

Wehle, Simon BNL, 01.08.2019

Disclaimer

Personal Experience

 The presented recommendations originate purely from personal experiences, you might be of different opinion and are encouraged to share and discuss them

Context of this talk

- Focus on machine learning for classification
- Presentation of various methods
- Presentation of available tools
- The Belle II MVA package
- Personal recommendations

Additional resources

- General lecture on multivariate analysis by Thomas Keck <u>MultivariateClassificationLecture.pdf</u>
 - (A lot of distribution plots in this talk are taken from this reference)
- Confluence, MVA package
- More on the packages to come

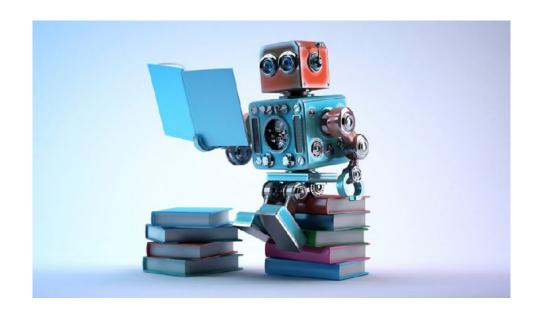
Impact of Machine Learning

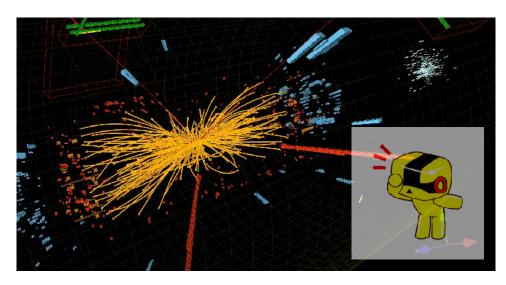
Era of data driven methods

- Huge boost in efficiency
- Rapid developments due to efforts of billion dollar companies
- Many open source machine learning platforms forming

Prospects for Physics

- Improvements due to machine learning can correspond to years of running an experiment
- In my opinion we might be just scratch at the beginning of what is possible for our field



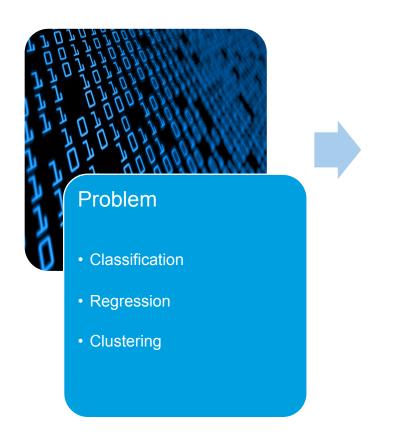


Multivariate Methods

Which and when to use

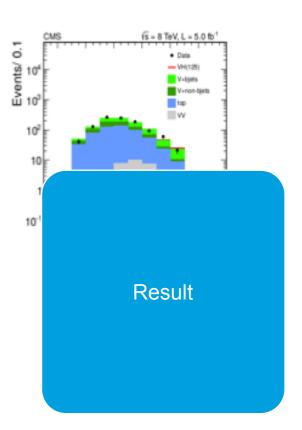
What is the Problem?

Where can we use machine learning?



Solution

- Statistical methods
- Machine learning
- Supervised (We have labeled data like a MC truth)
- Unsupervised (Can be directly applied to data)
- Reinforced Learning (Self learned strategy based on rewards)



Available Methods

Focusing on classification mainly

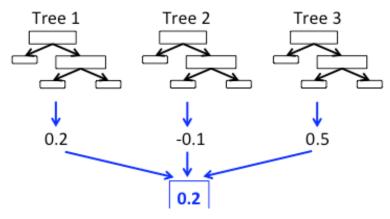
Conventional Machine Learning / Statistical Evaluation

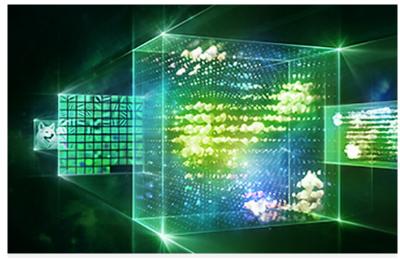
- Many different methods available, I will list a few one which were/are used in physics
- LDA, SVM, Neural Networks, Bayesian Methods, Nearest Neighbors, Decision Trees, Boosting... (but there are of course many more)

Deep Learning

- Very popular machine learning method right now
- Has proven to be extremely efficient and powerful
- Many different techniques, Feed forward DNN, Convolutional Neural Network, Recurrent Neural Networks, LSTMs ...

Ensemble Model: example for regression



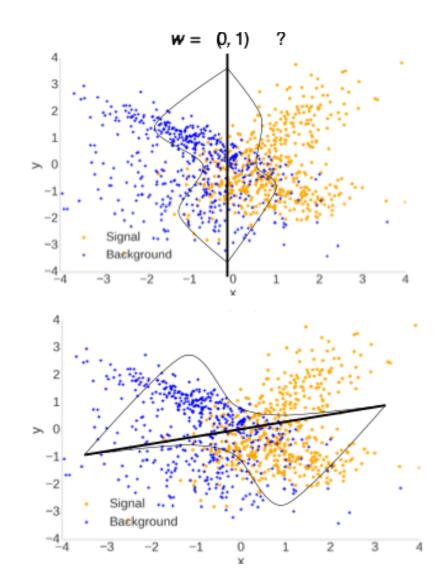


LDA – Linear Discriminant Analysis

Apparently do not call it Fisher's discriminant anymore

Linear Discriminant Analysis

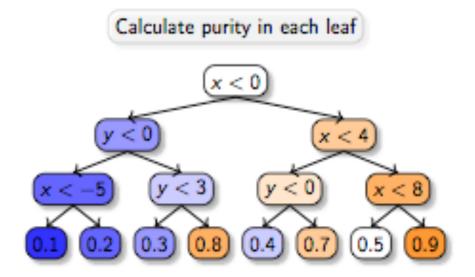
- Commonly used under the name Fisher's Discriminant
- Only requires mean and covariance of the sample
- Can be expanded to Quadratic Discriminant Analysis

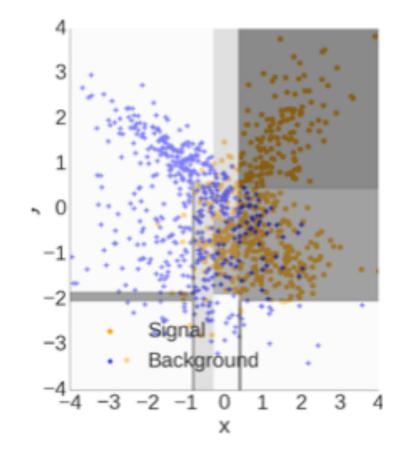


Decision Trees

Decision Trees

- Simple to comprehend
- Easy to train and implement
- Reasonably powerful





Boosted Decision Trees

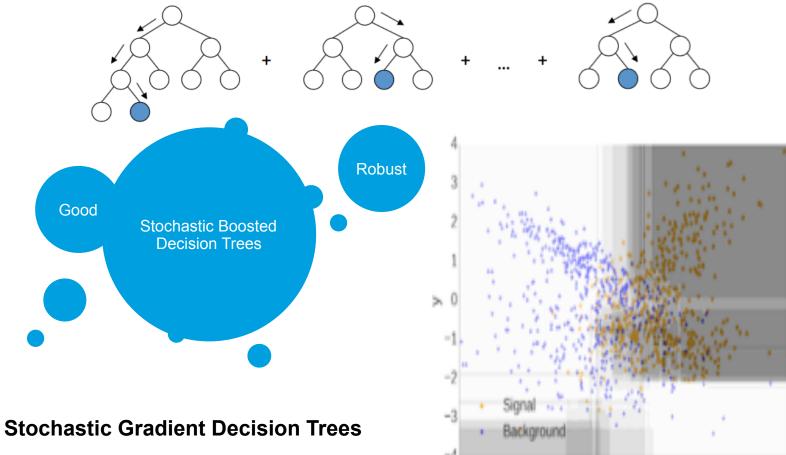
Very good

Boosting

- Use may "weak" classifiers
- Reweight events according to prediction of previous tree(s) for the next tree to focus on falsely classified events

Bagging

- Use only a fraction of events in each tree
- Robustness against statistical fluctuations

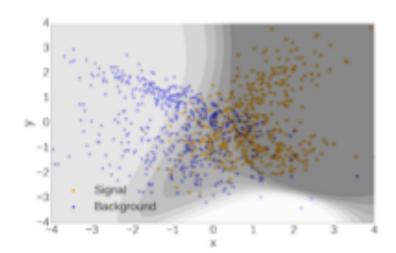


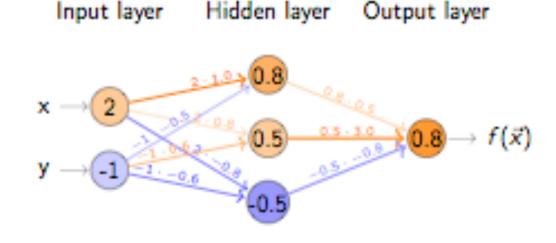
- Widely used in HEP
- Robustness against overfitting
- Out of the box very good performance

Artificial Neural Networks (ANN)

Artificial Neural Networks

- Attempt to "simulate" neurons in a brain
- Usually a feed-forward approach, where data flows from input over hidden layers to the output layer
- Nice visualizations made by google to play around with neural networks in the browser:
 - http://playground.tensorflow.org
- ANN without hidden layer is similar to a LDA
- A neural network with one hidden layer can can approximate continuous functions on compact subsets of Rⁿ



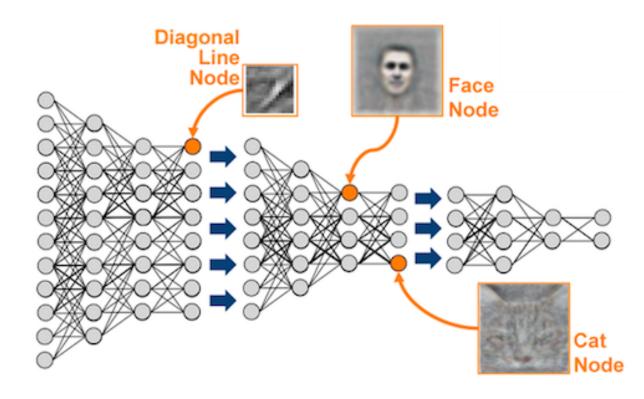


Deep Neural Networks (DNN)

The glorious future

Deep Learning

- Basically a large, mostly feed-forward ANN with many hidden layers
- Progress in computing power made backpropagation algorithm possible (mostly on gpus)
- Can/should be fed with "low level" features
- Benefit of DNNs: They can learn high level features themselves
- Idea: Give raw data, they figure out how to do a vertex fit or constrain invariant masses.. (okay it does unfortunately not work so easy for us)
- The input data has to be adequately complex or the danger of overfitting becomes imminent!

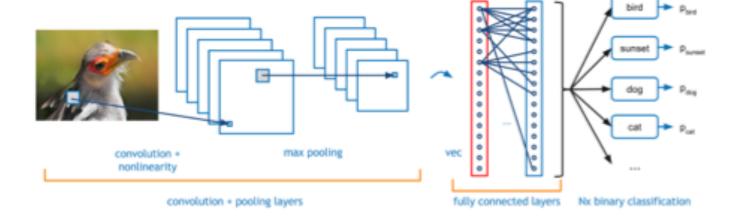


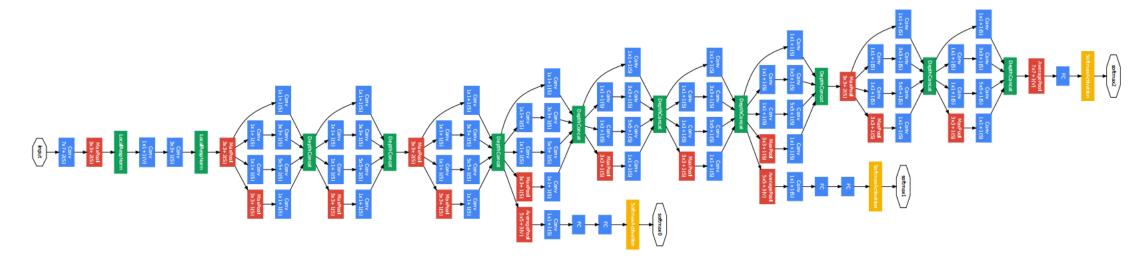
Convolutional Neural Networks (DNN)

The glorious future

Convolutional Neural Networks

- Used for image recognition
- Profit extremely from parallelization in gpus





Implementation Overview

A few notable implementations

ROOT TMVA

- Features many different classifiers
- Ability to perform preprocessing
- Nice overview and comparison of methods after training
- https://root.cern.ch/tmva

FastBDT

- · Used often in the Belle II software
- Extremely(!) fast and robust
- https://github.com/thomaskeck/ FastBDT

Scikit-Learn

- Python (numpy) based framework
- Many classification, regression, clustering and preprocessing tools are available
- http://scikit-learn.org/

Other notable candidates

- FANN
 - Fast Artificial Neural Network
 - http://fann.sourceforge.net/fann.pdf
- XGBoost
 - Industry standard GBDT

Keras

- Python based "meta" framework for deep learning
- Can use various implementations as backend, like tensorflow or theano
- Very simple syntax
- keras.io

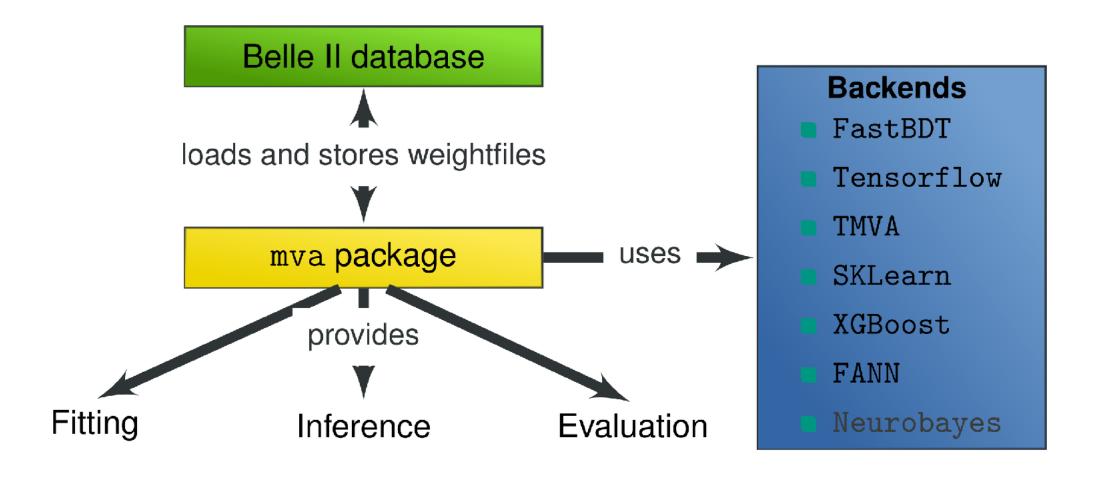
- Tensorflow
 - Generic library for large matrix/ tensor operation
 - Optimized for gpu usage
 - https://www.tensorflow.org/
- NeuroBayes

Belle II MVA Package

Overview of the package

Belle II MVA Package Overview

Subheading, optional



Belle II MVA Package Overview

Goals and existing use cases

Main goals

- The mva package was introduced to provide:
 - Provides tools to integrate mva methods in BASF2
 - Collection of examples for basic and advanced mva usages
 - Backend independent evaluation and validation tools
- The mva package is NOT:
 - Yet another mva framework → Avoids reimplementing existing functionality
 - A wrapper around existing mva frameworks → Tries to avoid artificial restrictions

Use cases

- Analysis: Full Event Interpretation, over 100 classifiers have to be trained without user interaction and have to be loaded from the database automatically if a user wants to apply the FEI to MC or data
- Analysis: Flavor Tagger
- Analysis: Continuum Suppression
- Tracking: Track finding in CDC and VXD, classifiers should be retrained automatically using the newest MC, maybe even run-dependent, and automatically loaded and applied on MC and data during the reconstruction phase
- ECL: Classification and regression tasks

BKLM: KLong ID

Belle II MVA – Setting up a Training

Subheading, optional

Interface

Fitting and Inference

- basf2_mva_teacher
- basf2_mva_expert

Condition database

- basf2_mva_upload
- basf2 mva download
- basf2_mva_available

Evaluation

- basf2_mva_evaluate.py
- basf2_mva_info
- basf2 mva extract

GlobalOptions

```
import basf2_mva
go = basf2_mva.GeneralOptions()
go.m_datafiles = basf2_mva.vector("train.root")
go.m_treename = "tree"
go.m_identifier = "Identifier"
go.m_variables = basf2_mva.vector('p', 'pz', 'M')
go.m_target_variable = "isSignal"
```

SpecificOptions

```
sp = basf2_mva.FastBDTOptions()
sp.m_nTrees = 100
sp.m_shrinkage = 0.2
fastbdt_options.m_nLevels = 3
```

Belle II MVA – How to Perform a Training

Perform a training using basf_mva

Training in Python

```
import basf2 mva
go = basf2 mva.GeneralOptions()
go.m datafiles =
basf2 mva.vector("train.root")
go.m treename = "tree"
go.m identifier = "DatabaseIdentifier"
go.m variables =
basf2_mva.vector('p', 'pz', 'M')
go.m target variable = "isSignal"
sp = basf2 mva.FastBDTOptions()
basf2 mva.teacher(go, sp)
```

Training in Shell

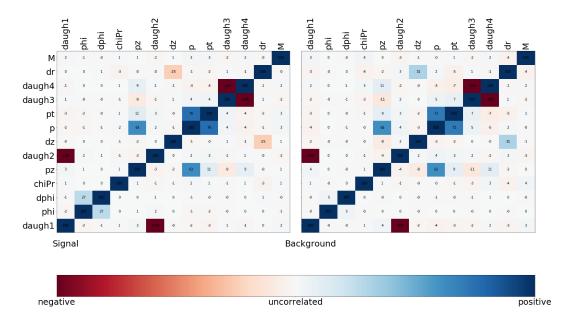
```
basf2_mva_teacher -help
basf2_mva_teacher -method FastBDT -help
```

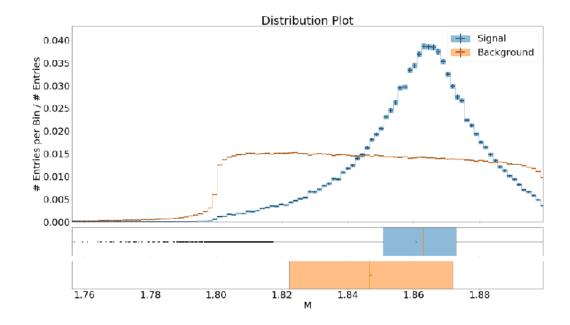
Belle II MVA – Evaluate the Training

Apply method in basf2

Validate the training on command line

2.2 Correlation





Belle II MVA – How to apply a Training

Apply method in basf2

Apply method in basf2

Belle II MVA – Applying Expertise to Data

Apply method in shell

Apply method in python

Belle II MVA – Further Information

Please consider further information on confluence and the examples

\$BELLE2_RELEASE_DIR/mva/examples/

```
[$ ls *
advanced:
bayesian_optimization_multicore.py builtin_splot.py performance_comparison.py purity_transformation.py
bayesian_optimization.py
                                   grid_search.py plotting.py
                                                                               variable_importance.py
basics:
application_in_basf2.py create_data_sample.py usage_in_python.py usage_in_shell.sh
data_driven:
baseline.py builtin_reweighting.py builtin_sideband_substraction.py builtin_splot.py create_data_sample_example.py custom_reweighting.py
keras:
adversary_network.py keras_to_weightfile.py preprocessing.py relational_network.py simple_deep.py
orthogonal_discriminators:
fastbdt_ugboost.py hep_ml_ugboost.py tensorflow_adversary.py
python:
hep_ml_uboost.py
                               howto_wrap_your_existing_training_into_a_weightfile.py sklearn_mlpclassifier.py
howto_use_arbitrary_methods.py sklearn_default.py
                                                                                      xgboost_default.py
tensorflow:
dplot.py multithreaded.py relations.py simple_deep.py simple.py using_tfdeploy.py
tmva:
shell.sh tmva_bdt.py tmva_nn.py
```


MVA Package on Confluence

Machine Learning Good Practice

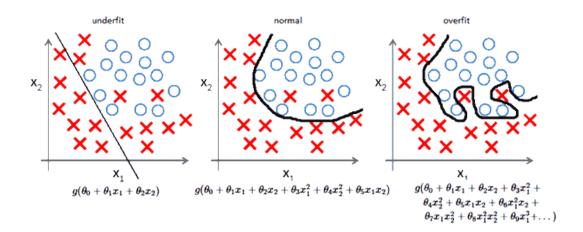
(Pure personal recommendations)

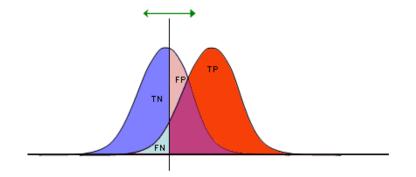
Evaluate your Training!

One or the most important aspects!

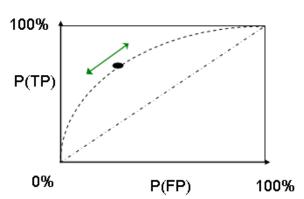
How to evaluate a training

- One can compare trainings and different methods on the same data with the ROC curve
- Often (but not always) a training with higher area under the curve (AUC) performs better
- Compare both training data and test data performance to spot overfitting





TP	FP
FN	TN
1	1



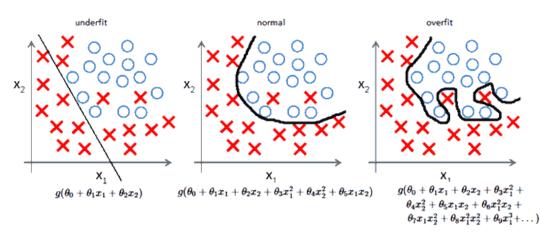
Always use an independent control sample!

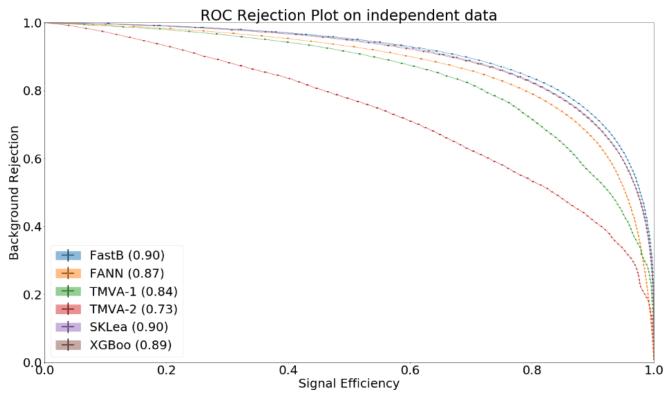
Evaluate your Training!

One or the most important aspects!

How to evaluate a training

- One can compare trainings and different methods on the same data with the ROC curve
- Often (but not always) a training with higher area under the curve (AUC) performs better
- Compare both training data and test data performance to spot overfitting





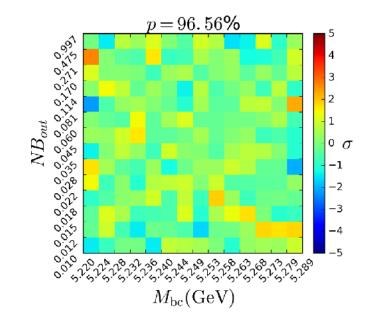
Always use an independent control sample!

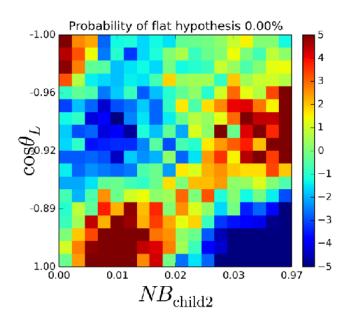
Monitor your Target

Also one or the most important aspects!

Monitor correlations to your target

- Correlations can bias your selections
 - Background in target variable can become peaking
- Distributions can be biased towards the trained model
 - Important for instance in angular analyses



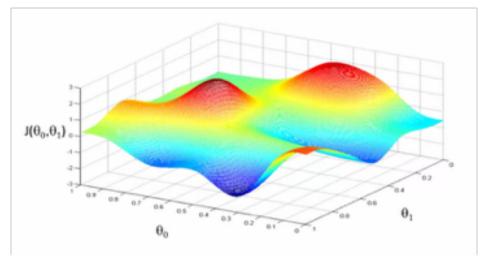


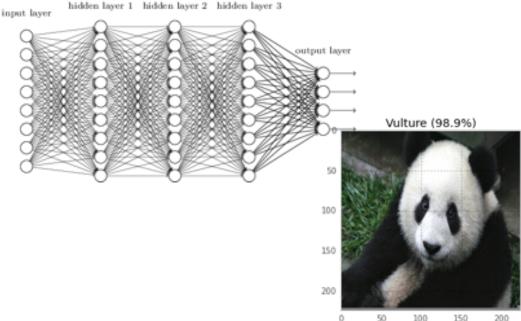
Do not use Neural Networks...

... if you don't know what you are doing.

Difficulties with training a neural network

- For a robust training, the data should be preprocessed
- Normalized, Gaussian distributions as input help the network to converge faster
- Ideally, also correlation among the input variables can be a concern, some methods perform a de-correlation of the input vectors
- The layout of the network is not trivial, also the learning rate and activation functions can be tuned according to the problem
- Most of the time a Gradient Boosted Decision Tree with default parameters outperforms a neural network in a classification task out of the box..





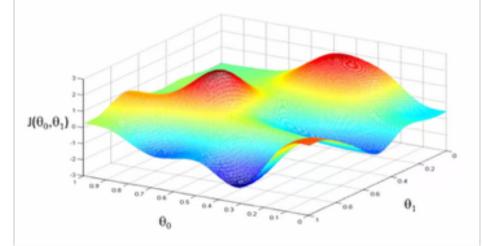
pesy. | MVA Tutorial | Simon Wehle, 3.2.2018

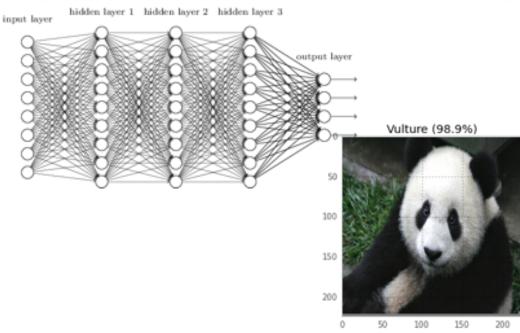
Do not use Deep Learning Models...

... if your data/problem is not appropriate.

When to use deep leaning

- If the data is sufficiently complex
- If the dataset is large enough
- Number of Degrees of freedom (NDF) of the model(≈number of parameters)
 - DNN can have millions of free parameters
 - What should the model learn?
 - Can't a decision tree with O(1000) NDF learn the essential properties?
- Use deep learning on low level features instead of high level features
- The real strength of DL is the ability to create features which are relevant internally





Dangers of Deep Learning

Difficult to validate what exactly is learned - outside of our comprehension

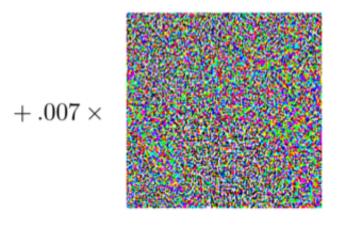
What is the danger?

- Methods mostly trained on simulated data
- Difficult to evaluate
- The method can learn structures we can't understand
- Suggestion: Use only with robust validation

"panda"
57.7% confidence

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy Google Inc., Mountain View, CA {goodfellow, shlens, szegedy}@google.com



sign($\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)$)

"nematode"

8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x} J(\boldsymbol{\theta}, x, y))$ "gibbon"

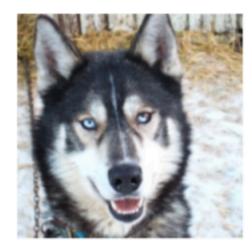
99.3 % confidence

Dangers of Deep Learning

Difficult to validate what exactly is learned - outside of our comprehension

What is the danger?

- Methods mostly trained on simulated data
- Difficult to evaluate
- The method can learn structures we can't understand
- Suggestion: Use only with robust validation





(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

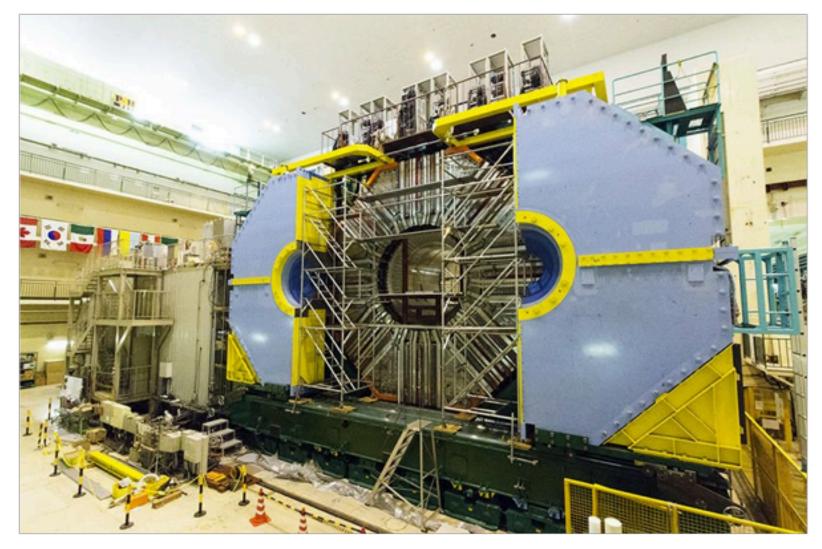
Re-Interfere model response on the input may help understand the expertise

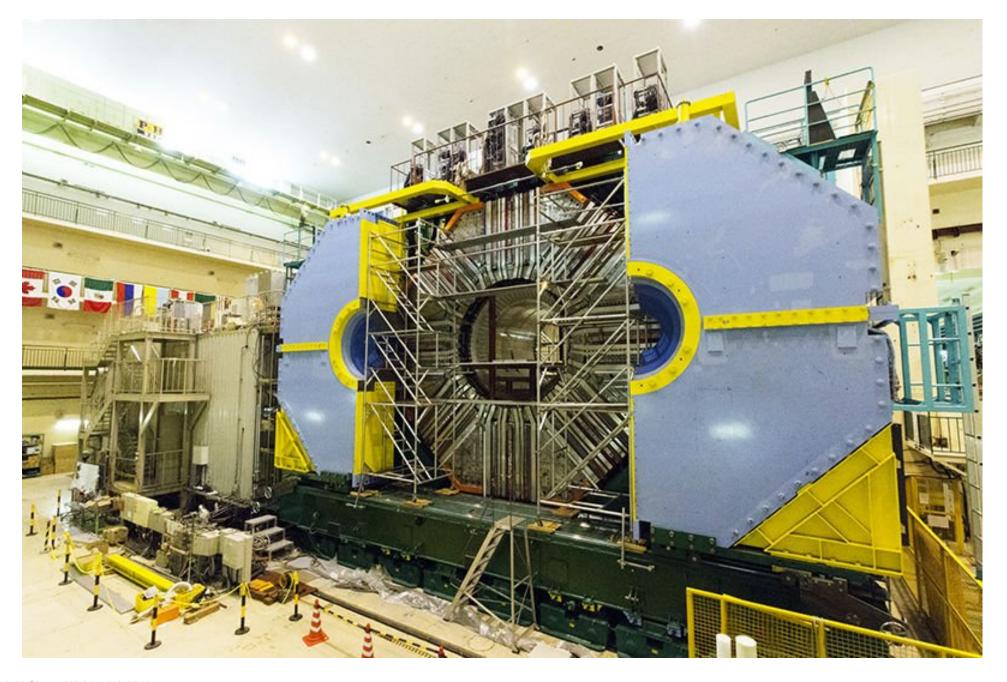
What do Deep Neural Networks think about Belle?

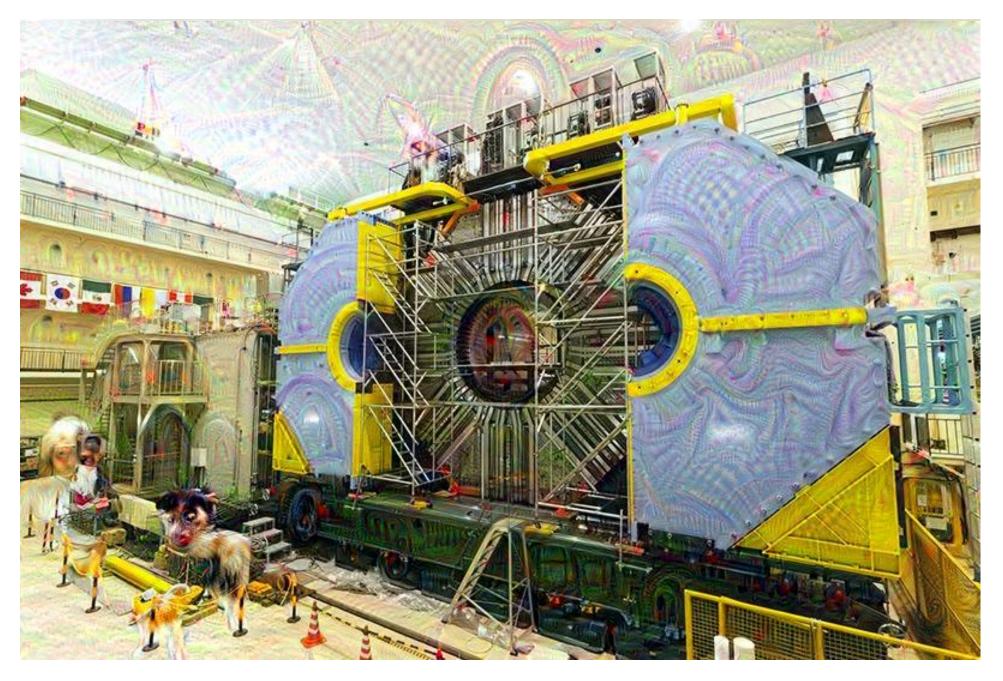
Using DeepDream

Method

- Take pre-trained deep neural network for objects classification
- DeepDream
- "Reverse" classification by presenting an image to the network and overlaying the original image with what the activated layers "see"

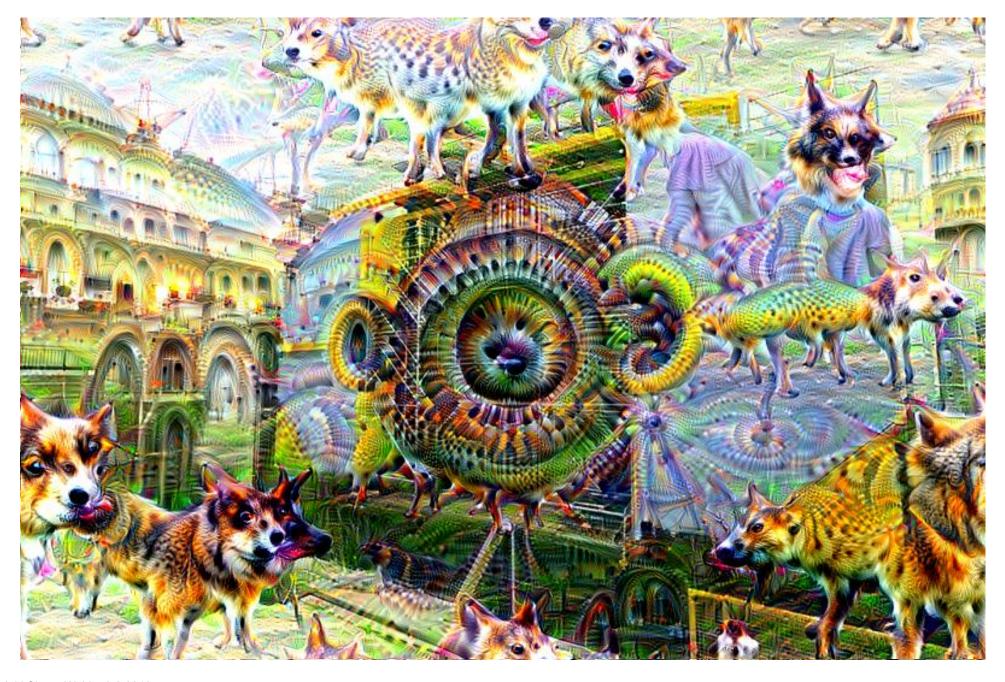












Now

Hands On Sutori

Hands-on Tutorial

- https://jupyterhub.belle2.org
- https://jupyter.sdcc.bnl.gov