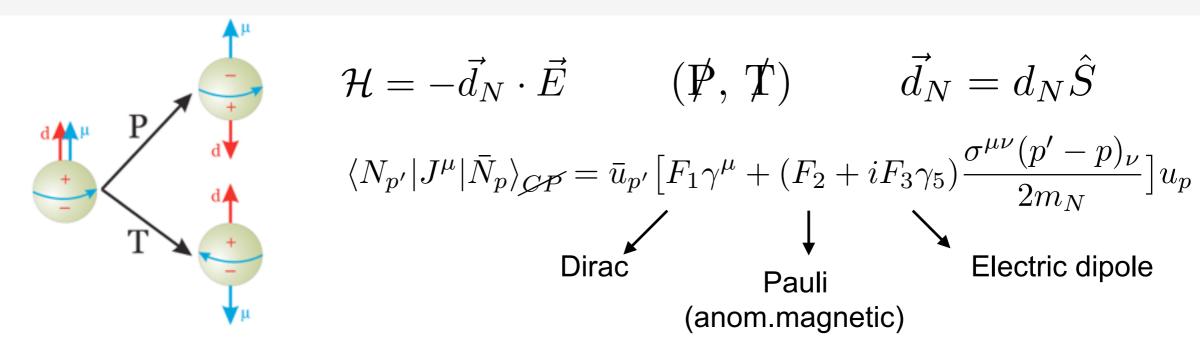
Nucleon Electric Dipole Moment from θ_{QCD} on a Lattice

Sergey Syritsyn, RIKEN-BNL Research Center and Stony Brook University

2019 Lattice Workshop for US-Japan Intensity Frontier Incubation, BNL, March 25-27, 2019



Outline

- Nucleon Electric Dipole Moments: lattice methodology
- Nucleon Electric Dipole Moments induced by θQCD term
- nEDM induced by chromo-EDM quark-gluon interaction

Nucleon Electric Dipole Moments

EDMs are the most sensitive probes of CPv:

- Prerequisite for Baryogenesis
- θ_{QCD} -induced EDM : Strong CP problem
- Signals for beyond SM physics (SM = 10⁻⁵ of the current exp.bound)

$$\mathcal{L}_{eff} = \sum_i rac{c_i}{[\Lambda_{(i)}]^{d_i-4}} \mathcal{O}_i^{[d_i]}$$
 [J.Engel, M. Ramsey-Musolf, U. van Kolck, Prog.Part.Nucl.Phys. 71 (2013), pp. 21-74]

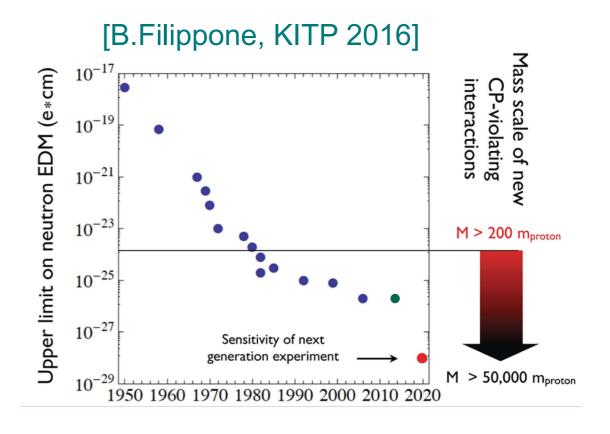
d=4: θ_{QCD} (strong CP problem)

d=5(6): quark EDM, quark-gluon chromo EDM

d=6: 4-fermion CPv, 3-gluon (Weinberg)

 $d_{n,p}$ $F_3^{n,p}(Q^2)$

Experimental Outlook

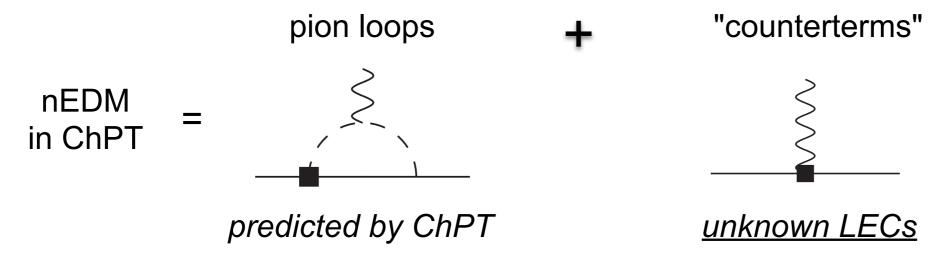

Current nEDM limits:

- $|d_n| < 2.9 \times 10^{-26} e \cdot \text{cm}$ [Baker et al, PRL97: 131801(2006)]
- $|d_n| < 1.6 \times 10^{-26} e \cdot \text{cm}$ [Graner et al, PRL116:161601(2016)]

Future nEDM sensitivity:

- 1–2 years : next best limit?
- 3–4 years : x10 improvement
- 7-10 years : x100 improvement

	10 ⁻²⁸ <i>e</i> cm
CURRENT LIMIT	<300
Spallation Source @ORNL	< 5
Ultracold Neutrons @LANL	~30
PSI EDM	<50 (I), <5 (II)
ILL PNPI	<10
Munich FRMII	< 5
RCMP TRIUMF	<50 (I), <5 (II)
JPARC	< 5
Standard Model (CKM)	< 0.001


Other experiments: light nuclei in storage rings, octupole-deformed ²²⁵Ra, etc

Nucleon EDMs: Task for Lattice QCD

Neutron (and proton) EDMs are particularly vital to CPv searches:

- Directly measured, also in upcoming experiments
- Independent of nuclear models just QCD
- Contributions to ²D, ³H, ³He ← storage ring experiments suggested

⇒ Nonperturbative QCD calculations are required

CP-odd Nucleon Structure on a Lattice

[M.Abramczyk, S.Aoki, SS., et al (2017) PRD96(2017)014501]:

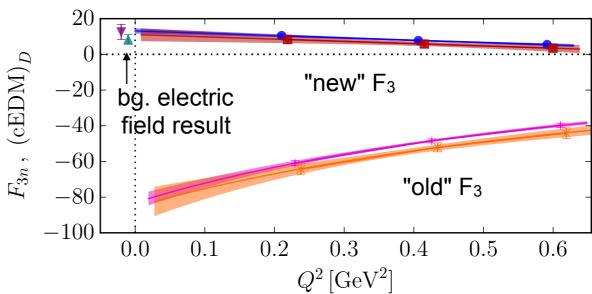
To define $F_{2,3}$ correctly, one has to use positive-parity spinors

$$\gamma_4 u = +u$$

$$\bar{u}\gamma_4 = +\bar{u}$$

$$\langle N_{p'}|\bar{q}\gamma^{\mu}q|N_{p}\rangle_{\mathcal{CP}} = \bar{u}_{p'}\big[F_{1}\gamma^{\mu} + (F_{2} + iF_{3}\gamma_{5})\frac{i\sigma^{\mu\nu}(p'-p)_{\nu}}{2m_{N}}\big]u_{p}$$

CPv interaction induces a chiral phase in fermion fields on a lattice (and EFT):

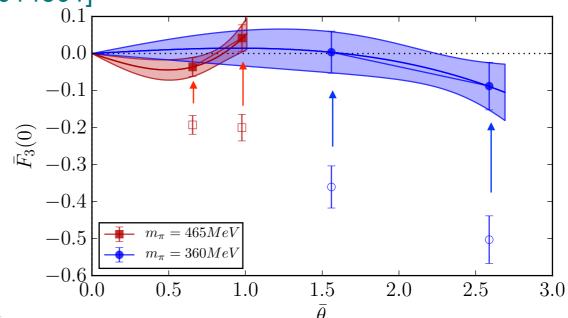

$$\langle \operatorname{vac}|N|p,\sigma\rangle_{\mathcal{CP}} = e^{i\alpha\gamma_5} u_{p,\sigma} = \tilde{u}_{p,\sigma}$$

$$u[u^T C\gamma_5 d] \qquad (\not \partial + m_N e^{-2i\alpha\gamma_5}) \tilde{u}_p = 0$$

$$\sum_{\bar{u}_{p,\sigma}} \tilde{u}_{p,\sigma} \sim (-i\not p_{\mathcal{E}} + m_N e^{2i\alpha\gamma_5})$$

Prior to 2017, all lattice EDM results were biased by mixing with $F_{2,3}$

"
$$F_3$$
" $\approx [F_3]_{\text{true}} - 2\alpha [F_2]_{\text{true}}$
" $d_{n,p}$ " $\approx [d_{n,p}]_{\text{true}} - 2\alpha \frac{\kappa_{n,p}}{2m_N}$


comparison of EDFF to EDM from background field method

θ_{QCD}-induced nEDM: Status

[M.Abramczyk, S.Aoki, SS., et al (2017) PRD96(2017)014501]

Correction to previous results:

$$[F_3]_{\text{true}} = "F_3" + 2\alpha F_2$$

[ETMC 2016]

[Shintani et al 2005]

[Berruto et al 2006]

[Guo et al 2015]

_				-		<u> </u>	
-		$m_{\pi} [\mathrm{MeV}]$	$m_N [{ m GeV}]$	$\overline{F_2}$	α	$ ilde{F}_3$	F_3
	n	373	1.216(4)	$-1.50(16)^a$	-0.217(18)	-0.555(74)	0.094(74)
(n	530	1.334(8)	-0.560(40)	$-0.247(17)^b$	-0.325(68)	-0.048(68)
1	p	530	1.334(8)	0.399(37)	$-0.247(17)^b$	0.284(81)	0.087(81)
Ì	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
1	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
Ì	n	465	1.246(7)	$-1.491(22)^c$	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$
	n	360	1.138(13)	$-1.473(37)^c$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$

After removing the spurious contribution,

- no lattice signal for θ_{QCD} -induced nEDM \Rightarrow d_N is very small, compatible with zero
- RESOLVED conflict with phenomenology values, lack of m_q scaling

θ-Term Noise Reduction for EDM

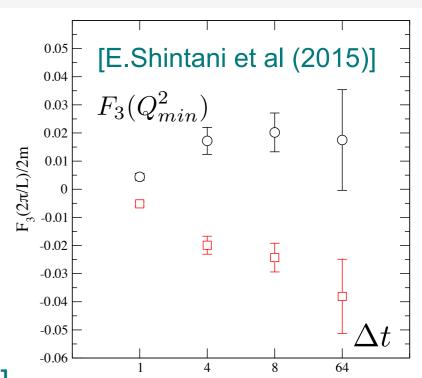
Variance of lattice θ -induced nEDM signal ~ (Volume)_{4d}:

$$d_N \sim \langle Q \cdot (NJ_\mu \bar{N}) \rangle$$

Top. charge
$$\ Q \sim \int_{V_4} (G \tilde{G})$$
 , with $\langle |Q|^2 \rangle \sim V_4$

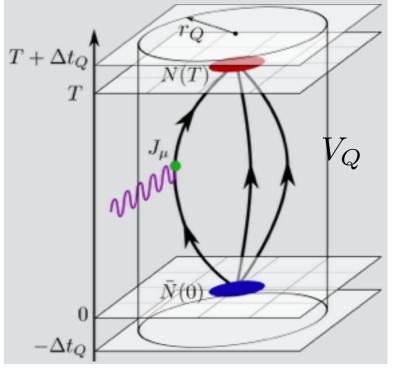
Constrain Q sum to the "fiducial" volume

- \odot in time, around current, $|t_Q t_J| < \Delta t$ [E.Shintani et al (2015)]
- \bigcirc 4-d sphere, $|x_Q x_{sink}| < R$ [K.-F.Liu et al (2017)]
- \odot in time, around source, $|t_Q t_{source}| < \Delta t$ [J. Dragos, Lattice'18]


Proper treatment of nucleon parity mixing is critical for correct determination of F_3 \implies nucleon must "settle" in the new $\theta \neq 0$ vacuum

$$N^{(+)} \to \tilde{N}^{(+)} \approx N^{(+)} + i\alpha N^{(-)}$$

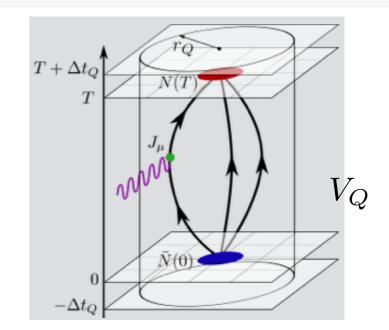
 $N^{(-)} \to \tilde{N}^{(-)} \approx N^{(-)} - i\alpha N^{(+)}$


⇒ constrain time and space(*) differently :

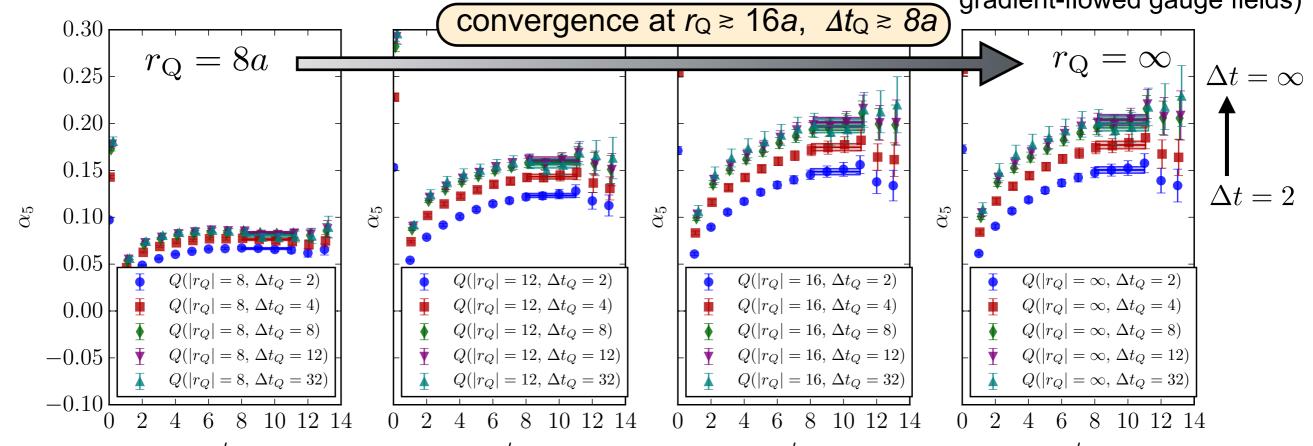
4d "cylinder"
$$V_Q$$
 : $|\vec{z}| < r_Q, \quad -\Delta t_Q < z_0 < T + \Delta t_Q$

(*) space cut may interfere with out-state momentum projection

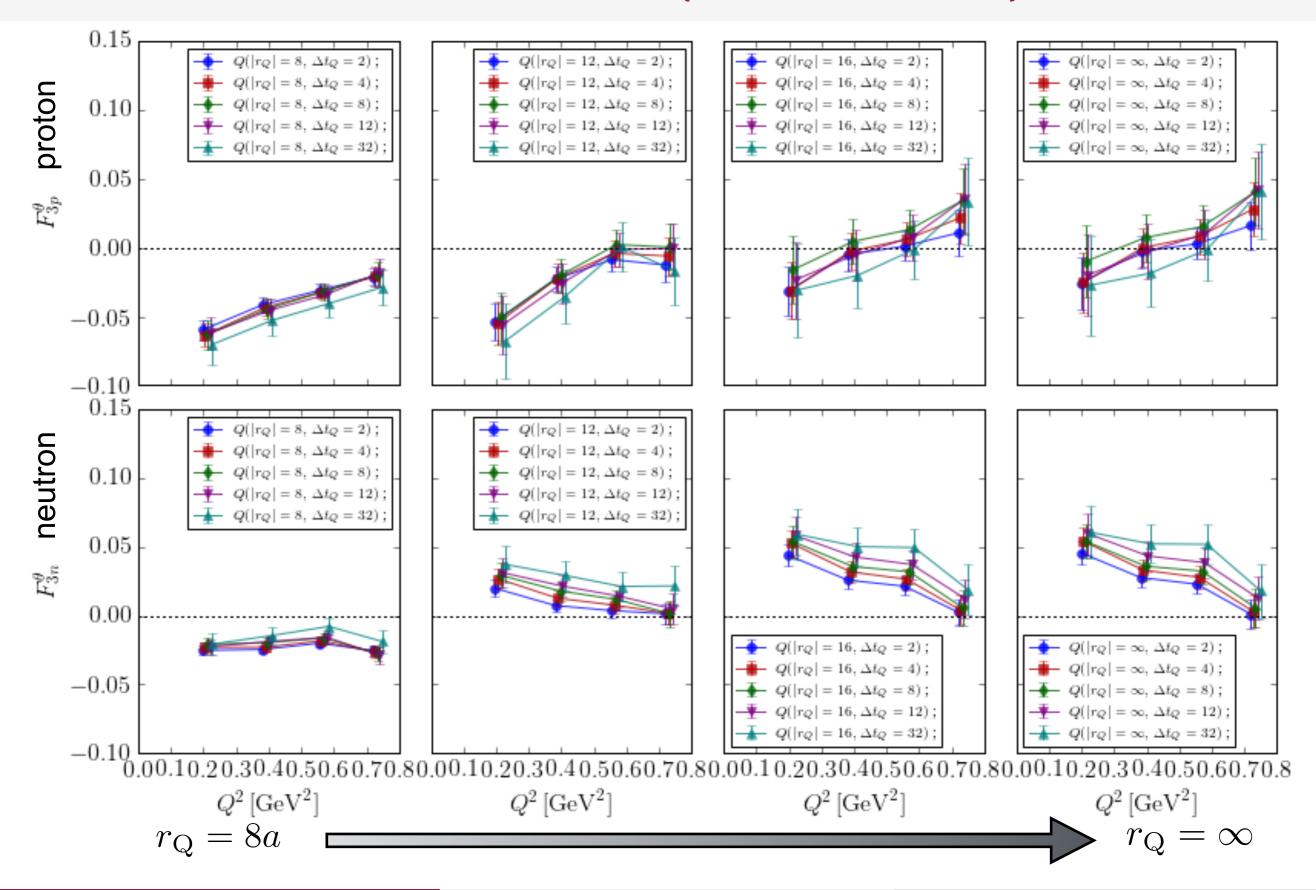
$$\tilde{Q} \sim \int_{V_Q} d^4 z \, \text{Tr}[G\tilde{G}]$$


Test at m_π=340 MeV : Parity Mixing

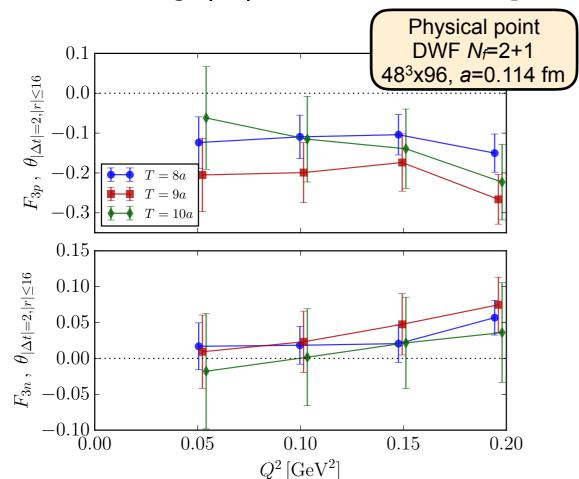
Time Δt_Q required for transition to CP-broken vacuum after $L_{int} = \theta G \tilde{G}$ is "turned on" :


$$|vac\rangle \longrightarrow |vac\rangle_{CP}$$

 \Longrightarrow examine parity-mixing angle α_5 as a function of r_Q , Δt_Q :


$$\hat{\alpha}_{5}^{\text{eff}}(t) = -\frac{\text{Tr}\left[\gamma_{5}\langle N(t)\bar{N}(0)\,\tilde{Q}\rangle\right]}{\text{Tr}\left[\langle N(t)\bar{N}(0)\rangle\right]}$$

(top.density computed with gradient-flowed gauge fields)


Test at m_{π} =340 MeV: EDM(Form Factor)

How Hard is θ -nEDM at the Physical Point?

 m_{π} = 340 MeV [SS et al]

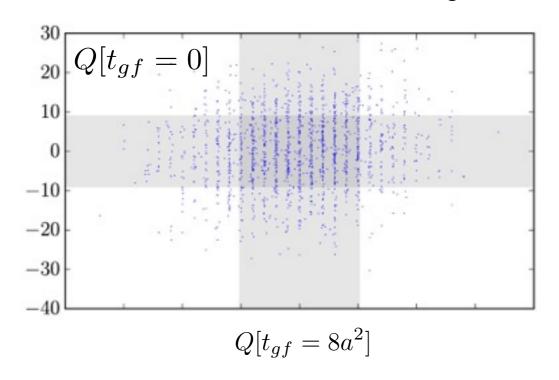
- $|F_{3n}(0)| \approx 0.05 \cdot \theta$
- ⊚ m_{π} = 360 MeV [Guo et al 2015] (corrected) $|F_{3n}(0)| \le 0.06 \cdot \theta$
- Leading-order ChPT: $|d_n| \sim m_q \sim (m_\pi)^2$:
- $|F_{3n}(0)| \approx 0.01 \cdot \theta$, $|d_n| \approx 0.001 \cdot \theta$ e fm
- $\Longrightarrow \theta_{QCD}$ from **estimated** $|F_{3n}(0)| \approx 10^{-2} \cdot \theta$:
- from neutron: $|d_n| \leq 2.9 \cdot 10^{-26} \ e \cdot \text{cm}$ [Baker et al (2006)] : $|\theta_{QCD}| \leq 2.9 \cdot 10^{-10}$
- from ¹⁹⁹Hg: $|d_n| \lesssim 1.6 \cdot 10^{-26} \, e \cdot cm$ [Graner *et al* (2016)] : $|\theta_{QCD}| \lesssim 1.6 \cdot 10^{-10}$

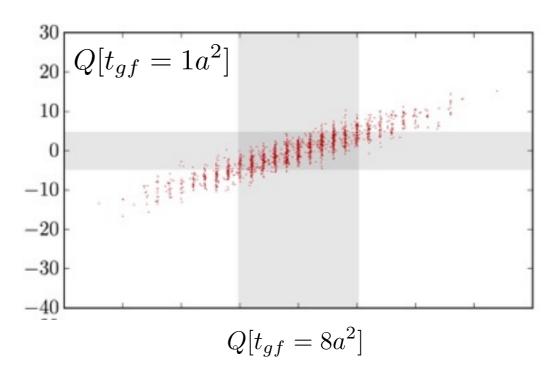
- ~ 30 M core-hours on Argonne BlueGene/Q, (connected diagrams only)
 - $\implies |F_{3n}| \le 0.05 \text{ constraint}$

Need x30..100 more statistics to constrain $|F_{3n}| \approx 0.01$: θ -nEDM remains difficult at the physical point

Path forward: HMC with a dynamical θ_{QCD} -term (exploratory work underway)

Dynamic θ_{QCD} Term in HMC

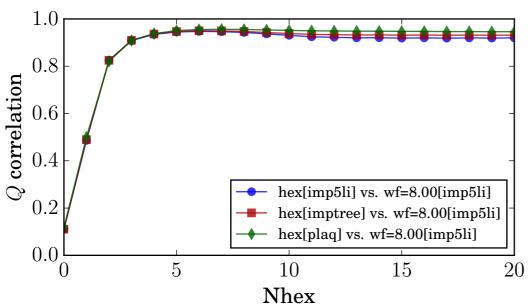

- + better sampling of Q \neq 0 sectors (++ at lighter m_{π})
- require new QCD ensembles with ≥2 values of θ
- Analytic continuation $\theta \rightarrow i\theta^I$ necessary to make action real and avoid sign problem [R.Horsley et al (2008); F.K.Guo et al (2015)]
- Open Adding finite-size θ_{QCD} to HMC: gauge or fermion action

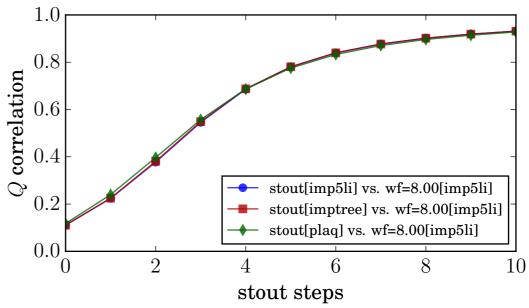

$$\frac{\sum_{q} \theta^{I}}{16\pi^{2}} \operatorname{Tr}[G\widetilde{G}] \xrightarrow{\text{anomaly}} \Pi_{q} \det \left[\cancel{D} + e^{\theta^{I} \gamma_{5}} m_{q} \right]$$

difficult to define locally on a lattice

 $m_{qL} \neq m_{qR}$: may be problematic for $\theta^l \gtrsim 1$

Definition of Q needs gradient flow [Luscher'10] (or other link smearing)

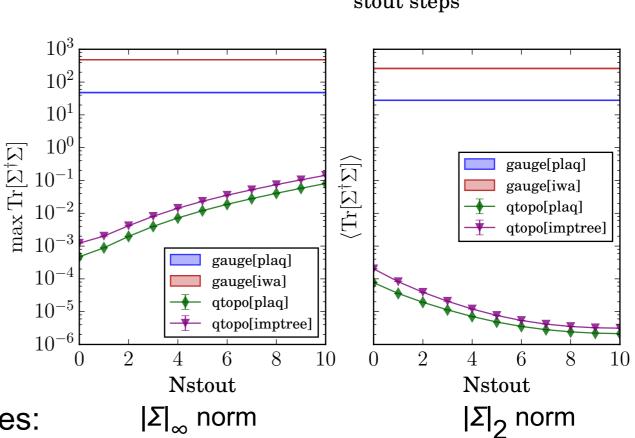




Dynamic θ_{QCD} Term in HMC (2)

HMC requires differentiable smearing

Both HEX and Stout may work; many steps → more expensive force term



• Will addition of top.density force $\Sigma_{x^{\theta}}$ spoil HMC evolution?

$$\frac{dS}{d\tau} = \sum_{x,\mu} \operatorname{ReTr} \left[\Sigma_{x,\mu} \dot{U}_{x,\mu} \right]$$

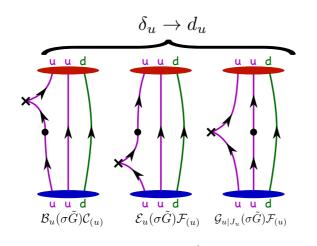
 $|\Sigma_{x,\mu}|_{\infty}$ is the most important for accept/reject

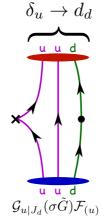
Evaluated on m_{π} =340 MeV lattices:

Nucleon EDM Induced by Quark Chromo-EDM

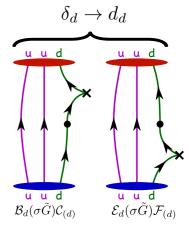
P-,T-odd Dim-5 operator (Dim-6 with Higgs vev)

$$\mathcal{L}_{\text{cEDM}} = \sum_{q=u,d} \frac{\tilde{\delta}_q}{2} \, \bar{q} \left[G_{\mu\nu} \sigma^{\mu\nu} \gamma_5 \right] q$$

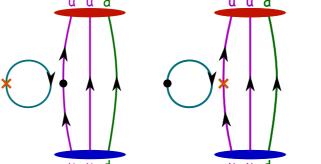

- predicted by extensions of SM (e.g. 2-Higgs doublet model)
- QCD sum rules, ChiPT have model uncertainty

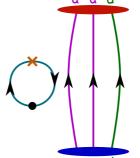

 need lattice QCD

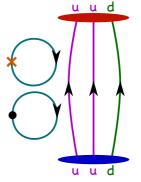
Lattice diagrams:


Current work

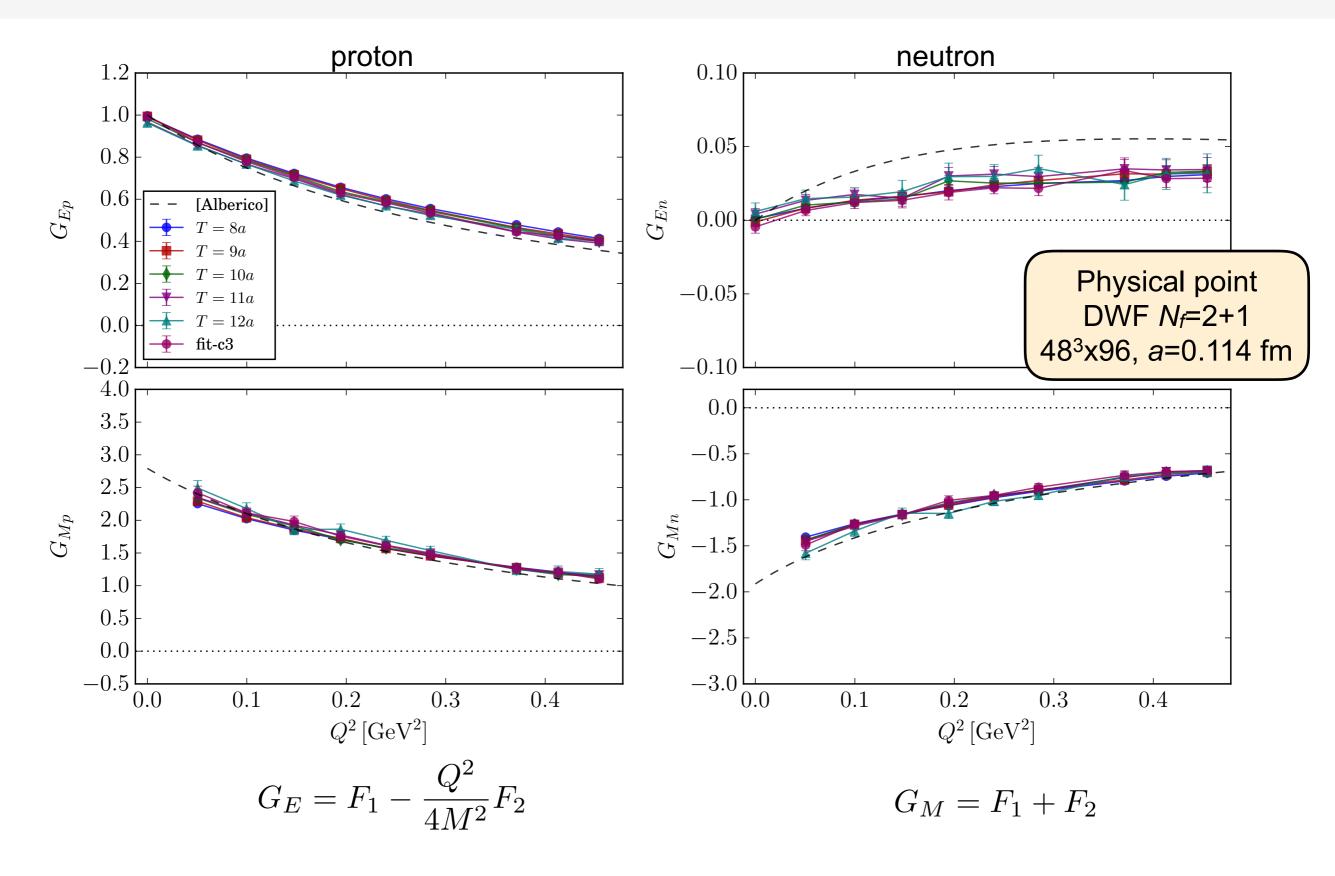
@physical point

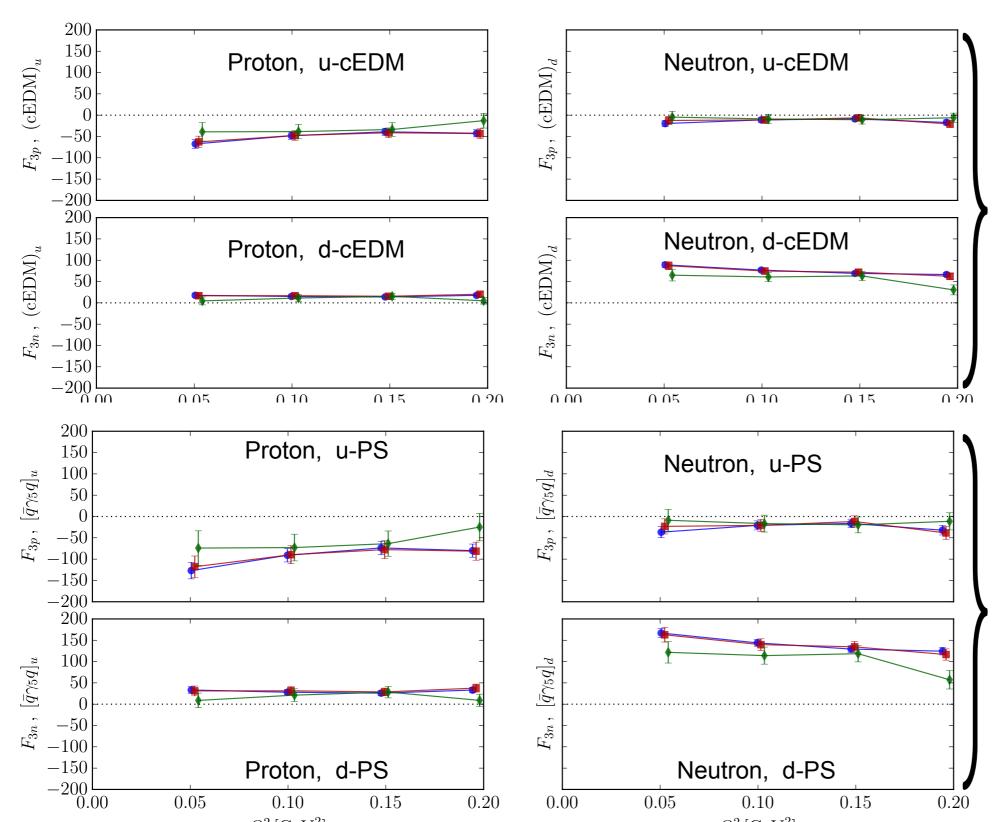






Future (additional contributions to isoscalar nEDM/cEDM)





2017, 2018 Advanced Leadership Computing Challenge (135M + 55M core-hours at ANL) for calculations at the physical point

Physical m_π: Nucleon E&M Form Factors

Proton & Neutron EDM Form Factors (*)

Physical point DWF *N_f*=2+1 48³x96, *a*=0.114 fm

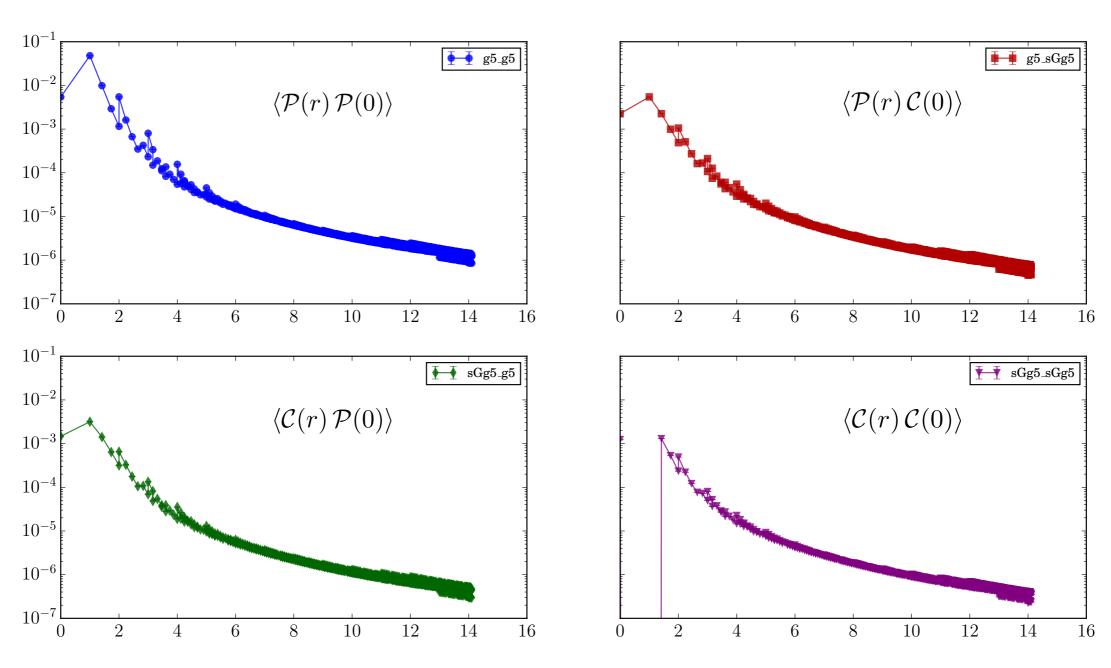
cEDM-induced electric dipole form factors (EDFF)

pseudoscalar density
-induced EDFFs
(required for renormalization and mixing subtraction)

(*)connected-only, bare cEDM and PS operators

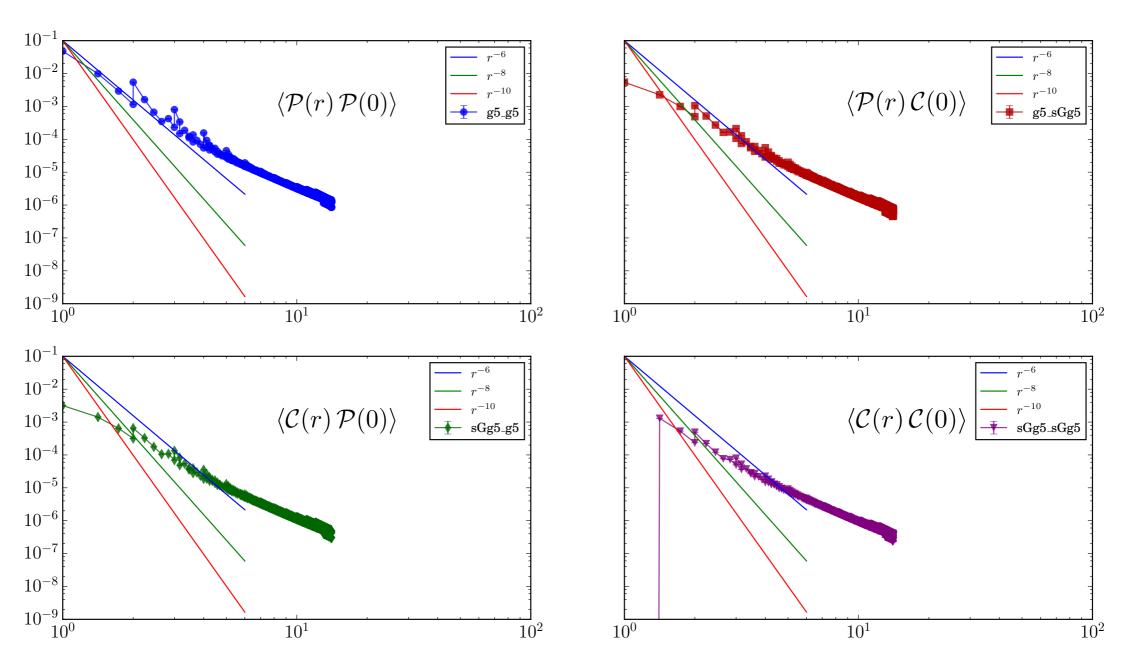
 $Q^2 [\mathrm{GeV}^2]$

 $Q^2 [\mathrm{GeV}^2]$


Renormalization of cEDM on a lattice

Need to match CPv operators from lattice QCD to MSbar

- "Momentum-scheme" in Landau gauge [T.Bhattacharya et al , PRD92(2015) 114026]
 mixing with gauge-dependent & EoM-vanishing operators due to gauge fixing
- Alternative: match correlators computed at small distance $X \ll (\Lambda_{QCD})^{-1}$ (position space method); extend work of [Gimenez et al (2004); Chetyrkin(2010)]


Diagrams computed, lattice data analysis in progress [work in progress with M.Kellerstein (SBU graduate student)]

Position-space NPR of cEDM operators

no contact terms in $\langle C(r)C(0) \rangle$: for $r = \langle (1,1,1,1) \rangle$

Position-space NPR of cEDM operators (2)

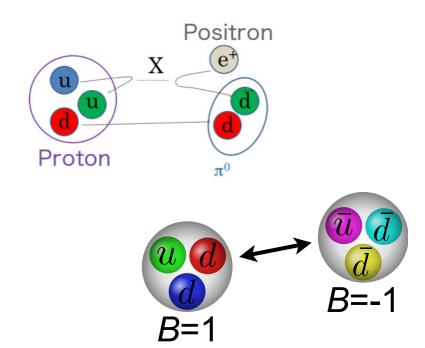
no contact terms in $\langle C(r)C(0)\rangle$: for r=>(1,1,1,1)

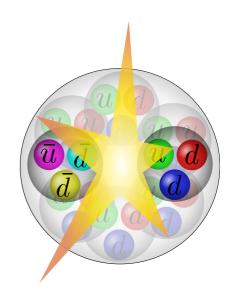
Summary & Outlook

- lattice calculations of Nucleon EDM are necessary to understand bounds (discoveries?) from the next decade of EDM experiments
- Encouraging results for nucleon EDM induced by quark chromo-EDM physical-point
 ~20% stochastic uncertainty for quark cEDM-induced EDM Renormalization & mixing subtractions are underway
 Full flavor dependence will require disconnected diagrams & θQCD-term
- Clear signal for θ_{QCD} -induced nEDM at m_{π} = 340 MeV Variance-reduction for Q sampling is essential Physical $|d_{n,p}| \approx 10^{-3}$ e fm values are in agreement with models&ChPT
- Constraining θ_{QCD} -induced nEDM at the physical point will be challenging

O(300-1000) M core*hours may be required even with variance reduction Shall look for alternatives: dynamical θ -therm? coarser lattice spacing?

Stay tuned for the next decade of CPv physics!


BACKUP


BACKUP

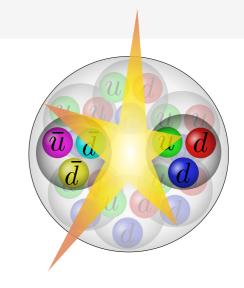
Baryon Number Violation

Proton decay and n- \overline{n} oscillations Motivation for searches :

- Baryon number must be violated for baryogenesis (Sakharov's conditions)
 - N->Nbar transition : ΔB=2
 - Proton decay: ΔB=1
 - Which one (or both?) realized in nature?
- Nuclear matter stability
 - p-decay?
 - (nn)-annihilation?
- Probing BSM physics : $\Delta(B-L)=2$
 - GUT theories constraints from p-decay rate
 - Δ(B–L)=2 in (nn̄): connection to lepton number violation ΔL=2? neutrino mass mechanism [R.Mohapatra, R.Marshak (1980)]

Searches for $n ightarrow \bar{n}$ in Nuclei

Nucleus lifetime:

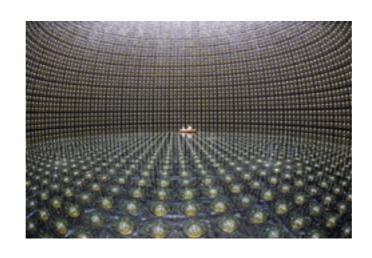

$$T_d = R\tau_{n\bar{n}}^2$$

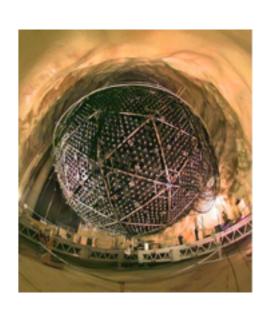
 $R \sim 10^{23} \, \text{s}^{-1}$

Some nuclear model dependence:

e.g. $\sim 10-15\%$ for ^{16}O

[E.Friedman, A.Gal (2008)]


Stability of nuclei:

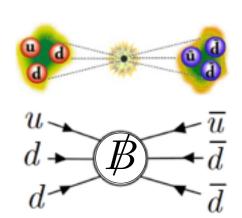

• 56Fe [Soudan 2]
$$T_d(^{56}Fe) > 0.72 \cdot 10^{32} \text{ yr } \longrightarrow \boxed{\tau_{n\bar{n}} > 1.4 \cdot 10^8 \text{ s}}$$

• ¹⁶O [Super-K]
$$T_d(^{16}O) > 1.77 \cdot 10^{32} \text{ yr } \longrightarrow \boxed{\tau_{n\bar{n}} > 3.3 \cdot 10^8 \text{ s}}$$

•
$$^{2}H$$
 [SNO] $T_d(^{2}H) > 0.54 \cdot 10^{32} \text{ yr } \longrightarrow \boxed{\tau_{n\bar{n}} > 1.96 \cdot 10^{8} \text{ s}}$

Sensitivity is limited by atmospheric neutrinos

Neutron ↔ Antineutron Transitions and QCD


Effective $\Delta B=2$ operator: (quark field)⁶

From Standard Model extensions:

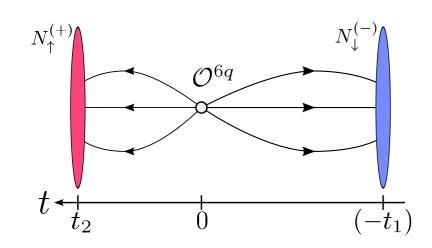
interaction with a massive Majorana lepton,

unified theories, etc

[T.K.Kuo, S.T.Love, PRL45:93 (1980)] [R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]

$$\mathcal{L}_{\text{eff}} = \sum_{i} \left[c_{i} \mathcal{O}_{i}^{6q} + \text{h.c.} \right]$$

$$\tau_{n\bar{n}}^{-1} = \delta m = -\langle \bar{n} | \int d^{4}x \, \mathcal{L}_{\text{eff}} | n \rangle = -\sum_{i} \frac{c_{i}}{M_{X}^{5}} \sqrt{\langle \bar{n} | \mathcal{O}_{i}^{6q} | n \rangle}$$


BSM scale suppression of 6-quark Dim-9 operators

nucleon sensitivity to BN-violating eff.interactions

What is the scale for new physics behind $n \leftrightarrow \overline{n}$?

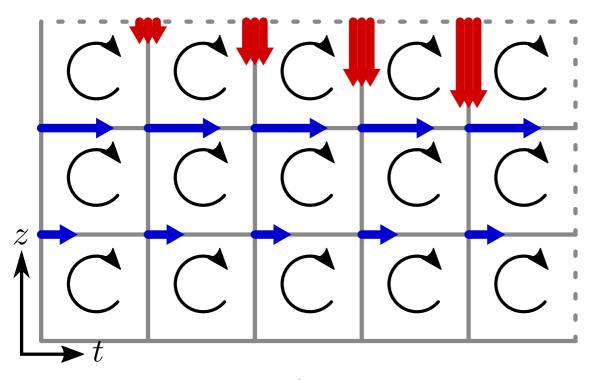
- Current experimental lower bound on $\tau_{n-\overline{n}}$ requires $M_X \approx 10^2$ TeV
- © baryon asymmetry puts upper bound on $\tau_{n-\overline{n}}$ in models with $\Delta B=2$ mechanism (assuming SM-only CPv) e.g. [Babu et al, PRD87:115019(2013)]

Lattice Results & Comparison to Bag Model

$$\langle N_{\uparrow}^{(+)}(t_2) \mathcal{O}^{6q}(0) N_{\downarrow}^{(-)}(-t_1) \rangle \sim e^{-M_n(t_2+t_1)} \langle n_{\uparrow} | \mathcal{O}^{6q} | \overline{n}_{\uparrow} \rangle$$

$$t_1, t_2, t_1 + t_2 \to \infty$$

On a lattice: Calculations with physical chirally symmetric quarks [SS, M.Buchoff, J.Wasem, C.Schroeder (LATTICE 2015)]


	$\mathcal{O}^{\overline{MS}}(2 \text{ GeV})$	Bag "A"	LQCD Bag "A"	Bag "B"	LQCD Bag "B"	
$\overline{[(RRR)_3]}$	0	0	_	0	_	
$\overline{[(RRR)_{1}]}$	45.4(5.6)	8.190	$\boxed{5.5}$	6.660	6.8	
$[R_{1}(LL)_{0}]$	44.0(4.1)	7.230	6.1	6.090	7.2	
$[(RR)_{1}L_{0}]$	-66.6(7.7)	-9.540	$\overline{7.0}$	-8.160	8.1	
$(RR)_{2}L_{1}]^{(1)}$	-2.12(26)	1.260	$\overline{(-1.7)}$	-0.666	$\boxed{3.2}$)
$[(RR)_{2}L_{1}]^{(2)}$	0.531(64)	-0.314	-1.7	0.167	3.2	EW non-singlet n- n at 1 loop
$[(RR)_{2}L_{1}]^{(3)}$	-1.06(13)	0.630	-1.7	-0.330	3.2	
	$10^{-5} \mathrm{GeV}^{-6}$	$[10^{-5} \mathrm{GeV}^{-6}]$	5]	$10^{-5} \mathrm{GeV}^{-6}$]	

Rate of $(n\overline{n})$ -osc. in terms of BSM couplings [arXiv:1809.00246, submitted to PRL]

$$\tau_{n-\overline{n}}^{-1} = \frac{10^{-10} \text{ s}^{-1}}{(100 \text{ TeV})^{-5}} \left| 6.8(2.9) C_1^{\overline{\text{MS}}}(\mu) - 21.2(6.0) C_2^{\overline{\text{MS}}}(\mu) + 12.0(3.5) C_3^{\overline{\text{MS}}}(\mu) + 0.217(98) C_5^{\overline{\text{MS}}}(\mu) \right|_{\mu=2 \text{ GeV}}.$$

Background Electric Field

Accessing magnetic and electric moments at $Q^2=0$ Imag.Minkowski/Real Euc. electric field on a lattice [W.Detmold et al (2009)] : calculation of hadron polarizabilities

$$U_{\mu} \rightarrow e^{iqA_{\mu}}U_{\mu}$$

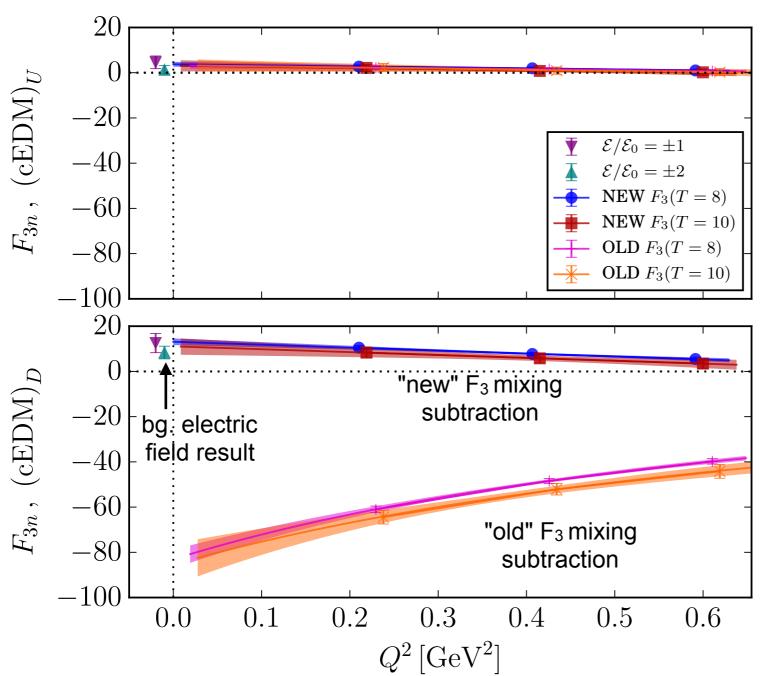
$$A_z(z,t) = n \,\mathcal{E}_{\min} \cdot t$$

$$A_t(z, t = L_t - 1) = -n \mathcal{E}_{\min} \cdot L_t z$$

Full flux through the "side" of the periodic box

$$= q\Phi = 2\pi \cdot n$$

Constant Electric field has to be quantized,


$$\mathcal{E}_{\min} = \frac{1}{|q_d|} \frac{2\pi}{L_x L_t}$$

Electric field on a 24³x64 lattice

$$\mathcal{E} = \frac{6\pi}{L_x L_t} \approx 0.037 \text{ GeV}^2$$
$$\approx 186 \text{ MV/fm}$$

Unambiguous determination of EDM from the energy shift

Energy Shift vs. Form Factors (Neutron)

Mixing $\alpha_U \approx 0$

No F₂ contribution to F₃

"
$$F_{3n}^U$$
" $\approx [F_{3n}^U]_{\text{true}}$

Mixing $\alpha_D \approx 30(0.2)$

Large F₂ contribution to "F₃"

"
$$F_{3n}^D$$
" = $[F_{3n}^D]_{\text{true}} - 2\alpha_D F_{2n}$

[S.Aoki, SNS, et al (2017) arXiv:1701.07792]

Agreement between the **new** F₃ formula and the energy shift method