$		$ g_{ m T}^{\pi\pi} $	$\mathcal{O}(1)$			
•	In	$n \to p\pi ee$			$nn \to pp ee$				
		$ g_1^{\pi N} $	$\mathcal{O}(1)$		$ g_1^{NN} $	$\mathcal{O}(1)$			
	n.	$ g_{6,7,8,9}^{\pi N} $	$\mathcal{O}(1)$		$ g_{6,7}^{NN} $	$\mathcal{O}(1)$			
		$ g_{\mathrm{VL}}^{\pi N} $	$\mathcal{O}(1)$		$ g_{ m VL}^{NN} $	$\mathcal{O}(1)$			
		$ g_{\mathrm{T}}^{\pi N} $	$\mathcal{O}(1)$		$ g_{\mathrm{T}}^{NN} $	$\mathcal{O}(1)$			
	n-				$ g_{\nu}^{NN} $	$\mathcal{O}(1/F_\pi^2)$			
	<i> U -</i>				$ g_{VL,VR}^{E,m_e} $	$\mathcal{O}(1)$			
•	Sar				$ g_{2,3,4,5}^{NN} $	$\mathcal{O}((4\pi)^2)$		ıte.	r term
	Sai		U			U		LLC.	ı (CIIII

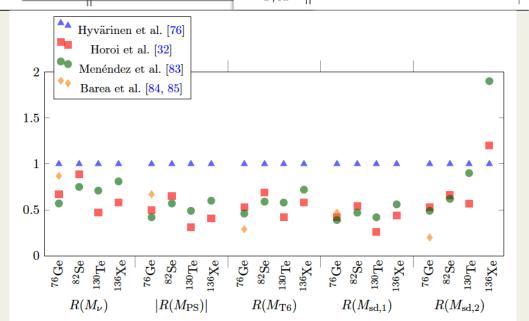
 $\sim g_{1,2}$

But in many cases the LECs were poorly known anyway

Many-body uncertainties for SM-EFT

- At LO we require 9 combinations of NMEs (much less then normally calculated)
- All required NMEs can be lifted from existing literature
- Uncertainties similar to standard scenario
- Use chiral symmetry arguments for consistency checks





Redundancies

 $M_{GT,sd}^{PP} = -\frac{1}{2}M_{GT,sd}^{AP} - M_{GT}^{PP},$

- $H_{GTN} = \frac{2R}{\pi m_e m_e} \int h_A^2(q^2) j_0(qr) q^2 dq$, (20d)
 - (20e)
- $H_{GT'} = \frac{2R^2}{\pi m_p} \int \frac{q^2 h_A^2(q^2)}{g(q + \bar{E})} j_0(qr) q^2 dq$, $H_{GT''} = \frac{2R^3}{\pi m} \int \frac{q^2 h_A^2(q^2)}{q + \bar{E}} j_0(qr) q^2 dq$,
- (20f) $H_{GT\pi\nu} = \frac{2R}{\pi} \int \frac{h_{GT\pi\nu}^2(q^2)}{q(q + \bar{E})} j_0(qr) q^2 dq$, (20g)
- $H_{GT1\pi} = -\frac{2R}{\pi} \int h_A^2(q^2) \frac{q^2/m_\pi^4}{1 + q^2/m^2} j_0(qr) q^2 dq$,
- $H_{GT2\pi} = -\frac{4R}{\pi} \int h_A^2(q^2) \frac{q^2/m_\pi^4}{(1+q^2/m^2)^2} j_0(qr) q^2 dq$, (20i)

 $H_{F\omega} = \frac{2R}{\pi} \int \frac{h_V^2(q^2)}{(q + \bar{F})^2} j_0(qr) q^2 dq$,

 $H_{Fq} = \frac{2R}{\pi} r \int \frac{h_V^2(q^2)}{q + E} j_1(qr) q^2 dq$

 $H_F = \frac{2R}{\pi} \int \frac{h_V^2(q^2)}{q(q + \bar{E})} j_0(qr) q^2 dq$,

Many are redundant at LO!

by **partial** N2LO corrections

EFT predicts LO relations between NMEs

 $M_{T,sd}^{PP} = -\frac{1}{2}M_{T,sd}^{AP} - M_{T}^{PP}$,

 $M_{GT}^{MM} = \frac{g_M^2 m_\pi^2}{6g_{\pi}^2 m_\pi^2} M_{GT,sd}^{AA}$,

Hold up to 10% corrections for different

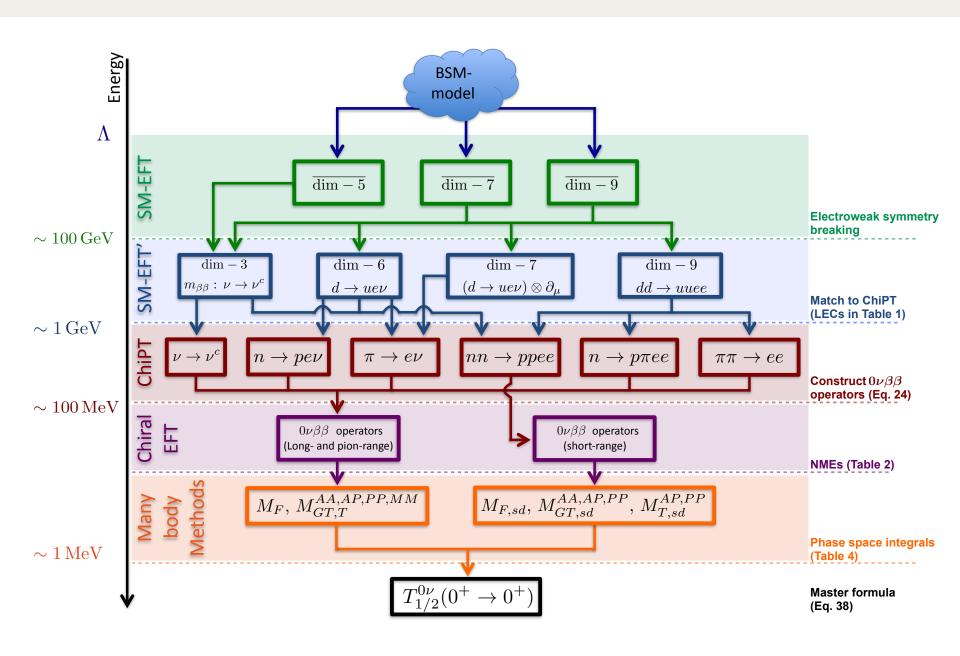
The dozens of NMEs calculated only differ

- $M_{GT,sd}^{AP} = -\frac{2}{2}M_{GT,sd}^{AA} M_{GT}^{AP}$, $H_{FN} = \frac{2R}{\pi m_r m_r} \int h_V^2(q^2) j_0(qr) q^2 dq$,
- $H_{F'} = \frac{2R^2}{\pi m} \int \frac{q^2 h_V^2(q^2)}{q(q + \bar{E})} j_0(qr) q^2 dq$, (20n)
- $H_T = -\frac{2R}{\pi} \int \frac{h_T^2(q^2)}{q(q + \bar{E})} j_2(qr) q^2 dq$, (200) $H_{Tq} = \frac{2R}{3\pi} \sqrt{\frac{2}{3}} r C^{(2)}(\hat{\mathbf{r}}) \int \frac{h_A^2(q^2)}{q + \bar{E}} j_1(qr) q^2 dq$
- $H_{T'} = -\frac{2R^2}{\pi m} \int \frac{q^2 h_A^2(q^2)}{g(q + \bar{E})} j_2(qr) q^2 dq$, (20q) $H_{T''} = -\frac{2R^3}{\pi m_-} \int \frac{q^2 h_A^2(q^2)}{q + \bar{E}} j_2(qr) q^2 dq$,
 - (20r)
- $H_{T\pi\nu} = -\frac{2R}{\pi} \int \frac{h_{T\pi\nu}^2(q^2)}{q(q + \bar{E})} j_2(qr) q^2 dq$, (20s) $H_{T1\pi} = \frac{2R}{4\pi} \int h_A^2(q^2) \frac{q^2/m_\pi^4}{4\pi^2} j_2(qr)q^2 dq$

Used to find sign/factor 2 mistakes in literature

many-body methods!

'The neutrinoless double-beta metro map'

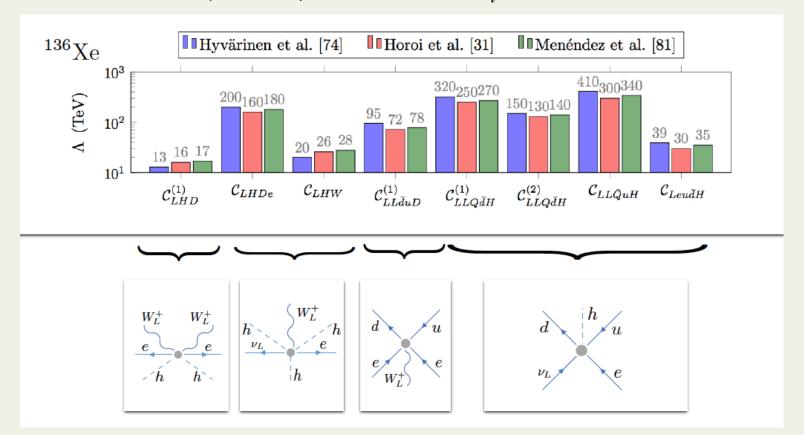


Limits on LNV sources

- We have now connected TeV LNV sources to low-energy data
- KAMLAND experiment $T_{1/2}^{0\nu} (^{136}Xe \rightarrow ^{136}Ba) > 1.07 \times 10^{26} yr$
- Limit LNV sources: dim5
- And also dim7 (or dim9): assume

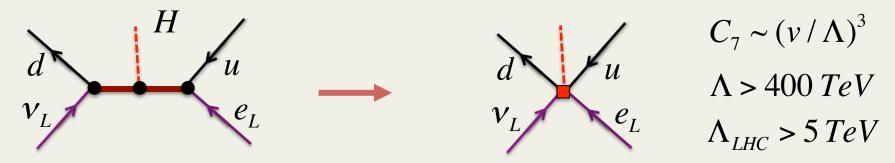
$$m_{\beta\beta} < 0.084 \; eV$$

 $C_i \sim (v/\Lambda)^3$

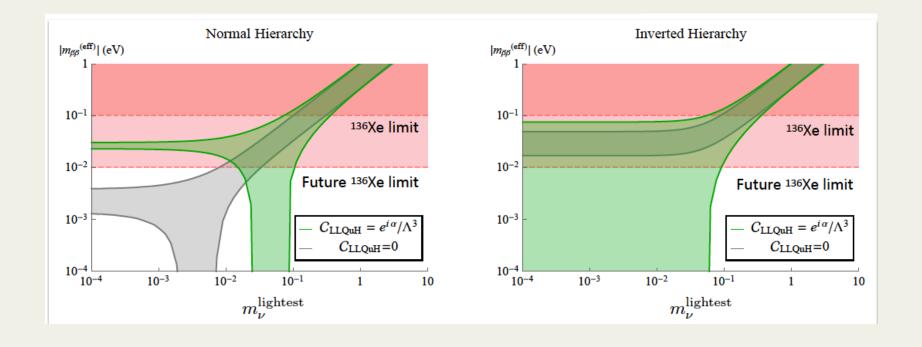


Phenomenology

Particular dimension-7 operator e.g. appearing in LeptoQuark models

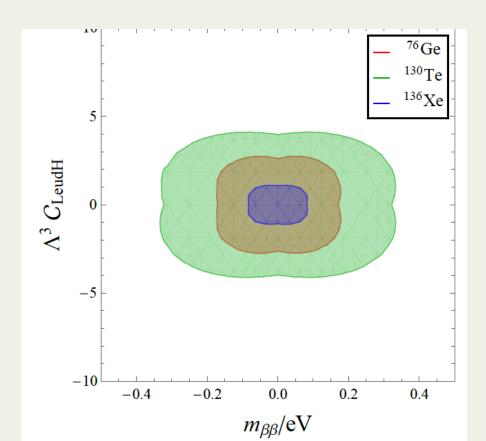


- Operator has same 'leptonic' structure as 'standard Majorana mechanism'
- Interference with Majorana mass: interpretation needs care



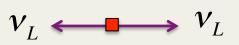
Disentangling LNV sources

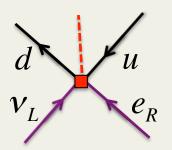
- A single measurement can be from any LNV operator
- Need several measurements to unravel the source
- However, total rates in different isotopes not very helpful....
- Similar Q values and all $0^+ \rightarrow 0^+$



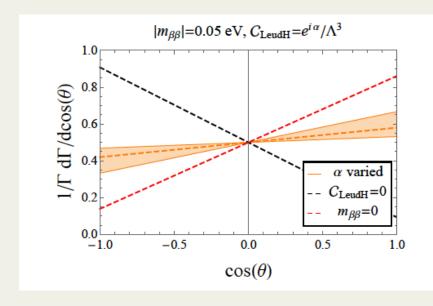
Disentangling LNV sources

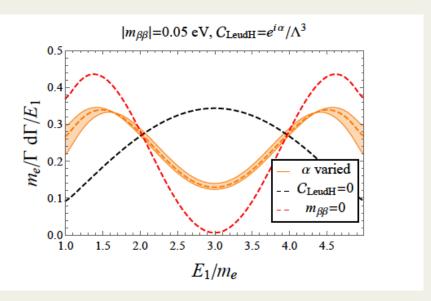
- A single measurement can be from any LNV operator
- Need several measurements to unravel the source
- Instead: angular & energy distributions of the outgoing electrons



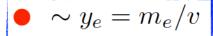


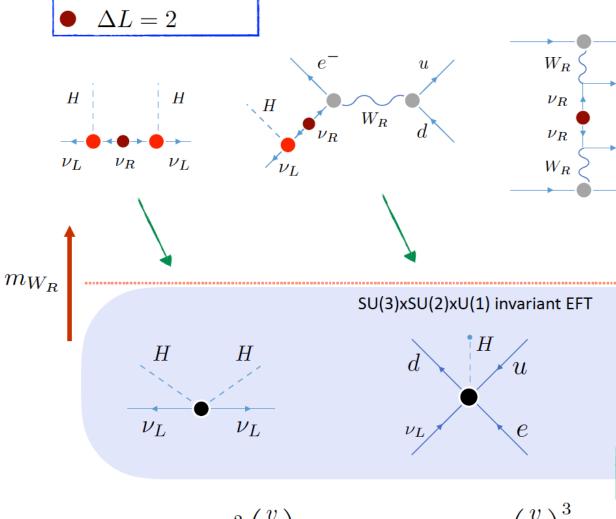
$$C_7 \sim (v/\Lambda)^3 e^{i\alpha}$$





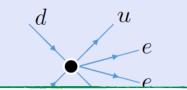
An example: LR model





dim-5 $\sim y_e^2 \left(\frac{v}{\Lambda}\right)$

dim-7 $\sim y_e \left(\frac{v}{\Lambda}\right)^3$



Framework captures all terms

Naively of similar size for Λ =1-10 TeV

 W_R

 W_R

Dim-9 $\sim \left(\frac{v}{\Lambda}\right)^5$

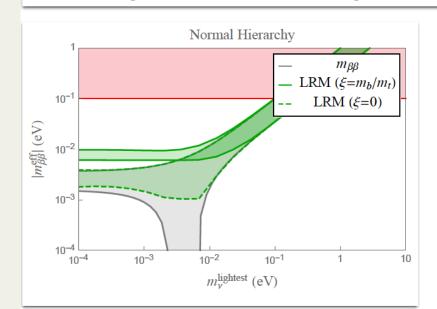
Matching to specific models

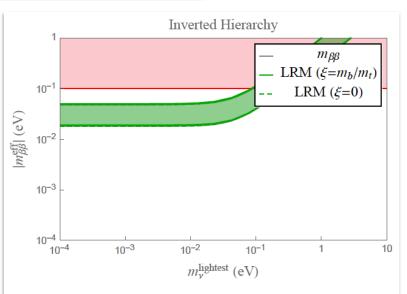
- In principle difficult phenomenology.
- But just match to SM-EFT operators and then turn the crank
- Obtain the neutrinoless double beta decay rate in an EFT expansion in:

$$T \sim \left(\frac{v}{\Lambda}\right)^{\alpha} \left(\frac{\Lambda_{\chi}}{v}\right)^{\beta} \left(\frac{m_{\pi}}{\Lambda_{\chi}}\right)^{\gamma}$$

$$m_{W_R} = 4.5 \, \text{TeV}, \qquad m_{\nu_R} = 10 \, \text{TeV}, \qquad m_{\delta_R^{++}} = 4 \, \text{TeV}$$

· Assume right-handed neutrino mixing follows the PMNS matrix

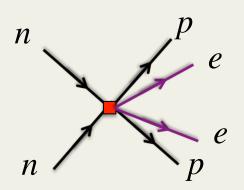




Conclusion/Summary

Neutrinoless Double Beta Decay

- ✓ Powerful search for BSM physics (probe high scales)
- ✓ Well motivated in order to probe nature of neutrino masses
- ✓ However, complicated low-energy observable



Standard Model EFT and chiral EFT frameworks

- ✓ Keep track of **symmetries** (gauge/lepton#/chiral) from Tev to nuclear scales
- ✓ Chiral EFT to organize neutrino potential in systematic fashion
- Main result: a LO contact nn→pp + ee operator must be added

Phenomenology

- ✓ Current experiments set very strong limits (>500 TeV in some cases)
- ✓ Differential measurements can disentangle certain sources
- ✓ Master formula to include all contributions up to dim-9
- ✓ Future: add light extra neutrino states + link to LHC + LG

