

Le secret d'ennuyer est celui de tout dire

Introduction

- ★ I will NOT discuss (apologies)
 - heavy meson/baryon spectroscopy with charmed states
 - QCD exotic states (aka "XYZ-states")
 - more theoretical issues (such as "quark-hadron duality" etc.)
 - leptonic, rare radiative/semileptonic decays (but see extra slides!)

- ... and often use Comic Sans fonts in doing so (again, apologies)

Nature

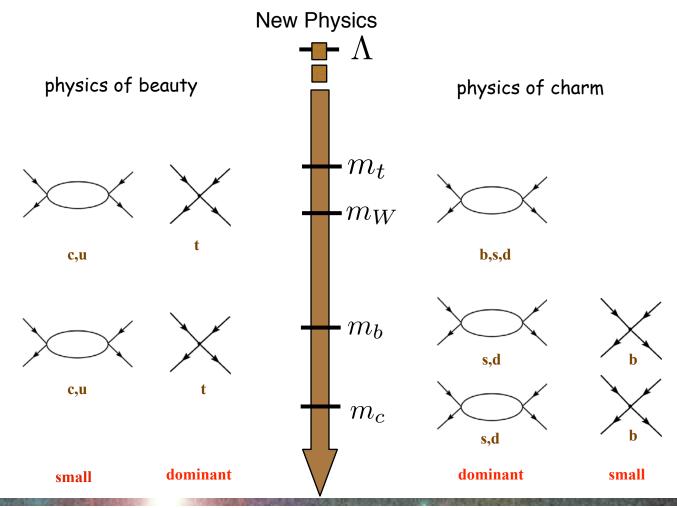
Theorist's model

Introduction

- ★ How can one use flavor data to test New Physics models?
- 1. Processes allowed in the Standard Model at tree level
 - relations, valid in the SM, but not necessarily in general
 - processes where SM rates and uncertainties are known
 - example: CKM triangle relations
- 2. Processes forbidden in the Standard Model at tree level
 - can be used for testing both heavy and light NP
 - example: penguin-mediated decays, D-mixing, etc.
- 3. Processes forbidden in the Standard Model to all orders
 - example: $D^0 o p^+ \pi^-
 u$
- ★ Even if LHC discovers NP particles, flavor constraints will help identification

Introduction

- * Main goal of the exercise: understand physics at the most fundamental scale
 - * It is important to understand relevant energy scales for the problem at hand

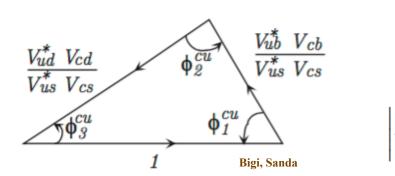


NP with processes allowed in SM

$$\bigstar \text{ Example: CKM matrix } \begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix} \text{ with } V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$$

$$egin{bmatrix} egin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta) \ -\lambda & 1-\lambda^2/2 & A\lambda^2 \ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

charmed CKM triangle is "squashed"



$$\frac{V_{ud}^* \ V_{cd}}{V_{us}^* \ V_{cs}} + \frac{V_{ud}^* V_{cd}}{V_{us}^* V_{cs}} + \frac{V_{ud}^* V_{cd}}{V_{us}^* V_{cs}} = 0$$

$$\frac{V_{ud}^* \ V_{cd}}{V_{us}^* \ V_{cs}} + \frac{V_{ud}^* V_{cd}}{V_{us}^* V_{cs}} = 0$$

$$\frac{|V_{ub}^* V_{cb}|}{|V_{us}^* V_{cs}|} \sim \mathcal{O}(\lambda^4)$$

$$\frac{|V_{ud}^* V_{cd}|}{|V_{us}^* V_{cs}|} = 1 + \mathcal{O}(\lambda^4)$$

— ... with very small angles (but the same area as the "B-triangle")

$$\chi' = \mathrm{arg}\left(rac{V_{ud}^*V_{cd}}{V_{us}^*V_{cs}}
ight) \simeq A^2\lambda^4\eta \simeq 1.6\cdot 10^{-3}\eta$$
 (essentially due to weak phase γ)

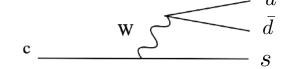
difference b/w areas of b and c triangles indicates New Physics

NP with processes forbidden in SM at tree level

- ★ Will spend most of the talk on those processes
 - flavor-changing neutral current (FCNC) processes: mixing and penguin decays
 - (lepton) flavor symmetry violations

Useful background: decay lingo

- \star Charm decays can be classified by SM CKM suppression of tree amplitude ($V_{us} \sim \lambda \sim 0.2$): need it for all exp studies
 - \bigstar Cabibbo-favored (CF: λ 0) decay
 - originates from $c \rightarrow s$ ud
 - examples: $D^0 \to K^-\pi^+$



D \bar{q}

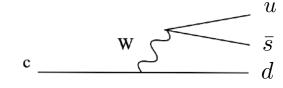
$$V_{cs(d)}V_{us(d)}^*$$

- \bigstar Singly Cabibbo-suppressed (SCS: λ^1) decay
 - originates from $c \rightarrow q u \overline{q}$
 - examples: $D^0 \to \! \pi\pi$ and $D^0 \to KK$

D \bar{q} \bar{q}

$$V_{cd}V_{us}^*$$

- \bigstar Doubly Cabibbo-suppressed (DCS: λ^2) decay
 - originates from $c \rightarrow d u \overline{s}$
 - examples: $D^0 \rightarrow K^+\pi^-$

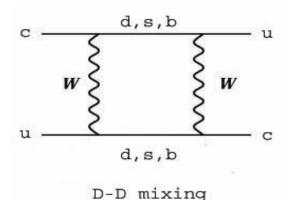


 $ar{q}$ $ar{q}$

Charm-anticharm mixing

Charm-anticharm mixing

Introduction: DD mixing

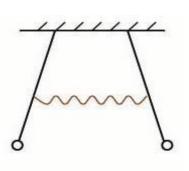


ΔC=2: only at one loop in the Standard Model:

possible new physics particles in the loop

ΔC=2 interaction couples dynamics of D⁰ and D⁰

$$|D(t)\rangle = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = a(t) |D^{0}\rangle + b(t) |\overline{D^{0}}\rangle$$

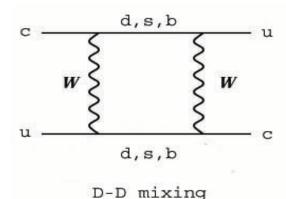


Coupled oscillators

★ Time-dependence: coupled Schrödinger equations

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \begin{bmatrix}A & p^2\\q^2 & A\end{bmatrix}|D(t)\rangle$$

Introduction: DD mixing

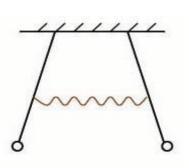


ΔC=2: only at one loop in the Standard Model:

possible new physics particles in the loop

ΔC=2 interaction couples dynamics of D⁰ and D⁰

$$|D(t)\rangle = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = a(t) |D^{0}\rangle + b(t) |\overline{D^{0}}\rangle$$

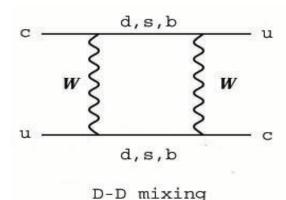


Coupled oscillators

★ Time-dependence: coupled Schrödinger equations

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \begin{bmatrix}A & p^2\\q^2 & A\end{bmatrix}|D(t)\rangle$$

Introduction: DD mixing

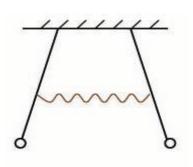


ΔC=2: only at one loop in the Standard Model:

possible new physics particles in the loop

ΔC=2 interaction couples dynamics of D⁰ and D⁰

$$|D(t)\rangle = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = a(t)|D^{0}\rangle + b(t)|\overline{D^{0}}\rangle$$



Coupled oscillators

★ Time-dependence: coupled Schrödinger equations

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \begin{bmatrix}A & p^2\\q^2 & A\end{bmatrix}|D(t)\rangle$$

Q: this Hamiltonian is clearly non-Hermitian! How does it square against what you learned in Quantum Mechanics?

Looking for DD mixing

Idea: look for a wrong-sign final state

Time-dependent or time-integrated semileptonic analysis

$$rate \propto x^2 + y^2$$

Quadratic in x,y: not so sensitive

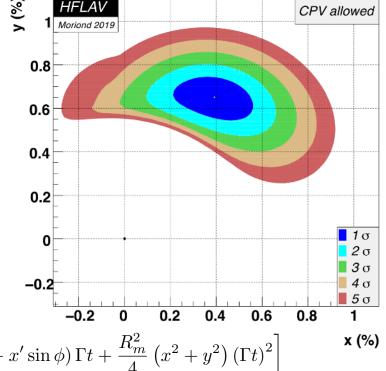
Time-dependent $D^0 \to K^+K^-$ analysis (lifetime difference)

$$y_{CP} = \frac{\tau(D \to \pi^+ K^-)}{\tau(D \to K^+ K^-)} - 1 = y \cos \phi - x \sin \phi \frac{1 - R_m}{2}$$

Time-dependent $D^0(t) \to K^+\pi^-$ analysis

$$\Gamma[D^{0}(t) \to K^{+}\pi^{-}] = e^{-\Gamma t} |A_{K^{+}\pi^{-}}|^{2} \left[R + \sqrt{R}R_{m} \left(y'\cos\phi - x'\sin\phi \right) \Gamma t + \frac{R_{m}^{2}}{4} \left(x^{2} + y^{2} \right) \left(\Gamma t \right)^{2} \right]$$
 x (%)

- Quantum correlations analyses

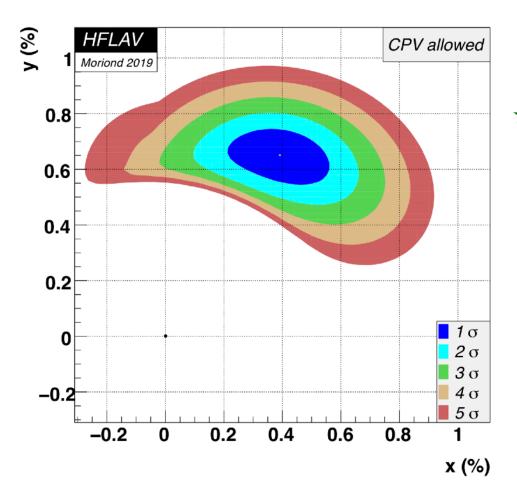


Dalitz analyses
$$D^0(t) \to K\pi\pi, KKK$$

$$R_m^2 = \left| \frac{q}{p} \right|^2, \ x' = x\cos\delta + y\sin\delta, \ y' = y\cos\delta - x\sin\delta$$

Sensitive to DCS/CF strong phase δ

★ Experimental fact: charm mixing parameters are non-zero



$$x_D = \frac{M_2 - M_1}{\Gamma_D}, \ y_D = \frac{\Gamma_2 - \Gamma_1}{2\Gamma_D}$$

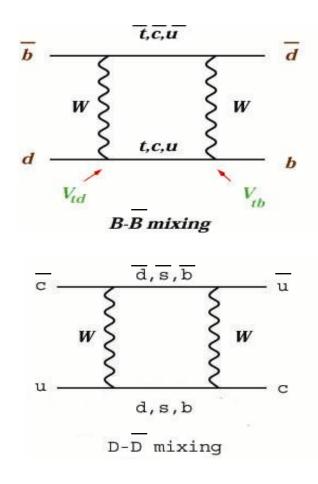
- ★ ... and rather large
 - if CP-violation is neglected...

$$x = (0.50^{+0.13}_{-0.14})\%$$
$$y = (0.62 \pm 0.07)\%$$

- if CP-violation is allowed

$$x = (0.39^{+0.11}_{-0.12})\%$$
$$y = (0.651^{+0.063}_{-0.069})\%$$

Mixing: SM predictions



$\overline{D^0}$ – D^0 mixing	$\overline{B^0} - B^0$ mixing
· intermediate down-type quarks	• intermediate up-type quarks
 SM: b-quark contribution is negligible due to V_{cd}V_{ub}* 	• SM: t-quark contribution is dominant
• $rate \propto f(m_s) - f(m_d)$ (zero in the SU(3) limit) Falk, Grossman, Ligeti, and A.A.P.	$\cdot rate \propto m_t^2$ (expected to be large)
Phys.Rev. D65, 054034, 2002 2 nd order effect!!!	
 Sensitive to long distance QCD Small in the SM: New Physics! (must know SM x and y) 	1. Computable in QCD (*) 2. Large in the SM: CKM!

(*) up to matrix elements of 4-quark operators

Mixing: SM predictions

- ★ How can one tell that a process is dominated by long-distance or short-distance?
 - ★ To start thing off, mass and lifetime differences of mass eigenstates...

$$x_D = \frac{M_2 - M_1}{\Gamma_D}, \ y_D = \frac{\Gamma_2 - \Gamma_1}{2\Gamma_D}$$

* ...can be calculated as real and imaginary parts of a correlation function

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Im} \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} |D^0\rangle$$
bi-local time-ordered product

$$x_{\mathrm{D}} = \frac{1}{2M_{\mathrm{D}}\Gamma_{\mathrm{D}}}\operatorname{Re}\left[2\langle\overline{D^{0}}|H^{|\Delta C|=2}|D^{0}\rangle + \langle\overline{D^{0}}|i\int\mathrm{d}^{4}x\,T\Big\{\mathcal{H}_{w}^{|\Delta C|=1}(x)\,\mathcal{H}_{w}^{|\Delta C|=1}(0)\Big\}|D^{0}\rangle\right]$$
local operator
(b-quark, NP); small?

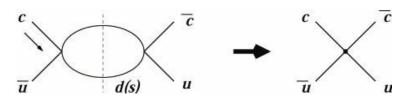
* ... or can be written in terms of hadronic degrees of freedom...

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

Let's insist on 1/mc expansion, hope for quark-hadron duality

Inclusive approach to DD mixing

 \star SD calculation: expand the operator product in $1/m_c$, e.g.



★ Note that 1/mc is not small, while factors of ms make the result small

E. Golowich and A.A.P. Phys. Lett. B625 (2005) 53

- keep $V_{ub} \neq 0$, so the leading SU(3)-breaking contribution is suppressed by $\lambda_b^2 \sim \lambda^{10}$
- ... but it is tiny, so look for SU(3)-breaking effects that come from mass insertions and quark condensates

$$\Gamma_{12} = -\lambda_s^2 \left(\Gamma_{12}^{ss} - 2\Gamma_{12}^{sd} + \Gamma_{12}^{dd} \right) + 2\lambda_s \lambda_b \left(\Gamma_{12}^{sd} - \Gamma_{12}^{dd} \right) - \lambda_b^2 \Gamma_{12}^{dd}$$

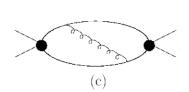
H. Georgi, ... I. Bigi, N. Uraltsev

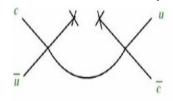
 $O: O(m_s^4) O(m_s^2)$

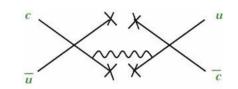
M. Bobrowski et al JHEP 1003 (2010) 009

LO: $O(m_s^4)$ NLO: $O(m_s^3)$ $O(m_s^2)$ O(1) $O(m_s^1)$ O(1)

- ... main contribution comes from dim-12 operators!!!







Guestimate:

 $x \sim y \sim 10^{-3}$?

Inclusive approach to mixing: quark-hadron duality

★ How can one tell that a process is dominated by long-distance or short-distance?

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C = 1} | n \rangle \langle n | H_W^{\Delta C = 1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C = 1} | n \rangle \langle n | H_W^{\Delta C = 1} | D^0 \rangle \right]$$

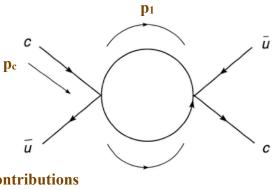
 \star It is important to remember that the expansion parameter is $1/E_{released}$

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}}\operatorname{Im}\langle\overline{D^0}|\,i\int\!\mathrm{d}^4x\,T\Big\{\mathcal{H}_w^{|\Delta C|=1}(x)\,\mathcal{H}_w^{|\Delta C|=1}(0)\Big\}|D^0\rangle$$
 OPE-leading contribution:

- \bigstar In the heavy-quark limit $m_c \to \infty$ we have $m_c \gg \sum$ mintermediate quarks, so Ereleased $\sim m_c$
 - the situation is similar to B-physics, where it is "short-distance" dominated
 - one can consistently compute pQCD and 1/m corrections
- ★ But wait, mc is NOT infinitely large! What happens for finite mc????
 - how is large momentum routed in the diagrams?
 - are there important hadronization (threshold) effects?

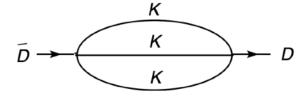
Inclusive approach to mixing: quark-hadron duality

- ★ How can one tell that a process is dominated by long-distance or short-distance?
 - ★ Let's look at how the momentum is routed in a leading-order diagram
 - injected momentum is pc ~ mc
 - thus, $p_1 \sim p_2 \sim m_c/2 \sim O(\Lambda_{QCD})$?



Still OK with OPE, signals large nonperturbative contributions

- ★ For a particular example of the lifetime difference, have hadronic intermediate states
 - -let's use an example of KKK intermediate state
 - in this example, $E_{released} \sim m_D 3 m_K \sim O(\Lambda_{QCD})$



- ★ Similar threshold effects exist in B-mixing calculations
 - but $m_b \gg \sum m_{intermediate quarks}$, so $E_{released} \sim m_b$ (almost) always
 - quark-hadron duality takes care of the rest!

Let's saturate correlators by hadronic states

Exclusive approach to mixing: use data?

★ LD calculation: saturate the correlator by hadronic states, e.g.

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C = 1} | n \rangle \langle n | H_W^{\Delta C = 1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C = 1} | n \rangle \langle n | H_W^{\Delta C = 1} | D^0 \rangle \right]$$

... with n being all states to which D⁰ and D⁰ can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

$$y_2 = Br(D^0 \to K^+K^-) + Br(D^0 \to \pi^+\pi^-) - 2\cos\delta\sqrt{Br(D^0 \to K^+\pi^-)Br(D^0 \to \pi^+K^-)}$$

J. Donoghue et. al.

L. Wolfenstein

P. Colangelo et. al.

H.Y. Cheng and C. Chiang

If every Br is known up to O(1%) the result is expected to be O(1%)!

The result here is a series of large numbers with alternating signs, <u>SU(3) forces 0</u> If experimental data on Br is used, are we only sensitive to exit. uncertainties?

★ Need to "repackage" the analysis: look at complete multiplet contribution

$$y = \sum_{F_R} y_{F,R} \ Br(D^0 \to F_R) = \sum_{F_R} y_{F,R} \frac{1}{\Gamma} \sum_{n \in F_R} \Gamma(D^0 \to n)$$

Falk, Grossman, Ligeti, Nir. A.A.P. Phys.Rev. D69, 114021, 2004 Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

Exclusive approach to mixing: use data?

★ LD calculation: saturate the correlator by hadronic states, e.g.

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C = 1} | n \rangle \langle n | H_W^{\Delta C = 1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C = 1} | n \rangle \langle n | H_W^{\Delta C = 1} | D^0 \rangle \right]$$

... with n being all states to which D⁰ and D⁰ can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

$$y_2 = Br(D^0 \to K^+K^-) + Br(D^0 \to \pi^+\pi^-)$$

$$\geq 2\cos\delta\sqrt{Br(D^0 \to K^+\pi^-)Br(D^0 \to \pi^+K^-)}$$

J. Donoghue et. al.

L. Wolfenstein

P. Colangelo et. al.

H.Y. Cheng and C. Chiang

cancellation expected

If every Br is known up to O(1%) the result is expected to be O(1%)!

The result here is a series of large numbers with alternating signs, <u>SU(3) forces 0</u> If experimental data on Br is used, are we only sensitive to exit. uncertainties?

★ Need to "repackage" the analysis: look at complete multiplet contribution

$$y = \sum_{F_R} y_{F,R} \ Br(D^0 \to F_R) = \sum_{F_R} y_{F,R} \frac{1}{\Gamma} \sum_{n \in F_R} \Gamma(D^0 \to n)$$

Falk, Grossman, Ligeti, Nir. A.A.P. Phys.Rev. D69, 114021, 2004 Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

Exclusive approach to mixing: use data!

★ What if we insist on using experimental data anyway?

★ Ex., one can employ Factorizaton-Assisted Topological Amplitudes

in units of 10-3

Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\mathrm{FAT})$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\mathrm{FAT})$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(\text{FAT})$
$\pi^0 \overline{K}^0$	24.0 ± 0.8	24.2 ± 0.8	$\pi^0 \overline{K}^{*0}$	37.5 ± 2.9	35.9 ± 2.2	$\overline{K}^0 \rho^0$	$12.8^{+1.4}_{-1.6}$	13.5 ± 1.4
$\pi^+ K^-$	39.3 ± 0.4	39.2 ± 0.4	$\pi^{+}K^{*-}$	54.3 ± 4.4	62.5 ± 2.7	$K^-\rho^+$	111.0 ± 9.0	105.0 ± 5.2
$\eta \overline{K}^0$	9.70 ± 0.6	9.6 ± 0.6	$\eta \overline{K}^{*0}$	9.6 ± 3.0	6.1 ± 1.0	$\overline{K}^0 \omega$	22.2 ± 1.2	22.3 ± 1.1
$\eta' \overline{K}^0$	19.0 ± 1.0	19.5 ± 1.0	$\eta' \overline{K}^{*0}$	< 1.10	0.19 ± 0.01	$\overline{K}^0 \phi$	$8.47^{+0.66}_{-0.34}$	8.2 ± 0.6
$\pi^+\pi^-$	1.421 ± 0.025	1.44 ± 0.02	$\pi^+ \rho^-$	5.09 ± 0.34	4.5 ± 0.2	$\pi^- \rho^+$	10.0 ± 0.6	9.2 ± 0.3
K^+K^-	4.01 ± 0.07	4.05 ± 0.07	$K^{+}K^{*-}$	1.62 ± 0.15	1.8 ± 0.1	$K^{-}K^{*+}$	4.50 ± 0.30	4.3 ± 0.2
$K^0\overline{K}^0$	0.36 ± 0.08	0.29 ± 0.07	$K^0\overline{K}^{*0}$	0.18 ± 0.04	0.19 ± 0.03	\overline{K}^0K^{*0}	0.21 ± 0.04	0.19 ± 0.03
$\pi^0\eta$	0.69 ± 0.07	0.74 ± 0.03	$\eta \rho^0$		1.4 ± 0.2	$\pi^0\omega$	0.117 ± 0.035	0.10 ± 0.03
$\pi^0\eta'$	0.91 ± 0.14	$1.08 {\pm} 0.05$	$\eta' \rho^0$		0.25 ± 0.01	$\pi^0 \phi$	1.35 ± 0.10	1.4 ± 0.1
$\eta\eta$	1.70 ± 0.20	$1.86{\pm}0.06$	$\eta\omega$	2.21 ± 0.23	2.0 ± 0.1	$\eta\phi$	0.14 ± 0.05	0.18 ± 0.04
$\eta\eta'$	1.07 ± 0.26	$1.05{\pm}0.08$	$\eta'\omega$		0.044 ± 0.004			
$\pi^0\pi^0$	0.826 ± 0.035	0.78 ± 0.03	$\pi^0 \rho^0$	3.82 ± 0.29	4.1 ± 0.2			
$\pi^0 K^0$		0.069 ± 0.002	$\pi^0 K^{*0}$		0.103 ± 0.006	$K^0 \rho^0$		0.039 ± 0.004
π^-K^+	0.133 ± 0.009	0.133 ± 0.001	π^-K^{*+}	$0.345^{+0.180}_{-0.102}$	0.40 ± 0.02	$K^+\rho^-$		0.144 ± 0.009
ηK^0		0.027 ± 0.002	ηK^{*0}		0.017 ± 0.003	$K^0\omega$		0.064 ± 0.003
$\eta' K^0$		0.056 ± 0.003	$\eta' K^{*0}$		0.00055 ± 0.00004	$K^0\phi$		0.024 ± 0.002

Jiang, Yu, Qin, Li, and Lu, 2017

 \bigstar ... but it appears to yield a smaller result, $y_{PP+PV}=(0.21\pm0.07)\%$

Exclusive approach to mixing: use data!

- ★ What if we insist on using experimental data anyway?
 - ★ Possible additional contributions?
 - each intermediate state has a finite width, i.e. is not a proper asymptotic state
 - within each multiplet widths experience (incomplete) SU(3) cancelations
 - this effect already happens for the simplest intermediate states!
 - ★ Consider, for illustration, a set of single-particle intermediate states:

$$-\Sigma_{p_D} \left(p_D \right) \Big|_{\text{tot}}^{\text{res}} = \frac{1}{2m_D} \sum_{R} Re \; \frac{\langle D_L | \mathcal{H}_W | R \rangle \langle R | \mathcal{H}_W^{\dagger} | D_L \rangle}{m_D^2 - m_R^2 + i \Gamma_R m_D} \quad - \quad (D_L \to D_S)$$

$$\Delta m_D \Big|_{\rm R}^{\rm res} \propto \frac{m_D^2 - m_R^2}{(m_D^2 - m_R^2)^2 + \Gamma_R^2 m_D^2}$$

$$\Delta \Gamma_D \Big|_{\rm R}^{\rm res} \propto -\frac{\Gamma_R m_D}{(m_D^2 - m_R^2)^2 + \Gamma_R^2 m_D^2}$$

 \star Each resonance contributes to $\Delta\Gamma$ only because of its finite width!

Finite width effects: one-body contributions

- ★ Multiplet effects for (single-particle) intermediate states
 - in this simple example: heavy pion, kaon and eta/eta'
 - each single-particle intermediate state has a rather large width

$$\Delta\Gamma_D|_{\text{octet}}^{\text{res}} = \Delta\Gamma_D^{(K_H)} - \frac{1}{4}\Delta\Gamma_D^{(\pi_H)} - \frac{3\cos^2\theta_{\text{H}}}{4}\Delta\Gamma_D^{(\eta_H)} - \frac{1\sin^2\theta_{\text{H}}}{4}\Delta\Gamma_D^{(\eta_H')}$$

- where for each state
$$\, \Delta\Gamma_D^{
m res} = -C f_R^2 \, \, \frac{\mu_R \gamma_R}{(1-\mu_R)^2 + \gamma_R^2} \,$$
 with $\, \frac{\mu_R = m_R^2/m_D^2}{\gamma_R = \Gamma_R/m_D} \,$

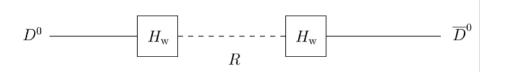
- ... and a model calculation gives $\,C\,\equiv\,2m_D(G_Fa_2f_D\xi_d/\sqrt{2})^2$.
- SU(3) forces cancellations: a new SU(3) breaking effect due to widths!

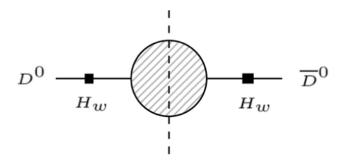
Table: Magnitudes of Pseudoscalar Resonance Contributions.					
Resonance	$ \Delta m_D \times 10^{-16} \text{ (GeV)}$	$ \Delta\Gamma_D \times 10^{-16} \text{ (GeV)}$			
K(1460)	$\sim 1.24 \ (f_{K(1460)}/0.025)^2$	$\sim 0.88 \ (f_{K(1460)}/0.025)^2$			
$\eta(1760)$	$(0.77 \pm 0.27) \ (f_{\eta(1760)}/0.01)^2$	$(0.43 \pm 0.53) (f_{\eta(1760)}/0.01)^2$			
$\pi(1800)$	$(0.13 \pm 0.06) (f_{\pi(1800)}/0.01)^2$	$(0.41 \pm 0.11) (f_{\pi(1800)}/0.01)^2$			
K(1830)	$\sim 0.29 \ (f_{K(1830)}/0.01)^2$	$\sim 1.86 \ (f_{K(1830)}/0.01)^2$			

E. Golowich and A.A.P. PLB427 (1998) 172-178

Finite width effects: one-body contributions

- ★ Let us take another look at those one-body contributions
 - the width of each excited light quark state $\Gamma_R = \Gamma(R \to P_1 P_2) + \Gamma(R \to P_1 P_2 P_3) + ...$
 - ... which is equivalent to accounting for resonant FSI in 2-body intermediate state!



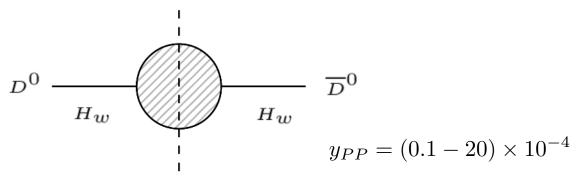


Since we shall be using experimental data to compute 2-body contributions, this effect will be taken into account automatically!

It's consistent to omit 1-body IntSt if experimental data is used

Finite width effects: two-body contributions

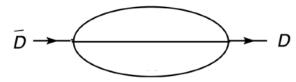
- ★ Let us apply similar logic to two-body contributions
 - consider contributions from the stable (wrt strong interactions) octet of pions, kaons, etas



Falls short of the experimentally observed value of y

- ★ What about other two body contributions (PV, SP, SS, etc.)?
 - can use similar techniques to evaluate contribution to mixing as above 2BIS...
 - ... but V, P', S states are not good asymptotic states!
 - we get new SU(3)-breaking contribution from the widths of those states!

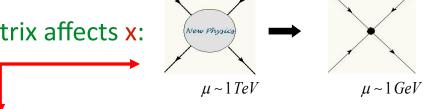
Since we are to use experimental data, use Dalitz plot analyses to get at these contributions



A.A.P.. arXiv:1908.xxxx

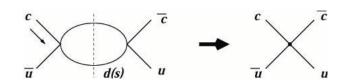
Mixing: new physics in x and y?

• Local ΔC=2 piece of the mass matrix affects x:



$$\left(M - \frac{i}{2}\Gamma\right)_{ij} = m_D^{(0)}\delta_{ij} + \frac{1}{2m_D}\left\langle D_i^0 \left| H_W^{\Delta C = 2} \left| D_j^0 \right\rangle + \frac{1}{2m_D}\sum_{I} \frac{\left\langle D_i^0 \left| H_W^{\Delta C = 1} \left| I \right\rangle \left\langle I \left| H_W^{\Delta C = 1} \left| D_j^0 \right\rangle \right. \right. \right. \right. \right.$$

• Double insertion of ΔC=1 affects x and y:



Amplitude
$$A_n = \left\langle D^0 \left| \left(H_{SM}^{\Delta C=1} + H_{NP}^{\Delta C=1} \right) \right| n \right\rangle \equiv A_n^{SM} + A_n^{NP}$$
 Suppose $\left| A_n^{NP} \right| / \left| A_n^{SM} \right| \sim O(\text{exp. uncertainty}) \leq 10\%$

Example:
$$y = \frac{1}{2\Gamma} \sum_{n} \rho_{n} \left(\overline{A}_{n}^{SM} + \overline{A}_{n}^{NP} \right) \left(A_{n}^{SM} + A_{n}^{NP} \right) \approx \underbrace{\frac{1}{2\Gamma} \sum_{n} \rho_{n} \overline{A}_{n}^{SM} A_{n}^{SM}}_{1} + \underbrace{\frac{1}{2\Gamma} \sum_{n} \rho_{n} \left(\overline{A}_{n}^{SM} A_{n}^{NP} + \overline{A}_{n}^{NP} A_{n}^{SM} \right)}_{1}$$

phase space

Zero in the SU(3) limit

Can be significant!!!

Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

2nd order effect!!!

Mixing: new physics in x

* Multitude of various models of New Physics can affect x $\mu \ge 1 \, TeV$ H^{\pm} H^{\pm} (a) (b) $\mu \leq 1 \, TeV$ H^0 H^0 (c) $W_{\rm R}$ LQ LQ $W_{\mathbb{R}}$ (f)(g)μ: 1 *GeV*

Mixing: new physics in x

- \star Comparing to experimental value of x, obtain constraints on NP models
 - assume x is dominated by the New Physics model
 - assume no accidental strong cancellations b/w SM and NP

$$\mathcal{Q}_{1}^{cu} = \bar{u}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha} \bar{u}_{L}^{\beta} \gamma^{\mu} c_{L}^{\beta},$$

$$\mathcal{Q}_{1}^{cu} = \bar{u}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha} \bar{u}_{L}^{\beta} \gamma^{\mu} c_{L}^{\beta},$$

$$\mathcal{Q}_{2}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{R}^{\beta} c_{L}^{\beta},$$

$$\mathcal{Q}_{3}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{R}^{\beta} c_{L}^{\alpha},$$

$$\mathcal{Q}_{3}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{R}^{\beta} c_{L}^{\alpha},$$

$$\mathcal{Q}_{3}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{L}^{\beta} c_{R}^{\alpha},$$

$$\mathcal{Q}_{3}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{L}^{\beta} c_{R}^{\alpha},$$

* ... which are

$$|z_1| \lesssim 5.7 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2,$$

 $|z_2| \lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2,$
 $|z_3| \lesssim 5.8 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2,$
 $|z_4| \lesssim 5.6 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2,$
 $|z_5| \lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2.$

New Physics is either at a very high scales

tree level: $\Lambda_{NP} \geq (4-10) \times 10^3 \text{ TeV}$

loop level: $\Lambda_{NP} \geq (1-3) \times 10^2 \text{ TeV}$

or have highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

★ Constraints on particular NP models available

Mixing: new physics in x

			IVIIAI	
	Extra fermions	Model	Approximate Constraint	
	r Fi	Fourth Generation (Fig. 2)	$ V_{ub}V_{cb'} \cdot m_b < 0.5 \text{ (GeV)}$	
	fel	Q = -1/3 Singlet Quark (Fig. 4)	$s_2 \cdot m_S < 0.27 \text{ (GeV)}$	
	מ	Q = +2/3 Singlet Quark (Fig. 6)	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$	
	X	Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark	
ge	ш		Box: Region of parameter space can reach observed $x_{\rm D}$	
jan ja	5	Generic Z' (Fig. 7)	$M_{Z'}/C > 2.2 \cdot 10^3 \text{ TeV}$	
ة أو و ال	DOSOUS	Family Symmetries (Fig. 8)	$m_1/f > 1.2 \cdot 10^3 \text{ TeV (with } m_1/m_2 = 0.5)$	
Extra gauge	ă	Left-Right Symmetric (Fig. 9)	No constraint	
Ü	SO .	Alternate Left-Right Symmetric (Fig. 10)	$M_R > 1.2 \text{ TeV } (m_{D_1} = 0.5 \text{ TeV})$	
	<u>a</u>		$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$	
	Extra scalars	Vector Leptoquark Bosons (Fig. 11)	$M_{VLQ} > 55(\lambda_{PP}/0.1) \text{ TeV}$	
	۵ S	Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint	
	Ť.	Flavor Changing Neutral Higgs (Fig. 15)	$m_H/C > 2.4 \cdot 10^3 \text{ TeV}$	
S	ώ	FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_H/ \Delta_{uc} > 600 \text{ GeV}$	
on		Scalar Leptoquark Bosons	See entry for RPV SUSY	
nsi		Higgsless (Fig. 17)	$M>100~{ m TeV}$	
me		Universal Extra Dimensions	No constraint	
<u>G</u>		Split Fermion (Fig. 19)	$M/ \Delta y > (6 \cdot 10^2 \text{ GeV})$	
tro		Warped Geometries (Fig. 21)	$M_1 > 3.5 \; \mathrm{TeV}$	
Extra dimensions		Minimal Supersymmetric Standard (Fig. 23)	$ (\delta^{\rm u}_{12})_{\rm LR,RL} < 3.5 \cdot 10^{-2}$ for $\tilde{m} \sim 1~{\rm TeV}$	
	>		$ (\delta^{u}_{12})_{\mathrm{LL,RR}} < .25 \text{ for } \tilde{m} \sim 1 \text{ TeV}$	
	SUSY	Supersymmetric Alignment	$ ilde{m} > 2 \; \mathrm{TeV}$	
	S	Supersymmetry with RPV (Fig. 27)	$\lambda'_{12k}\lambda'_{11k}/m_{\tilde{d}_{R,k}} < 1.8 \cdot 10^{-3}/100 \text{ GeV}$	
			I	

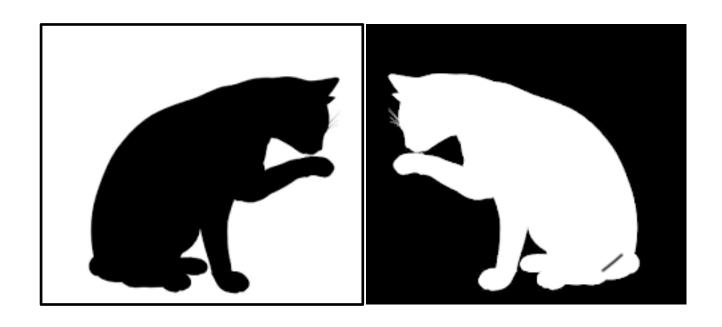
Split Supersymmetry

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

Gedalia, Grossman, Nir, Perez arXiv:0906.1879 [hep-ph]

Bigi, Blanke, Buras, Recksiegel, JHEP 0907:097, 2009

No constraint



CP-violation in charm

Introduction: CP-violation

- How can CP-violation be observed in charm system?
 - can be observed by comparing CP-conjugated decay rates in various ways, both with and w/out time dependence

$$a_{\rm CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})},$$

- can manifest itself in charm $\Delta C=1$ transitions (direct CP-violation)

$$\Gamma(D \to f) \neq \Gamma(CP[D] \to CP[f])$$

dCPV

- or in $\Delta C=2$ transitions (indirect CP-violation): mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$

$$R_m^2 = \left| q/p \right|^2 = \left| \frac{2M_{12}^* - i\Gamma_{12}^*}{\Delta m - (i/2)\Delta \Gamma} \right|^2 = 1 + A_m \neq 1 \qquad \text{CPV mix}$$

- or in the interference b/w decays ($\Delta C=1$) and mixing ($\Delta C=2$)

$$\lambda_f = \frac{q}{p} \frac{\overline{A_f}}{A_f} = R_m e^{i(\phi + \delta)} \left| \frac{\overline{A_f}}{A_f} \right|$$
 CPVint

Direct CP-violation in charm: realities of life

***** IDEA: consider the DIFFERENCE of decay rate asymmetries: $D \to \pi\pi$ vs $D \to KK!$ For each final state the asymmetry

Do: no neutrals in the final state!

$$a_{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \longrightarrow a_{f} = a_{f}^{d} + a_{f}^{m} + a_{f}^{i}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

★ A reason: $a^m_{KK} = a^m_{\pi\pi}$ and $a^i_{KK} = a^i_{\pi\pi}$ (for CP-eigenstate final states), so, ideally, mixing asymmetries cancel $(r_f = P_f / A_f)!$

$$a_f^d = 2r_f \sin \phi_f \sin \delta_f$$

 \bigstar ... and the resulting DCPV asymmetry is $\Delta a_{CP} = a_{KK}^d - a_{\pi\pi}^d pprox 2a_{KK}^d$ (double!)

$$A_{KK} = \frac{G_F}{\sqrt{2}} \lambda \left[(T + E + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$
$$A_{\pi\pi} = \frac{G_F}{\sqrt{2}} \lambda \left[(-(T + E) + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$

 \star ... so it is doubled in the limit of SU(3)_F symmetry

SU(3) is badly broken in D-decays

Experimental analysis from LHCb

- \star Since we are comparing rates for D⁰ and anti-D⁰: need to tag the flavor at production $D^{*+} \to D^0 \pi_s^+ \qquad \text{``D*-trick'' -- tag the charge of the slow pion (or muon for D's produced in B-decays)}$
- \star The difference Δa_{CP} is also preferable experimentally, as

$$a_f^{\rm raw} = a_f^{CP} + a_f^{\rm detect, \ D} + a_D^{\rm detect, \ T_s} + a_{D*}^{\rm prod}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\uparrow \qquad \uparrow$$

$$\downarrow \qquad \downarrow$$

$$\downarrow \qquad \uparrow$$

$$\downarrow \qquad \downarrow$$

$$\downarrow \qquad$$

- \star D* production asymmetry and soft pion asymmetries are the same for KK and $\pi\pi$ final states— they cancel in $\Delta a_{CP}!$
- ★ Integrate over time,

$$a_{CP, f} = \int_0^\infty a_{CP}(f; t) D(t) dt = a_f^d + \frac{\langle t \rangle}{\tau} a_f^{ind}$$

distribution of proper decay time

★ Viola! Report observation!

Experimental results

 note that while the new result does constitute an observation of CP-violation in the difference...

$$\Delta a_{CP}^{dir} = a_{CP}(K^-K^+) - a_{CP}(\pi^-\pi^+) = (-0.156 \pm 0.029)\% \quad {}^{\text{LHCb 2019}}$$

— ... it is not yet so for the individual decay asymmetries

$$a_{CP}(K^-K^+) = (0.04 \pm 0.12 \text{ (stat)} \pm 0.10 \text{ (syst)})\%,$$

 $a_{CP}(\pi^-\pi^+) = (0.07 \pm 0.14 \text{ (stat)} \pm 0.11 \text{ (syst)})\%.$

- Need confirmation from other experiments (Belle II)
- What does this result mean? New Physics? Standard Model?

Theoretical troubles

IPPP/19/25 March 26, 2019

ΔA_{CP} within the Standard Model and beyond

Mikael Chala, Alexander Lenz, Aleksey V. Rusov and Jakub Scholtz

Institute for Particle Physics Phenomenology, Durham University, DH1 3LE Durham, United Kingdom

Implications on the first observation of charm CPV at LHCb

Hsiang-nan Li^{1*}, Cai-Dian Lü^{2†}, Fu-Sheng Yu^{3‡}

¹Institute of Physics, Academia Sinica,

Taipei, Taiwan 11529, Republic of China

The Emergence of the $\Delta U = 0$ Rule in Charm Physics

Yuval Grossman* and Stefan Schacht[†]

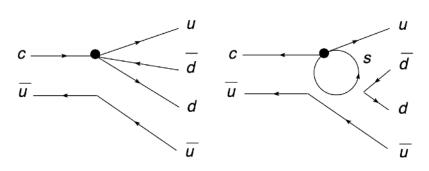
Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA

Theoretical troubles

★ These asymmetries are notoriously difficult to compute

★ In the Standard Model

- need to estimate size of penguin/penguin contractions vs. tree



- unknown penguin contribution (similar to $\Delta I = 1/2$)

- SU(3) analysis: some ME are enhanced?

Golden & Grinstein PLB 222 (1989) 501; Pirtshalava & Uttayarat 1112.5451

- could expect large 1/m_c corrections
Isidori et al PLB 711 (2012) 46; Brod et al 1111.5000

- no assumptions, flavor-flow diagrams

Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014; Cheng & Chiang 1205.0580

★ Theoretical progress?

– QCD sum rule calculations of Δa_{CP}

Khodjamirian, AAP

- SU(3) breaking analyses of $D \rightarrow PV$, VV
- constant (but slow) lattice QCD progress in D $\rightarrow \pi\pi$, $\pi\pi\pi$

Hansen, Sharpe

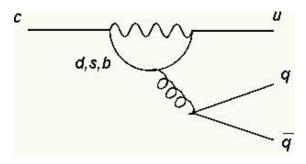
★ Other points: CP-fractions in Dalitz plot analyses

 \bigstar e.g., why is D $\rightarrow \pi^{+}\pi^{-}\pi^{0}$ ~97% CP-even?

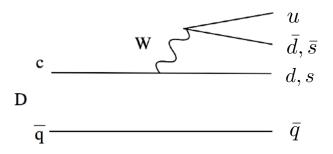
Bhattacharya, et al Gronau, Rosner

Generic expectations for sizes of CPV effects

★ Generic expectation is that CP-violating observables in the SM are small $\Delta c = 1$ amplitudes allow to reach third -generation quarks!



"Penguin" amplitude



"Tree" amplitude

★ The Unitarity Triangle relation for charm:

$$V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$$

$$\sim \lambda \qquad \sim \lambda \qquad \sim \lambda^5$$

With b-quark contribution neglected:
only 2 generations contribute

⇒ real 2x2 Cabibbo matrix

Any CP-violating signal in the SM will be small, at most $O(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim 10^{-3}$ Thus, O(1%) CP-violating signal can provide a "smoking gun" signature of New Physics

Calculating CP-asymmetries in QCD

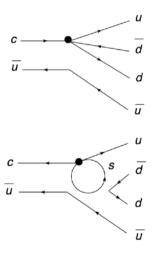
- Effective Hamiltonian for singly Cabibbo-suppressed (SCS) decays
 - drop all "penguin" operators (Q_i for i \geq 3) as C_i are small, $\lambda_q = V_{uq}V_{cq}^*$,

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{q=d,s} \lambda_q \left(C_1 \mathcal{Q}_1^q + C_2 \mathcal{Q}_2^q \right) - \lambda_b \sum_{i=2,\dots,6,8g} C_i \mathcal{Q}_i \right]$$
$$\mathcal{Q}_1^q = \left(\bar{u} \Gamma_{\mu} q \right) \left(\bar{q} \Gamma^{\mu} c \right), \qquad \mathcal{Q}_2^q = \left(\bar{q} \Gamma_{\mu} q \right) \left(\bar{u} \Gamma^{\mu} c \right)$$

$$- \text{ recall that } \sum_{q=d,s,b} \lambda_q = 0 \text{ or } \lambda_d = -(\lambda_s + \lambda_b) \text{ and } \mathcal{O}^q \equiv \frac{G_F}{\sqrt{2}} \sum_{i=1,2} C_i \mathcal{Q}_i^q \,, \quad \text{ with } q=d,s.$$

without QCD

with QCD



Amplitude decomposition

- Recipe for calculation of CPV asymmetry
 - prepare decay amplitudes

$$A(D^0 \to \pi^- \pi^+) = \lambda_d \langle \pi^- \pi^+ | \mathcal{O}^d | D^0 \rangle + \lambda_s \langle \pi^- \pi^+ | \mathcal{O}^s | D^0 \rangle$$

$$A(D^0 \to K^- K^+) = \lambda_s \langle K^- K^+ | \mathcal{O}^s | D^0 \rangle + \lambda_d \langle K^- K^+ | \mathcal{O}^d | D^0 \rangle$$

– add and subtract $\lambda_b \langle \pi^- \pi^+ | \mathcal{O}^s | D^0 \rangle$, put in a new form

$$A(D^{0} \to \pi^{-}\pi^{+}) = -\lambda_{s} \mathcal{A}_{\pi\pi} \left[1 + \frac{\lambda_{b}}{\lambda_{s}} \left(1 + r_{\pi} \exp(i\delta_{\pi}) \right) \right]$$
$$A(D^{0} \to K^{-}K^{+}) = \lambda_{s} \mathcal{A}_{KK} \left[1 - \frac{\lambda_{b}}{\lambda_{s}} r_{K} \exp(i\delta_{K}) \right]$$

define things we cannot compute (extract from branching ratios)

$$\mathcal{A}_{\pi\pi} = \langle \pi^- \pi^+ | \mathcal{O}^d | D^0 \rangle - \langle \pi^- \pi^+ | \mathcal{O}^s | D^0 \rangle$$
$$\mathcal{A}_{KK} = \langle K^- K^+ | \mathcal{O}^s | D^0 \rangle - \langle K^- K^+ | \mathcal{O}^d | D^0 \rangle$$

– ... and things we can $\mathcal{P}^s_{\pi\pi} = \langle \pi^-\pi^+|\mathcal{O}^s|D^0 \rangle$, $\mathcal{P}^d_{KK} = \langle K^-K^+|\mathcal{O}^d|D^0 \rangle$

$$r_{\pi} = \left| rac{\mathcal{P}^s_{\pi\pi}}{\mathcal{A}_{\pi\pi}}
ight| \;, \hspace{0.5cm} r_K = \left| rac{\mathcal{P}^d_{KK}}{\mathcal{A}_{KK}}
ight| = 0$$

Direct CP-violating asymmetries

- QCD-based calculation of direct CPV asymmetry
 - each amplitude has two parts with own weak and strong phases

$$A(D^{0} \to \pi^{-}\pi^{+}) = -\lambda_{s} \mathcal{A}_{\pi\pi} \left[1 + \frac{\lambda_{b}}{\lambda_{s}} \left(1 + r_{\pi} \exp(i\delta_{\pi}) \right) \right]$$
$$A(D^{0} \to K^{-}K^{+}) = \lambda_{s} \mathcal{A}_{KK} \left[1 - \frac{\lambda_{b}}{\lambda_{s}} r_{K} \exp(i\delta_{K}) \right]$$

– this implies for the direct CP-violating asymmetries ($r_b e^{-i\gamma} = \frac{\lambda_b}{\lambda_s}$)

$$a_{CP}^{dir}(K^{-}K^{+}) = -2r_b r_K \sin \delta_K \sin \gamma$$
$$a_{CP}^{dir}(\pi^{-}\pi^{+}) = 2r_b r_\pi \sin \delta_\pi \sin \gamma$$

— ... and for their difference

$$\Delta a_{CP}^{dir} = -2r_b \sin \gamma (r_K \sin \delta_K + r_\pi \sin \delta_\pi)$$

• We need to compute $r_{\pi(K)}$ and $\delta_{\pi(K)}$

dCPV: amplitude decomposition

Some things to keep in mind

- "penguin-type amplitudes" $\mathcal{P}^s_{\pi\pi}$ and \mathcal{P}^d_{KK} denote matrix elements of operators that contain quark-antiquark pair that does not match the valence content of the final state mesons; otherwise no relation to penguin topological amplitudes

$$\mathcal{P}^s_{\pi\pi} = \langle \pi^- \pi^+ | \mathcal{O}^s | D^0 \rangle , \quad \mathcal{P}^d_{KK} = \langle K^- K^+ | \mathcal{O}^d | D^0 \rangle \ \& \ r_\pi = \left| rac{\mathcal{P}^s_{\pi\pi}}{\mathcal{A}_{\pi\pi}} \right| , \quad r_K = \left| rac{\mathcal{P}^d_{KK}}{\mathcal{A}_{KK}} \right|$$

– calculate $\mathcal{P}^s_{\pi\pi}$ and \mathcal{P}^d_{KK} using a modified light-cone QCD sum rules

$$\delta_{\pi(K)} = \arg \left[\mathcal{P}_{\pi\pi(KK)}^{s(d)} \right] - \arg \left[\mathcal{A}_{\pi\pi(KK)} \right]$$

– extract $\mathcal{A}_{\pi\pi}$ and \mathcal{A}_{KK} amplitudes from measured branch. fractions

$$|\mathcal{A}_{\pi\pi}| \simeq \lambda_s^{-1} |A(D \to \pi^- \pi^+)| = (2.10 \pm 0.02) \times 10^{-6} \text{ GeV},$$

$$|\mathcal{A}_{KK}| \simeq \lambda_s^{-1} |A(D \to K^- K^+)| = (3.80 \pm 0.03) \times 10^{-6} \text{ GeV}.$$

dCPV: calculating matrix elements

Khodjamirian, NPB 605 (2001) 558

- Use modified light-cone QCD Sum Rule (LCSR) method
 - start with the correlation function ($j_5^{(D)}=im_car c\gamma_5 u$ and $j_{\alpha 5}^{(\pi)}=ar d\gamma_{lpha}\gamma_5 u$)

$$F_{\alpha}(p,q,k) = i^{2} \int d^{4}x e^{-i(p-q)x} \int d^{4}y e^{i(p-k)y} \langle 0 | T \left\{ j_{\alpha 5}^{(\pi)}(y) \mathcal{Q}_{1}^{s}(0) j_{5}^{(D)}(x) \right\} | \pi^{+}(q) \rangle$$
$$= (p-k)_{\alpha} F((p-k)^{2}, (p-q)^{2}, P^{2}) + \dots,$$

use dispersion relation in (p-k) and (p-q), perform Borel transform,
 extract matrix element:

$$\langle \pi^{-}(-q)\pi^{+}(p)|\mathcal{Q}_{1}^{s}|D^{0}(p-q)\rangle = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}}\int_{0}^{s_{0}^{\pi}}dse^{-s/M_{1}^{2}}\int_{m_{c}^{2}}^{s_{D}^{D}}ds'e^{(m_{D}^{2}-s')/M_{2}^{2}}\operatorname{Im}_{s'}\operatorname{Im}_{s}F(s,s',m_{D}^{2})$$

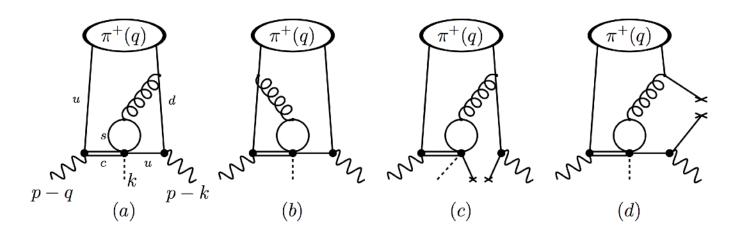
- perform LC expansion of F(s, s' m_D^2) to get $\mathcal{P}_{\pi\pi}^s$
- $\quad \text{note that} \quad C_1 \mathcal{Q}_1^s + C_2 \mathcal{Q}_2^s = 2C_1 \widetilde{\mathcal{Q}}_2^s + \left(\frac{C_1}{3} + C_2\right) \mathcal{Q}_2^s \text{ with } \widetilde{\mathcal{Q}}_2^s = \left(\bar{s} \Gamma_\mu \frac{\lambda^a}{2} s\right) \left(\bar{u} \Gamma^\mu \frac{\lambda^a}{2} c\right)$

thus
$$\mathcal{P}^s_{\pi\pi}=rac{2G_F}{\sqrt{2}}\;C_1\langle\pi^+\pi^-|\widetilde{\mathcal{Q}}^s_2|D^0
angle$$

dCPV: calculating matrix elements

- Evaluate (leading) diagrams contributing to the correlation function
 - calculate OPE in terms of known LC DAs

Khodjamirian, AAP: PLB774 (2017) 235



- analytically continue from the space-like region of $P^2=(p-k-q)^2$ (with auxiliary 4-momentum $k\neq 0$) to $P^2=m_D^2$, relying on the local quarkhadron duality
- $-\,$ extract absolute value and the phase of matrix element $\mathcal{P}^s_{\pi\pi}$
- vary parameters of the calculation to estimate uncertainties

dCPV predictions

• As a result... $\langle \pi^+ \pi^- | \widetilde{\mathcal{Q}}_2^s | D^0 \rangle = (9.50 \pm 1.13) \times 10^{-3} \exp[i(-97.5^o \pm 11.6)] \, \mathrm{GeV}^3$ $\langle K^+K^-|\widetilde{\mathcal{Q}}_2^d|D^0\rangle = (13.9 \pm 2.70) \times 10^{-3} \exp[i(-71.6^o \pm 29.5)] \,\text{GeV}^3$

• Thus,
$$r_\pi = \frac{|\mathcal{P}^s_{\pi\pi}|}{|\mathcal{A}_{\pi\pi}|} = 0.093 \pm 0.011$$
, $r_K = \frac{|\mathcal{P}^d_{KK}|}{|\mathcal{A}_{KK}|} = 0.075 \pm 0.015$ and with $\Delta a^{dir}_{CP} = -2r_b\sin\gamma(r_K\sin\delta_K + r_\pi\sin\delta_\pi)$

• Phases of $r_{\pi\pi(KK)}$ are given by the phases of $\mathcal{P}^{s(d)}_{\pi\pi(KK)}$?

No:
$$\begin{vmatrix} a_{CP}^{dir}(\pi^{-}\pi^{+}) | < 0.012 \pm 0.001\%, \\ \left| a_{CP}^{dir}(K^{-}K^{+}) \right| < 0.009 \pm 0.002\%, \\ \left| \Delta a_{CP}^{dir} \right| < 0.020 \pm 0.003\%. \end{vmatrix}$$
 Yes:
$$\begin{vmatrix} a_{CP}^{dir}(\pi^{-}\pi^{+}) = -0.011 \pm 0.001\%, \\ a_{CP}^{dir}(K^{-}K^{+}) = 0.009 \pm 0.002\%. \\ \Delta a_{CP}^{dir} = 0.020 \pm 0.003\%. \end{vmatrix}$$

Khodjamirian, AAP: PLB774 (2017) 235

Again, experiment: $\Delta a_{CP}^{dir} = (-0.156 \pm 0.029)\%$

Error budget: parameter uncertainties

Parameter values	Parameter rescaled
and references	to $\mu = 1.5 \; \mathrm{GeV}$
$\alpha_s(m_Z) = 0.1181 \pm 0.0011$ [6]	0.351
$\bar{m}_c(\bar{m}_c) = 1.27 \pm 0.03 \text{ GeV } [6]$	1.19 GeV
$\bar{m}_s(2\text{GeV}) = 96^{+8}_{-4}\text{MeV}$ [6]	105 MeV
$\langle \bar{q}q \rangle (2 \text{GeV}) = (-276^{+12}_{-10} \text{MeV})^3 [6]$	$(-268\mathrm{MeV})^3$
$\langle \bar{s}s \rangle = (0.8 \pm 0.3) \langle \bar{q}q \rangle \ \ [21]$	$(-249 \text{ MeV})^3$
$a_2^{\pi}(1{ m GeV}) = 0.17 \pm 0.08 \ \ [22]$	0.14
$a_4^{\pi}(1{ m GeV}) = 0.06 \pm 0.10 \ \ [22]$	0.045
$\mu_{\pi}(2{\rm GeV}) = 2.48 \pm 0.30{\rm GeV}$ [6]	$2.26\mathrm{GeV}$
$f_{3\pi}(1 \text{GeV}) = 0.0045 \pm 0.015 \text{GeV}^2$ [19]	$0.0036\mathrm{GeV^2}$
$\omega_{3\pi}(1 \text{GeV}) = -1.5 \pm 0.7 [19]$	-1.1
$a_1^K(1{\rm GeV}) = 0.10 \pm 0.04 \ \ [23]$	0.09
$a_2^K(1{\rm GeV}) = 0.25 \pm 0.15 \ \ [19]$	0.21
$\mu_K(2 \text{GeV}) = 2.47^{+0.19}_{-0.10} \text{GeV}$ [6]	2.25
$f_{3K} = f_{3\pi}$	$0.0036\mathrm{GeV^2}$
$\omega_{3K}(1 \text{GeV}) = -1.2 \pm 0.7 [19]$	-0.99
$\lambda_{3K}(1 \text{GeV}) = 1.6 \pm 0.4 [19]$	1.5

Things to take home

The magnitude of hadronic MEs defining CPV are computed

$$r_{\pi} = \frac{|\mathcal{P}_{\pi\pi}^{s}|}{|\mathcal{A}_{\pi\pi}|} = 0.093 \pm 0.011, \qquad r_{K} = \frac{|\mathcal{P}_{KK}^{d}|}{|\mathcal{A}_{KK}|} = 0.075 \pm 0.015$$

• The magnitude of direct CPV asymmetry in D \rightarrow $\pi^+\pi^-$ and D \rightarrow K+K-can be predicted from the calculation of the relevant hadronic matrix elements from LCSRs

$$\Delta a_{CP}^{dir} = 0.020 \pm 0.003\%$$

- No topological amplitude decomposition was used (note that OPE hierarchy sorts out the leading penguin-type diagrams)
- The strong phase difference is not yet reliably accessible: duality violations are not easily identifiable (e.g. broad scalar resonances influencing hadronic matrix elements)

(Lepton) flavor violation in charm

Introduction: leptonic FCNC

- ★ Why study flavor-changing neutral currents (FCNC)?
- * No trivial FCNC vertices in the Standard Model: sensitive NP tests
- ★ Possible experimental studies of a lepton sector at Belle II
 - lepton-flavor violating processes

-
$$\mu \rightarrow e\gamma$$
, $\tau \rightarrow e\gamma$, etc.

-
$$\mu \rightarrow eee$$
, $\tau \rightarrow \mu ee$, etc.

-
$$\mu^+e^- \rightarrow e^-\mu^+$$

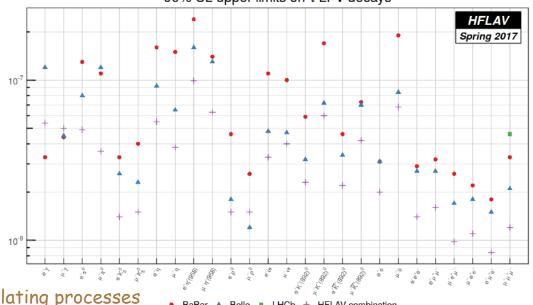
-
$$Z^0 \rightarrow \mu e$$
, Te, etc.

-
$$H \rightarrow \mu e$$
, Te, etc.

-
$$K^0$$
 (B⁰, D⁰, ...) → μ e, τ e, etc.

-
$$K^{+}$$
 (B⁺, D⁺, ...) $\to \pi^{+}\mu e$, $\pi^{+}\tau e$, etc.

$$-\mu^{-}+(A,Z)\rightarrow e^{-}+(A,Z)$$



- lepton number and lepton-flavor violating processes

-
$$(A, Z) \rightarrow (A, Z\pm 2) + e^{\mp}e^{\mp}$$

$$- \mu^{-} + (A, Z) \rightarrow e^{+} + (A, Z-2)$$

 \bigstar Highly suppressed in the Standard Model, e.g. $Br(\mu \to e \gamma) = \frac{3\alpha}{32\pi} \left| \sum_i U_{\mu i}^* U_{ei} \frac{m_{\nu_i}^2}{M_W^2} \right|^2 < 10^{-54}$

Effective Lagrangians

- ★ Naive power counting: largest contribution from lowest dimensional operators
 - \bigstar Can write the most general LFV Lagrangian $\mathcal{L}_{LFV} = \mathcal{L}_D + \mathcal{L}_{lq} + \mathcal{L}_G + ...$
 - dipole operators

$$\mathcal{L}_D = -\frac{m_2}{\Lambda^2} \left[\left(C_{DR} \overline{\ell}_1 \sigma^{\mu\nu} P_L \ell_2 + C_{DR} \overline{\ell}_1 \sigma^{\mu\nu} P_R \ell_2 \right) F_{\mu\nu} + h.c. \right]$$

four-fermion operators

$$\mathcal{L}_{\ell q} = -\frac{1}{\Lambda^{2}} \sum_{q} \left[\left(C_{VR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{VL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \ \overline{q} \gamma_{\mu} q \right.$$

$$+ \left. \left(C_{AR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{AL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \ \overline{q} \gamma_{\mu} \gamma_{5} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{SR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{L} \ell_{2} + C_{SL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{R} \ell_{2} \right) \ \overline{q} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{PR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{L} \ell_{2} + C_{PL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{R} \ell_{2} \right) \ \overline{q} \gamma_{5} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{TR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \sigma^{\mu\nu} P_{L} \ell_{2} + C_{TL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \sigma^{\mu\nu} P_{R} \ell_{2} \right) \ \overline{q} \sigma_{\mu\nu} q + h.c. \ \right].$$

- gluonic operators

$$\mathcal{L}_{G} = -\frac{m_{2}G_{F}}{\Lambda^{2}} \frac{\beta_{L}}{4\alpha_{s}} \left[\left(C_{GR}\overline{\ell}_{1}P_{R}\ell_{2} + C_{GL}\overline{\ell}_{1}P_{L}\ell_{2} \right) G_{\mu\nu}^{a} G^{a\mu\nu} + \left(C_{\bar{G}R}\overline{\ell}_{1}P_{R}\ell_{2} + C_{\bar{G}L}\overline{\ell}_{1}P_{L}\ell_{2} \right) G_{\mu\nu}^{a} \widetilde{G}^{a\mu\nu} + h.c. \right]$$

★ There are many effective operators, so a single operator dominance hypothesis (SODH) is usually applied to get constraints on relevant Wilson coefficients.

This does <u>not</u> happen in most NP models!

$$\mathcal{L}_{\ell q} = -\frac{1}{\Lambda^{2}} \sum_{q} \left[\left(C_{VR}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{VL}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \, \overline{q} \gamma_{\mu} q \right.$$

$$+ \left. \left(C_{AR}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{AL}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \, \overline{q} \gamma_{\mu} \gamma_{5} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{SR}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} P_{L} \ell_{2} + C_{SL}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} P_{R} \ell_{2} \right) \, \overline{q} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{PR}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} P_{L} \ell_{2} + C_{PL}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} P_{R} \ell_{2} \right) \, \overline{q} \gamma_{5} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{TR}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} \sigma^{\mu\nu} P_{L} \ell_{2} + C_{TL}^{q\ell_{1}\ell_{2}} \, \overline{\ell}_{1} \sigma^{\mu\nu} P_{R} \ell_{2} \right) \, \overline{q} \sigma_{\mu\nu} q \, + \, h.c. \, \right].$$

- Can (partially) do away with SODH if designer initial/final states are used
- This can be done in case of restricted kinematics (e.g. 2-body decays)
- ★ Much tighter constraints on dipole operators are obtained from lepton radiative decays: drop them from quarkonium decay analyses in what follows

★ By selecting appropriate quantum numbers of a decaying state we can probe all Wilson coefficients of LFV Lagrangian!

$$\mathcal{L}_{\ell q} = -\frac{1}{\Lambda^{2}} \sum_{q} \left[\left(C_{VR}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{VL}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \ \bar{q} \gamma_{\mu} q \right]$$

$$+ \left(C_{AR}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{AL}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \ \bar{q} \gamma_{\mu} \gamma_{5} q$$

$$+ m_{2} m_{q} G_{F} \left(C_{SR}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} P_{L} \ell_{2} + C_{SL}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} P_{R} \ell_{2} \right) \ \bar{q} q$$

$$+ m_{2} m_{q} G_{F} \left(C_{PR}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} P_{L} \ell_{2} + C_{PL}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} P_{R} \ell_{2} \right) \ \bar{q} \gamma_{5} q$$

$$+ \left(m_{2} m_{q} G_{F} \left(C_{TR}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} \sigma^{\mu\nu} P_{L} \ell_{2} + C_{TL}^{q\ell_{1}\ell_{2}} \ \bar{\ell}_{1} \sigma^{\mu\nu} P_{R} \ell_{2} \right) \ \bar{q} \sigma_{\mu\nu} q \right) + h.c. \ \right].$$

also dipole operators

Vector meson decays: $\Upsilon(nS) \to \overline{\mu}\tau, \psi(nS) \to \overline{\mu}\tau, \rho \to \overline{\mu}e, ...$

D. Hazard and A.A.P., PRD94 (2016), 074023 D. Hazard and A.A.P., PRD98 (2018), 015027

★ By selecting appropriate quantum numbers of a decaying state we can probe all Wilson coefficients of LFV Lagrangian!

$$\mathcal{L}_{\ell q} = -\frac{1}{\Lambda^{2}} \sum_{q} \left[\left(C_{VR}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{VL}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \, \bar{q} \gamma_{\mu} q \right.$$

$$+ \left(\left(C_{AR}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{AL}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \, \bar{q} \gamma_{\mu} \gamma_{5} q \right.$$

$$+ m_{2} m_{q} G_{F} \left(C_{SR}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} P_{L} \ell_{2} + C_{SL}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} P_{R} \ell_{2} \right) \, \bar{q} q$$

$$+ \left(m_{2} m_{q} G_{F} \left(C_{PR}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} P_{L} \ell_{2} + C_{PL}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} P_{R} \ell_{2} \right) \, \bar{q} \gamma_{5} q \right.$$

$$+ m_{2} m_{q} G_{F} \left(C_{TR}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} \sigma^{\mu\nu} P_{L} \ell_{2} + C_{TL}^{q\ell_{1}\ell_{2}} \, \bar{\ell}_{1} \sigma^{\mu\nu} P_{R} \ell_{2} \right) \, \bar{q} \sigma_{\mu\nu} q \, + \, h.c. \, \right].$$

also gluonic operators

Pseudoscalar meson decays: $\eta_b \to \overline{\mu}e, \eta_c \to \overline{\mu}\tau, \eta^{(\prime)} \to \overline{\mu}e, ...$

D. Hazard and A.A.P., PRD94 (2016), 074023 D. Hazard and A.A.P., PRD98 (2018), 015027

★ By selecting appropriate quantum numbers of a decaying state we can probe all Wilson coefficients of LFV Lagrangian!

$$\mathcal{L}_{\ell q} = -\frac{1}{\Lambda^{2}} \sum_{q} \left[\left(C_{VR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{VL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \ \overline{q} \gamma_{\mu} q \right.$$

$$+ \left. \left(C_{AR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{AL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \right) \ \overline{q} \gamma_{\mu} \gamma_{5} q \right.$$

$$+ \left. \left(m_{2} m_{q} G_{F} \left(C_{SR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{L} \ell_{2} + C_{SL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{R} \ell_{2} \right) \ \overline{q} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{PR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{L} \ell_{2} + C_{PL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{R} \ell_{2} \right) \ \overline{q} \gamma_{5} q \right.$$

$$+ \left. m_{2} m_{q} G_{F} \left(C_{TR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \sigma^{\mu\nu} P_{L} \ell_{2} + C_{TL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \sigma^{\mu\nu} P_{R} \ell_{2} \right) \ \overline{q} \sigma_{\mu\nu} q + h.c. \ \right].$$

also gluonic operators

Scalar meson decays: $\chi_{b0} \to \overline{\mu} \tau, \ \chi_{c0} \to \overline{\mu} \tau, \ \dots$

D. Hazard and A.A.P., PRD94 (2016), 074023 D. Hazard and A.A.P., PRD98 (2018), 015027

LFV vector quarkonia decays

 \bigstar Most LFV experimental data available V \to μe , τe , etc.

$\ell_1\ell_2$	μτ	ет	еµ
$\mathcal{B}(\Upsilon(1S) \to \ell_1 \ell_2)$	6.0×10^{-6}		
$\mathcal{B}(\Upsilon(2S) \to \ell_1 \ell_2)$	3.3×10^{-6}	3.2×10^{-6}	
$\mathcal{B}(\Upsilon(3S) \to \ell_1 \ell_2)$	3.1×10^{-6}	4.2×10^{-6}	• • •
$\mathcal{B}(J/\psi \to \ell_1 \ell_2)$	2.0×10^{-6}	8.3×10^{-6}	1.6×10^{-7}
$\mathcal{B}(\phi \to \ell_1 \ell_2)$	FPS	FPS	4.1×10^{-6}
$\mathcal{B}(\ell_2 \to \ell_1 \gamma)$	4.4×10^{-8}	3.3×10^{-8}	5.7×10^{-13}

$$\begin{split} \bigstar \text{ Decay amplitude:} \quad \mathcal{A}(V \to \ell_1 \overline{\ell}_2) &= \overline{u}(p_1, s_1) \left[A_V^{\ell_1 \ell_2} \gamma_\mu + B_V^{\ell_1 \ell_2} \gamma_\mu \gamma_5 + \frac{C_V^{\ell_1 \ell_2}}{m_V} (p_2 - p_1)_\mu \right. \\ &\left. + \frac{i D_V^{\ell_1 \ell_2}}{m_V} (p_2 - p_1)_\mu \gamma_5 \, \right] v(p_2, s_2) \, \, \epsilon^\mu(p). \end{split}$$

$$\begin{array}{ll} \bigstar \text{ Decay rate:} & \frac{\mathcal{B}(V \to \ell_1 \overline{\ell}_2)}{\mathcal{B}(V \to e^+ e^-)} \!=\! \left(\!\frac{m_V(1-y^2)}{4\pi\alpha f_V Q_q}\!\right)^2 \! [(|A_V^{\ell_1 \ell_2}|^2 \!+\! |B_V^{\ell_1 \ell_2}|^2) \\ & + \frac{1}{2}(1\!-\!2y^2)(|C_V^{\ell_1 \ell_2}|^2 \!+\! |D_V^{\ell_1 \ell_2}|^2) \\ & + y \mathrm{Re}(A_V^{\ell_1 \ell_2} C_V^{\ell_1 \ell_2 *} \!+\! i B_V^{\ell_1 \ell_2} D_V^{\ell_1 \ell_2 *})]. \end{array}$$

Form-factors depend on vector, tensor, and dipole Wilson coefficients

LFV (pseudo)scalar quarkonia decays

 \bigstar Most general decay rate for P/S \to µe, те, etc ($P=\eta_b,\eta_c,\eta^{(\prime)},\dots$): D. Hazard and A.A.P., PRD94 (2016), 074023 $S=\chi_{b0},\chi_{c0},\dots$

$$\mathcal{B}(M \to \ell_1 \overline{\ell}_2) = \frac{m_M}{8\pi\Gamma_M} (1 - y^2)^2 \left[\left| E_M^{\ell_1 \ell_2} \right|^2 + \left| F_M^{\ell_1 \ell_2} \right|^2 \right]$$

... for pseudoscalar operators

$$E_{P}^{\ell_{1}\ell_{2}} = y \frac{m_{P}}{4\Lambda^{2}} \left[-if_{P} \left[2 \left(C_{AL}^{cc\ell_{1}\ell_{2}} + C_{AR}^{cc\ell_{1}\ell_{2}} \right) - m_{P}^{2} G_{F} \left(C_{PL}^{cc\ell_{1}\ell_{2}} + C_{PR}^{cc\ell_{1}\ell_{2}} \right) \right] \right]$$

$$F_{P}^{\ell_{1}\ell_{2}} = -y \frac{m_{P}}{4\Lambda^{2}} \left[f_{P} \left[2 \left(C_{AL}^{cc\ell_{1}\ell_{2}} - C_{AR}^{cc\ell_{1}\ell_{2}} \right) - m_{P}^{2} G_{F} \left(C_{PL}^{cc\ell_{1}\ell_{2}} - C_{PR}^{cc\ell_{1}\ell_{2}} \right) \right] \right]$$

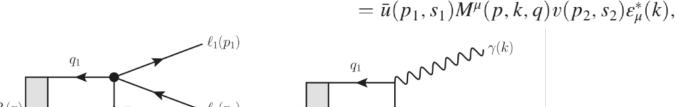
... and for scalar operators

$$\begin{split} E_S^{\ell_1\ell_2} &= iy f_S m_c \frac{m_S^2 G_F}{2\Lambda^2} \left(C_{SL}^{ccl_1l_2} + C_{SR}^{ccl_1l_2} \right) \\ F_S^{\ell_1\ell_2} &= y f_S m_c \frac{m_S^2 G_F}{2\Lambda^2} \left(C_{SL}^{ccl_1l_2} - C_{SR}^{ccl_1l_2} \right) \end{split}$$
 Gluonic operators?

There is NO experimental data on LFV (pseudo)scalar quarkonia decays!!!

Radiative LFV decays

M More data is needed: use radiative decays: $A(P(p) \rightarrow \gamma(k)\ell_1(p_1)\overline{\ell_2}(p_2))$



P(p)P(p)(b)

 \bigstar Most general parameterization: $M^{\mu}(p,k,q)$

$$\begin{split} &= \gamma^{\mu} (M_{1}^{P\ell_{1}\ell_{2}} + \not k M_{2}^{P\ell_{1}\ell_{2}}) + i \gamma_{5} \gamma^{\mu} (M_{3}^{P\ell_{1}\ell_{2}} + \not k M_{4}^{P\ell_{1}\ell_{2}}) \\ &+ q^{\mu} (M_{5}^{P\ell_{1}\ell_{2}} + \not k M_{6}^{P\ell_{1}\ell_{2}}) + i \gamma_{5} q^{\mu} (M_{7}^{P\ell_{1}\ell_{2}} + \not k M_{8}^{P\ell_{1}\ell_{2}}) \\ &+ p^{\mu} (M_{9}^{q\ell_{1}\ell_{2}} + \not k M_{10}^{q\ell_{1}\ell_{2}}) + i \gamma_{5} p^{\mu} (M_{11}^{P\ell_{1}\ell_{2}} + \not k M_{12}^{P\ell_{1}\ell_{2}}). \end{split}$$

***** Not the most minimal set: gauge invariance? Project $P^{\mu\nu} = g^{\mu\nu} - \frac{p^{\mu}k^{\nu}}{(n \cdot k)}$

$$\begin{split} P^{\mu\nu} &= g^{\mu\nu} - \frac{p^{\mu}k^{\nu}}{(p\cdot k)} \\ P^{\mu\nu}M_{\nu} &= M^{\mu} \text{ and } k_{\mu}P^{\mu\nu} = 0, \end{split}$$

D. Hazard and A.A.P., PRD98 (2018), 015027

Radiative LFV decays

 \bigstar A minimal set of amplitudes can be obtained $A(P(p) \to \gamma(k)\ell_1(p_1)\overline{\ell}_2(p_2))$

$$\begin{split} A(P(p) &\to \gamma(k) \mathcal{E}_1(p_1) \mathcal{E}_2(p_2)) \\ &= \bar{u}(p_1, s_1) M^{\mu}(p, k, q) v(p_2, s_2) \varepsilon_{\mu}^*(k), \end{split}$$

$$\begin{split} M^{\mu}(p,k,q) &= \sum_{i} L^{\mu}_{i}(p,q,k) A^{P\ell_{1}\ell_{2}}_{i}(p^{2},\ldots) \\ L^{\mu}_{1} &= \gamma^{\mu} \not k, \qquad L^{\mu}_{2} = i \gamma_{5} \gamma^{\mu} \not k, \\ L^{\mu}_{3} &= (p \cdot k) q^{\mu} - (k \cdot q) p^{\mu}, \\ L^{\mu}_{4} &= i \gamma_{5} [(p \cdot k) q^{\mu} - (k \cdot q) p^{\mu}], \end{split}$$

$$L^{\mu}_{5} &= (p \cdot k) \gamma^{\mu} - p^{\mu} \not k, \\ L^{\mu}_{6} &= i \gamma_{5} [(p \cdot k) \gamma^{\mu} - p^{\mu} \not k], \\ L^{\mu}_{7} &= q^{\mu} \not k - (k \cdot q) \gamma^{\mu}, \\ L^{\mu}_{8} &= i \gamma_{5} [q^{\mu} \not k - (k \cdot q) \gamma^{\mu}]. \end{split}$$

- ★ These amplitudes can be related to hadronic form-factors and Wilson coefficients. Complicated expression: single operator dominance again?
- ★ Simplification: select resonance region

$$\mathcal{B}(V \to \gamma \mathcal{E}_1 \overline{\mathcal{E}}_2) = \mathcal{B}(V \to \gamma M) \mathcal{B}(M \to \mathcal{E}_1 \overline{\mathcal{E}}_2)$$

$$\mathcal{B}(\psi(2S) \to \gamma \chi_{c0}(1P)) = 9.99 \pm 0.27\%, \qquad \mathcal{B}(\Upsilon(2S) \to \gamma \chi_{b0}(1P)) = 3.8 \pm 0.4\%, \\ \mathcal{B}(\psi(3770) \to \gamma \chi_{c0}(1P)) = 0.73 \pm 0.09\%. \qquad \mathcal{B}(\Upsilon(3S) \to \gamma \chi_{b0}(1P)) = 0.27 \pm 0.04\%, \\ \mathcal{B}(J/\psi \to \gamma \eta_c) = 1.7 \pm 0.4\%, \qquad \mathcal{B}(\Upsilon(3S) \to \gamma \chi_{b0}(2P)) = 5.9 \pm 0.6\%. \\ \mathcal{B}(\psi(2S) \to \gamma \eta_c) = 0.34 \pm 0.05\%. \qquad \qquad \mathcal{B}(\Upsilon(3S) \to \gamma \chi_{b0}(2P)) = 0.27 \pm 0.04\%, \\ \mathcal{B}(\Psi(2S) \to \chi \eta_c) = 0.34 \pm 0.05\%. \qquad \qquad \mathcal{B}(\Psi(2S) \to \chi \eta_c) = 0.34 \pm 0.05\%.$$

Conclusions

- Indirect probes for new physics compete well with direct searches
 - for some observables sensitive to scales way above LHC
- Charm provides great opportunities for New Physics studies
 - unique access to up-type quark sector, not as constrained by experiments
- Calculational techniques for heavy flavors are well-established
 - but don't always work well: "heavy-quark-expansion" techniques for charm often miss threshold effects
 - "hadronic" techniques that sum over large number of intermediate states can be used, BUT one cannot use current experimental data on D-decays
- Calculations of New Physics contributions to mixing are in better shape
- Can correlate mixing and rare decays with New Physics models
 - signals in B/D-mixing vs B/D rare decays help differentiate among models

More conclusions

- Indirect effects of New Physics at flavor factories help to distinguish among models possibly observed at the LHC
 - a combination of bottom/charm sector studies
 - don't forget measurements unique to tau-charm factories
- Rare decays with missing energy provide excellent opportunities to constrain parameters of models with light Dark Matter
 - both scalar and sermonic DM models can be constrained
- Observation of CP-violation in the current round of experiments could have provided a "smoking gun" signals for New Physics
 - But latest LHCb observation seem to broadly consistent with Standard Model

$$\Delta a_{CP}^{dir} = (-0.156 \pm 0.029)\%$$
 LHCB-PAPER-2019-006

Maybe if we only have a reliable calculation of the SM effects...

$$\left|\Delta a_{CP}^{dir}
ight| < 0.020 \pm 0.003\%$$
 . Khodjamirian, AAP: PLB774 (2017) 235

The smoke is quickly dissipating...

A. Rare leptonic decays of charm

- \star Standard Model contribution to D $\rightarrow \mu^{+}\mu^{-}$.
- ★ Short distance analysis

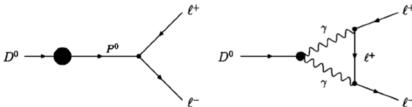
$$Q_{10}=rac{e^2}{16\pi^2}ar{u}_L\gamma_\mu c_Lar{\ell}\gamma^\mu\gamma_5\ell,$$

- only Q_{10} contribute, SD effects amount to Br ~ 10^{-18}
- single non-perturbative parameter (decay constant)

$$egin{aligned} B_{D^0\ell^+\ell^-}^{(\mathrm{s.d.})} &\simeq rac{G_F^2 M_W^2 f_D m_\ell}{\pi^2} F \;, \ F &= \sum_{i=d,s,b} \, V_{ui} V_{ci}^* \left[rac{x_i}{2} + rac{lpha_s}{4\pi} x_i \cdot \left(\ln^2 x_i + rac{4 + \pi^2}{3}
ight)
ight] \end{aligned}$$

UKQCD, HPQCD; Jamin, Lange; Penin, Steinhauser; Khodjamirian

★ Long distance analysis



Burdman, Golowich, Hewett, Pakvasa; Fajfer, Prelovsek, Singer

Update soon: Healey, AAP

$$B_{D^{0}\ell^{+}\ell^{-}}^{(\mathrm{mix})} \; = \; \sum_{P_{n}} \; \langle P_{n} | \mathcal{H}_{wk}^{(\mathrm{p.c.})} | D^{0} \rangle \; \frac{1}{M_{D}^{2} - M_{P_{n}^{2}}} \; B_{P_{n}\ell^{+}\ell^{-}} \; \left| \; \mathcal{I}m \; \mathcal{M}_{D^{0} \rightarrow \ell^{+}\ell^{-}} \; \; = \; \frac{1}{2!} \sum_{\lambda_{1},\lambda_{2}} \int \frac{d^{3}q_{1}}{2\omega_{1}(2\pi)^{3}} \; \frac{d^{3}q_{2}}{2\omega_{2}(2\pi)^{3}} \right| \\ \times \; \mathcal{M}_{D \rightarrow \gamma\gamma} \; \mathcal{M}_{\gamma\gamma \rightarrow \ell^{+}\ell^{-}}^{*}(2\pi)^{4} \delta^{(4)}(p - q_{1} - q_{2})$$

- LD effects amount to Br ~ 10-13
- could be used to study NP effects in correlation with D-mixing

Generic NP contribution to D $\rightarrow \mu^{+}\mu^{-}$

★ Most general effective Hamiltonian:

$$\begin{split} \widetilde{Q}_1 &= (\overline{\ell}_L \gamma_\mu \ell_L) \; (\overline{u}_L \gamma^\mu c_L) \;, \qquad \widetilde{Q}_4 = (\overline{\ell}_R \ell_L) \; (\overline{u}_R c_L) \;, \\ \langle f | \mathcal{H}_{NP} | i \rangle &= G \sum_{i=1}^{\infty} \widetilde{C}_i(\mu) \; \langle f | Q_i | i \rangle (\mu) &\qquad \widetilde{Q}_2 &= (\overline{\ell}_L \gamma_\mu \ell_L) \; (\overline{u}_R \gamma^\mu c_R) \;, \qquad \widetilde{Q}_5 = (\overline{\ell}_R \sigma_{\mu\nu} \ell_L) \; (\overline{u}_R \sigma^{\mu\nu} c_L) \;, \\ \widetilde{Q}_3 &= (\overline{\ell}_L \ell_R) \; (\overline{u}_R c_L) \;, \qquad \text{plus L} \leftrightarrow \mathsf{R} \end{split}$$

 \bigstar ... thus, the amplitude for D \rightarrow e⁺e⁻/ μ + μ - decay is

$$\begin{split} \mathcal{B}_{D^0 \to \ell^+ \ell^-} &= \frac{M_D}{8\pi \Gamma_{\rm D}} \sqrt{1 - \frac{4m_\ell^2}{M_D^2}} \left[\left(1 - \frac{4m_\ell^2}{M_D^2} \right) |A|^2 + |B|^2 \right] \;\;, \\ \mathcal{B}_{D^0 \to \mu^+ e^-} &= \frac{M_D}{8\pi \Gamma_{\rm D}} \left(1 - \frac{m_\mu^2}{M_D^2} \right)^2 \left[|A|^2 + |B|^2 \right] \;\;, \\ &|A| = G \frac{f_D M_D^2}{4m_c} \left[\tilde{C}_{3-8} + \tilde{C}_{4-9} \right] \;, \\ &|B| = G \frac{f_D}{4} \left[2m_\ell \left(\tilde{C}_{1-2} + \tilde{C}_{6-7} \right) + \frac{M_D^2}{m_c} \left(\tilde{C}_{4-3} + \tilde{C}_{9-8} \right) \right], \quad \tilde{C}_{i-k} \equiv \tilde{C}_i - \tilde{C}_k \end{split}$$

Many NP models give contributions to both D-mixing and D \rightarrow e⁺e⁻/ μ ⁺ μ ⁻ decay: correlate!!!

Mixing vs rare decays: a particular model

* Recent experimental constraints

$$\mathcal{B}_{D^0 \to \mu^+ \mu^-} \le 1.3 \times 10^{-6}, \qquad \mathcal{B}_{D^0 \to e^+ e^-} \le 1.2 \times 10^{-6},$$

$$\mathcal{B}_{D^0 \to \mu^{\pm} e^{\mp}} \le 8.1 \times 10^{-7}$$
,

$$\mathcal{B}_{D^0 \to e^+e^-} \le 1.2 \times 10^{-6},$$

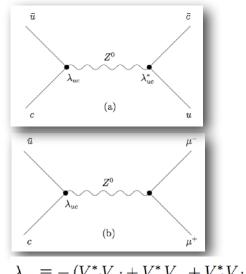
E.Golowich, J. Hewett, S. Pakvasa and A.A.P. PRD79, 114030 (2009)

* Relating mixing and rare decay - consider an example: heavy vector-like quark (Q=+2/3) - appears in little Higgs models, etc.

Mixing:
$$\mathcal{H}_{2/3} = \frac{g^2}{8\cos^2\theta_w M_Z^2} \lambda_{uc}^2 \ Q_1 \ = \ \frac{G_F \lambda_{uc}^2}{\sqrt{2}} Q_1$$

$$x_{\rm D}^{(+2/3)} = \frac{2G_F \lambda_{uc}^2 f_D^2 M_D B_D r(m_c, M_Z)}{3\sqrt{2}\Gamma_D}$$

Rare decay:
$$A_{D^0 o \ell^+\ell^-} = 0$$
 $B_{D^0 o \ell^+\ell^-} = \lambda_{uc} {G_F f_{
m D} m_\mu \over 2}$



$$\lambda_{uc} \equiv -\left(V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb}\right)$$

$$\mathcal{B}_{D^0 \to \mu^+ \mu^-} = \frac{3\sqrt{2}}{64\pi} \frac{G_F m_\mu^2 x_D}{B_D r(m_c, M_Z)} \left[1 - \frac{4m_\mu^2}{M_D} \right]^{1/2}$$
$$\simeq 4.3 \times 10^{-9} x_D \le 4.3 \times 10^{-11} .$$

Note: a NP parameter-free relation!

B. Rare semileptonic decays of charm

- > These decays also proceed at one loop in the SM; GIM is very effective
 - SM rates are expected to be small
 - \bigstar Rare decays D \to M e⁺e⁻/ μ ⁺ μ ⁻ just like D \to e⁺e⁻/ μ ⁺ μ ⁻ are mediated by c \to u II

$$\mathcal{L}_{\mathrm{eff}}^{\mathrm{SD}} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{ub} \sum_{i=7,9,10} C_i Q_i,$$

$$Q_9=rac{e^2}{16\pi^2}ar{u}_L\gamma_\mu c_Lar{\ell}\gamma^\mu\ell, \quad Q_{10}=rac{e^2}{16\pi^2}ar{u}_L\gamma_\mu c_Lar{\ell}\gamma^\mu\gamma_5\ell,$$

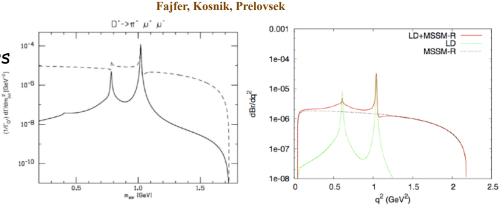
- SM contribution is dominated by LD effects
- could be used to study NP effects

Burdman, Golowich, Hewett, Pakvasa; Fajfer, Prelovsek, Singer

Mode	LD	Extra heavy q	LD + extra heavy q
$D^+ \to \pi^+ e^+ e^-$ $D^+ \to \pi^+ \mu^+ \mu^-$		$1.3 \times 10^{-9} \\ 1.6 \times 10^{-9}$	2.0×10^{-6} 2.0×10^{-6}
Mode	MSSMK	LD + MSSM#	_
$D^+ \to \pi^+ e^+ e^-$ $D^+ \to \pi^+ \mu^+ \mu^-$	2.1 10	2.3×10^{-6} 8.8×10^{-6}	

★ Example: R-partity-violating SUSY

- operators with the same parameters contribute to D-mixing
- feed results into rare decays

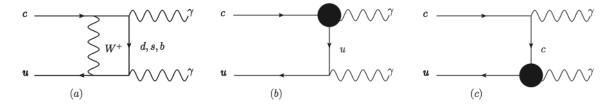


C. Rare radiative decays of charm

★ Standard Model contribution to D → yy

$$A(D \to \gamma \gamma) = \epsilon_{1\mu} \epsilon_{2\nu} \left[A_{PC} \epsilon^{\mu\nu\alpha\beta} k_{1\alpha} k_{2\beta} + i A_{PV} \left(g^{\mu\nu} - \frac{k_2^{\mu} k_1^{\nu}}{k_1 \cdot k_2} \right) \right]$$
$$\Gamma(D \to \gamma \gamma) = \frac{m_D^3}{64\pi} \left[\left| A_{PC} \right|^2 + \frac{4}{m_D^4} \left| A_{PV} \right|^2 \right]$$

 $\bigstar \text{ Short distance analysis } \mathcal{L} = -\frac{G_f}{\sqrt{2}} V_{us} V_{cs}^* C_{7\gamma}^{eff} \frac{e}{4\pi^2} F_{\mu\nu} m_c \left(\bar{u} \sigma^{\mu\nu} \frac{1}{2} (1+\gamma_5) c \right)$



- only one operator contributes
- including QCD corrections, SD effects amount to Br = $(3.6-8.1)\times10^{-12}$
- ★ Long distance analysis
 - long distance effects amount to Br = $(1-3)\times10^{-8}$

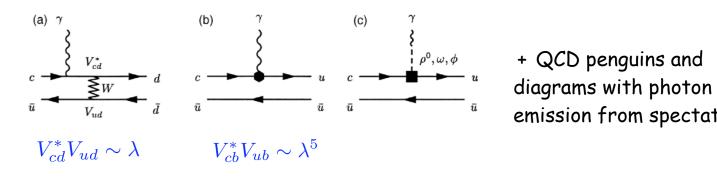
Burdman, Golowich, Hewett, Pakvasa (02); Fajfer, Singer, Zupan (01)

Paul, Bigi, Recksiegel (2011)

Rare radiative decays of charm

★ Try to find combinations of decays where LD contributions cancel

$$\bigstar$$
 Consider exclusive decays $D \to \gamma_Q$, γ_W : $\omega^{(I=0)} = \frac{1}{\sqrt{2}} (\bar{u}u + \bar{d}d)$, $\rho^{(I=1)} = \frac{1}{\sqrt{2}} (\bar{u}u - \bar{d}d)$



emission from spectators

- Extract c \rightarrow uu y: LD contribution cancels in $R_{uu\gamma} = \frac{\Gamma(D^0 \rightarrow \omega \gamma) \Gamma(D^0 \rightarrow \rho \gamma)}{\Gamma(D^0 \rightarrow \omega \gamma)}$
- Consider isospin asymmetries $R_I = \frac{2\Gamma(D^0 \to \rho^0 \gamma) \Gamma(D^+ \to \rho^+ \gamma)}{2\Gamma(D^0 \to \rho^0 \gamma) + \Gamma(D^+ \to \rho^+ \gamma)}$ (same with omega)
- isospin asymmetries are sensitive to 4-fermion operators with photon emissions from "spectators"

D. CP-violation: indirect

- ★ Indirect CP-violation manifests itself in DD-oscillations
 - see time development of a D-system:

$$i\frac{d}{dt}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle$$

$$\langle D^{0}|\mathcal{H}|\overline{D^{0}}\rangle = M_{12} - \frac{i}{2}\Gamma_{12} \qquad \langle \overline{D^{0}}|\mathcal{H}|D^{0}\rangle = M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}$$

★ Define "theoretical" mixing parameters

$$y_{12} \equiv |\Gamma_{12}|/\Gamma$$
, $x_{12} \equiv 2|M_{12}|/\Gamma$, $\phi_{12} \equiv \arg(M_{12}/\Gamma_{12})$

- \bigstar Assume that direct CP-violation is absent (Im $(\Gamma_{12}^*ar{A}_f/A_f)=0$, $|ar{A}_f/A_f|=1$)
 - can relate x, y, φ , |q/p| to x_{12} , y_{12} and φ_{12}

"superweak limit"

$$xy = x_{12}y_{12}\cos\phi_{12},$$
 $x^2 - y^2 = x_{12}^2 - y_{12}^2,$
 $(x^2 + y^2)|q/p|^2 = x_{12}^2 + y_{12}^2 + 2x_{12}y_{12}\sin\phi_{12},$
 $x^2\cos^2\phi - y^2\sin^2\phi = x_{12}^2\cos^2\phi_{12}.$

- ★ Four "experimental" parameters related to three "theoretical" ones
 - a "constraint" equation is possible

E. Rare D(B)-decays with missing energy

> D-decays with missing energy can probe both heavy and light (DM) NP

- **\star** SM process: D $\rightarrow \nu\nu$ and D $\rightarrow \nu\nu\gamma$:

 - for B-decays $J^\mu_{Qq}=ar q_L\gamma^\mu b_L$ for D-decays $J^\mu_{Qq}=ar u_L\gamma^\mu c_L$
- \star For B(D) $\rightarrow \nu\nu$ decays SM branching ratios are tiny
 - SM decay is helicity suppressed, e.g.

$$\mathcal{B}(B_s \to \nu \bar{\nu}) = \frac{G_F^2 \alpha^2 f_B^2 M_B^3}{16\pi^3 \sin^4 \theta_W \Gamma_{B_s}} |V_{tb} V_{ts}^*|^2 X(x_t)^2 x_{\nu}^2$$

- NP: other ways of flipping helicity?
- more important: $Br(B(D) \rightarrow 4\nu) \gg Br(B(D) \rightarrow \nu\nu)$

Bhattacharya, Grant, AAP, PRD99 (2019) 093010

What would happen if a photon is added to the final state?

- \bigstar For B(D) $\rightarrow \nu\nu\gamma$ decays SM branching ratios are still tiny
 - need form-factors to describe the transition
 - helicity suppression is lifted
- ★ BUT: missing energy does not always mean neutrinos
 - nice constraints on light Dark Matter properties!!!

Decay	Branching ratio
$B_s o u \bar{ u}$	3.07×10^{-24}
$B_d o u ar{ u}$	1.24×10^{-25}
$D^0 o u \bar{ u}$	1.1×10^{-30}

Decay	Branching ratio
$B_s \to \nu \bar{\nu} \gamma$	3.68×10^{-8}
$B_d o u ar{ u} \gamma$	1.96×10^{-9}
$D^0 \to \nu \bar{\nu} \gamma$	3.96×10^{-14}

Badin, AAP (2010)

Rare D(B)-decays: scalar DM

> Let us discuss B and D-decays simultaneously: physics is similar

Badin, AAP (2010)

$$\bigstar$$
 Generic interaction Lagrangian: $\mathcal{H}_{eff} = \sum_i \frac{2C_i^{(s)}}{\Lambda^2} O_i$

$$O_{1}=m_{Q}\left(J_{Qq}
ight)_{RL}\left(\chi_{0}^{st}\chi_{0}
ight) \ O_{2}=m_{Q}\left(J_{Qq}
ight)_{LR}\left(\chi_{0}^{st}\chi_{0}
ight) \ O_{3}=\left(J_{Qq}^{\mu}
ight)_{LL}\left(\chi_{0}^{st}\overrightarrow{\partial}_{\mu}\chi_{0}
ight) \ O_{4}=\left(J_{Qq}^{\mu}
ight)_{RR}\left(\chi_{0}^{st}\overrightarrow{\partial}_{\mu}\chi_{0}
ight) \$$

- ★ Scalar DM does not exhibit helicity suppression
 - B(D) \rightarrow E_{mis} is more powerful than B(D) \rightarrow E_{mis} γ

$$\mathcal{B}(B_q \to \chi_0 \chi_0) = \frac{(C_1^{(s)} - C_2^{(s)})^2}{4\pi M_{B_q} \Gamma_{B_q}} \left(\frac{f_{B_q} M_{B_q}^2 m_b}{\Lambda^2 (m_b + m_q)} \right)^2 \times \sqrt{1 - 4x_\chi^2},$$

$$\mathcal{B}(B_q \to \chi_0^* \chi_0 \gamma) = \frac{f_{B_q}^2 \alpha C_3^{(s)} C_4^{(s)} M_{B_q}^5}{6\Lambda^4 \Gamma_{B_q}} \left(\frac{F_{B_q}}{4\pi}\right)^2 \times \left(\frac{1}{6} \sqrt{1 - 4x_\chi^2} (1 - 16x_\chi^2 - 12x_\chi^4)\right) - 12x_\chi^4 \log \frac{2x_\chi}{1 + \sqrt{1 - 4x_\chi^2}}.$$

$$\left(\frac{C_1^{(s)} - C_2^{(s)}}{\Lambda^2}\right)^2 \le 2.07 \times 10^{-16} \text{ GeV}^{-4}$$
for $m_{\chi} = 0.1 \times M_{B_d}$,

$$\begin{array}{ll}
 & \times \left(\frac{1}{6}\sqrt{1 - 4x_{\chi}^{2}}(1 - 16x_{\chi}^{2} - 12x_{\chi}^{4})\right) \\
 & \times \left(\frac{1}{6}\sqrt{1 - 4x_{\chi}^{2}}(1 - 16x_{\chi}^{2} - 12x_{\chi}^{4})\right) \\
 & - 12x_{\chi}^{4}\log\frac{2x_{\chi}}{1 + \sqrt{1 - 4x_{\chi}^{2}}}\right).
\end{array}$$

$$\begin{array}{ll}
 & C_{3}^{(s)} C_{4}^{(s)} \\
 & \overline{\Lambda^{2}} \overline{\Lambda^{2}} & 1.55 \times 10^{-12} \text{ GeV}^{-4} & \text{for } m = 0, \\
 & \overline{\Lambda^{2}} \overline{\Lambda^{2}} & \overline{\Lambda^{2}} & 1.55 \times 10^{-12} \text{ GeV}^{-4} & \text{for } m = 0, \\
 & \overline{\Lambda^{2}} \overline{\Lambda^{2}} & \overline{\Lambda^{2}} & 1.55 \times 10^{-12} \text{ GeV}^{-4} & \text{for } m = 0, \\
 & \overline{\Lambda^{2}} \overline{\Lambda^{2}} & \overline{\Lambda^{2}} & 1.55 \times 10^{-12} \text{ GeV}^{-4} & \text{for } m = 0, \\
 & \overline{\Lambda^{2}} \overline{\Lambda^{2}} & \overline{\Lambda^{2}} & 1.55 \times 10^{-12} \text{ GeV}^{-4} & \text{for } m = 0, \\
 & \overline{\Lambda^{2}} \overline{\Lambda^{2}} & \overline{\Lambda^{2}} & 1.55 \times 10^{-12} \text{ GeV}^{-4} & \text{for } m = 0.4 \times M_{B_{d}}
\end{array}$$

These general bounds translate into constraints onto constraints for particular models

Example of a particular model of scalar DM

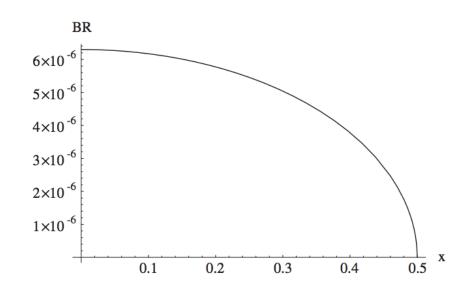
- - simplest: singlet scalar DM
 - more sophisticated less restrictive

 \star B(D) decays rate in this model

$$\begin{split} \mathcal{B}(B_q \to SS) &= \left[\frac{3g_w^2 V_{tb} V_{tq}^* x_t m_b}{128\pi^2} \right]^2 \frac{\sqrt{1 - 4x_S^2}}{16\pi M_B \Gamma_{B_q}} \left(\frac{\lambda^2}{M_H^4} \right) \\ &\times \left(\frac{f_{B_q} M_{B_q}^2}{m_b + m_q} \right)^2, \end{split}$$

- fix λ from relic density

$$\sigma_{ ext{ann}} v_{ ext{rel}} = rac{8 v_{ ext{EW}}^2 \lambda^2}{M_H^2} imes \lim_{m_{h^*} o 2m_S} rac{\Gamma_{h^* X}}{m_h^*}$$



These results are complimentary to constraints from quarkonium decays with missing energy

F. CP-violation: indirect

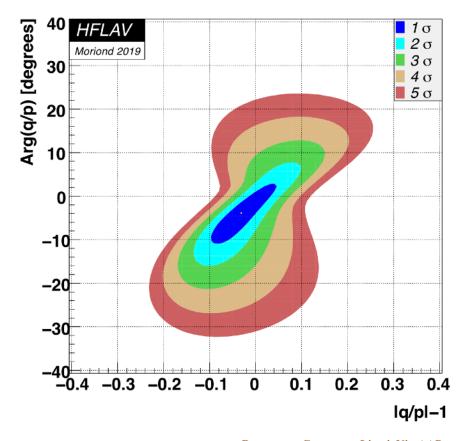
★ Relation; data from HFAG's compilation

$$\frac{x}{y} = \frac{1 - |q/p|}{\tan \phi} = -\frac{1}{2} \frac{A_m}{\tan \phi}$$

- it might be experimentally $x_D < y_D$
- this has implications for NP searches in charm CP-violating asymmetries!
- that is, if $|M_{12}| < |\Gamma_{12}|$:

$$x/y = 2 |M_{12}/\Gamma_{12}| \cos \phi_{12},$$

 $A_m = 4 |M_{12}/\Gamma_{12}| \sin \phi_{12},$
 $\phi = -2 |M_{12}/\Gamma_{12}|^2 \sin 2\phi_{12}.$



Note: CPV is suppressed even if M_{12} is all NP!!!

Bergmann, Grossman, Ligeti, Nir, AAP PL B486 (2000) 418

 \star With available experimental constraints on x, y, and q/p, one can bound WCs of a generic NP Lagrangian -- bound any high-scale model of NP

CP-violation: indirect

- \bigstar Assume that direct CP-violation is absent (Im $(\Gamma_{12}^*\bar{A}_f/A_f)=0$, $|\bar{A}_f/A_f|=1$)
 - experimental constraints on x, y, φ , |q/p| exist
 - can obtain generic constraints on Im parts of Wilson coefficients

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^2} \sum_{i=1}^8 z_i(\mu) Q_i'$$

 \bigstar In particular, from $x_{12}^{\mathrm{NP}}\sin\phi_{12}^{\mathrm{NP}}\lesssim0.0022$

$$\mathcal{I}m(z_1) \lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\mathrm{NP}}}{1 \ TeV}\right)^2,$$
 $\mathcal{I}m(z_2) \lesssim 2.9 \times 10^{-8} \left(\frac{\Lambda_{\mathrm{NP}}}{1 \ TeV}\right)^2,$
 $\mathcal{I}m(z_3) \lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\mathrm{NP}}}{1 \ TeV}\right)^2,$
 $\mathcal{I}m(z_4) \lesssim 1.1 \times 10^{-8} \left(\frac{\Lambda_{\mathrm{NP}}}{1 \ TeV}\right)^2,$
 $\mathcal{I}m(z_5) \lesssim 3.0 \times 10^{-8} \left(\frac{\Lambda_{\mathrm{NP}}}{1 \ TeV}\right)^2.$

New Physics is either at a very high scales

tree level: $\Lambda_{NP} > (4-10) \times 10^3 \text{ TeV}$

loop level: $\Lambda_{NP} \geq (1-3) \times 10^2 \text{ TeV}$

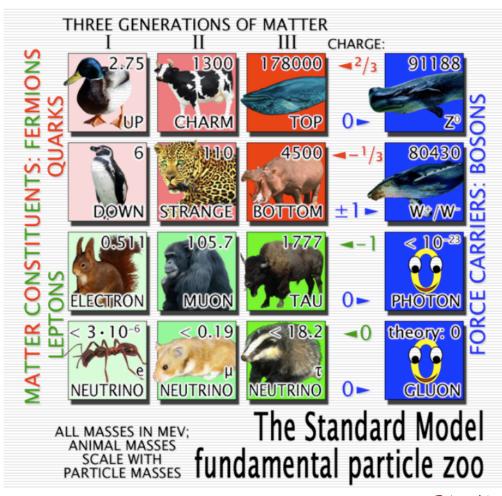
or have highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

Bigi, Blanke, Buras, Recksiegel, JHEP 0907:097, 2009

★ Constraints on particular NP models possible as well

G. Flavor problem: hierarchy of scales



E. Lunghi

* Ratios of masses of quarks and leptons

- quarks

$$\frac{m_d}{m_u} \simeq 2 \; , \; \; \frac{m_s}{m_d} \simeq 21 \; ,$$
 $\frac{m_t}{m_c} \simeq 267 \; , \; \frac{m_c}{m_u} \simeq 431 \; , \; \frac{m_t}{m_u} \simeq 1.2 \times 10^5 \; .$

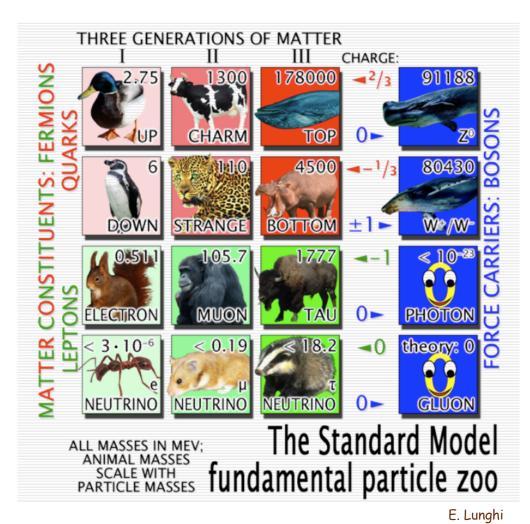
- leptons

$$\frac{m_\tau}{m_\mu} \simeq 17 \; , \; \frac{m_\mu}{m_e} \simeq 207 \; .$$

★ Quark mixing (Cabibbo-Kobayashi-Maskawa) matrix parameters

$$V_{ud} \sim 1, V_{us} \sim 0.2, \ V_{cb} \sim 0.04, \ V_{ub} \sim 0.004$$

G. Flavor problem: hierarchy of scales



* Ratios of masses of quarks and leptons

- quarks

$$\frac{m_d}{m_u} \simeq 2 \; , \; \; \frac{m_s}{m_d} \simeq 21 \; ,$$
 $\frac{m_t}{m_c} \simeq 267 \; , \; \frac{m_c}{m_u} \simeq 431 \; , \; \frac{m_t}{m_u} \simeq 1.2 \times 10^5 \; .$

- leptons

$$\frac{m_\tau}{m_\mu} \simeq 17 \; , \; \frac{m_\mu}{m_e} \simeq 207 \; .$$

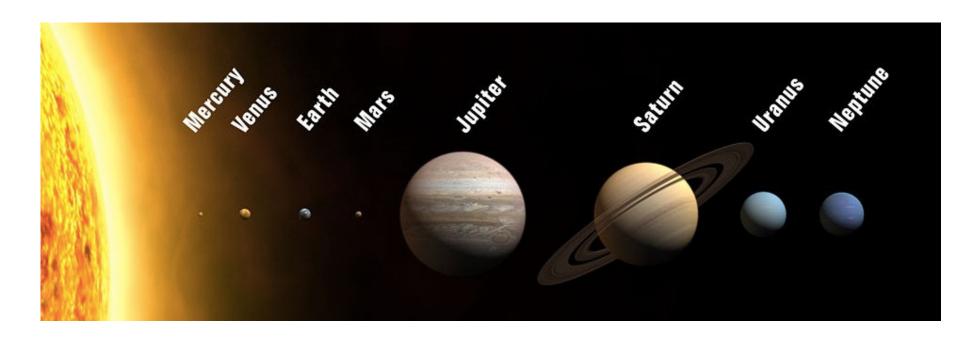
★ Quark mixing (Cabibbo-Kobayashi-Maskawa) matrix parameters

$$V_{ud} \sim 1, V_{us} \sim 0.2, \ V_{cb} \sim 0.04, \ V_{ub} \sim 0.004$$

Problem: why such hierarchy?

Flavor problem: hierarchy of scales (counterargument)

It might well be similar to this:



Why is M_{Jupiter} >> M_{Mercury}?