

The Belle II Physics Program

Leo Piilonen, Virginia Tech Belle II Summer School BNL July 2019

This work supported by

Office of Science

SuperKEKB and Belle II: 2nd generation B Factory

Integrated luminosity at the first-generation B factories

SuperKEKB luminosity profile vs time

Instantaneous luminosity is 40 times that of KEKB

SuperKEKB operates at/near the $\Upsilon(nS)$ resonances

A canonical BB Event

A canonical BB Event

A canonical $B\overline{B}$ Event

A canonical BB Event

A canonical $B\overline{B}$ Event

A canonical *BB* Event: "Golden Mode"

Measured asymmetry:

$$A_{CP}(\Delta t) = \frac{\Gamma[\bar{B}^{0}(\Delta t) \to f] - \Gamma[B^{0}(\Delta t) \to f)}{\Gamma[\bar{B}^{0}(\Delta t) \to f] + \Gamma[B^{0}(\Delta t) \to f)} = S_{f} \sin(\Delta m_{d} \Delta t) + \mathcal{A}_{f} \cos(\Delta m_{d} \Delta t)$$

A canonical *BB* Event

Belle II is a significant upgrade of Belle

- Improved vertexing and tracking
- Improved particle identification
- ✓ Better background insensitivity
- ✓ Higher event rate

KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLS fiber + MPPC (end-caps & inner 2 barrel layers)

EM Calorimeter: CsI(Tl), waveform sampling Pure CsI (part of end-caps)

electrons (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positrons (4GeV)

Belle II Technical Design Report arXiv:1011.0352

Vertex Detector

Component	<i>r</i> (mm)
Beam pipe	10
Pixels – layer 1	14
Pixels – layer 2	22
Strips – layer 3	39
Strips – layer 4	80
Strips – layer 5	104
Strips – layer 6	135

beryllium beam pipe at interaction point

assembled PXD

assembled SVD

Vertexing performance improves significantly vs Belle

Improved vertexing is vital for a key time-dependent CP-violation measurement

Particle ID: measure the Čerenkov cone

Barrel PID uses imaging time-of-propagation counter (16 quartz staves)

Čerenkov light in the TOP (barrel particle ID)

Measure the Čerenkov cone in barrel PID (TOP)

0

50

100

150

-100

-50

20

200

z [cm]

Particle ID: measure the Čerenkov cone

Forward-endcap PID uses aerogel RICH with two-layer radiator ("focusing")

Čerenkov light in the ARICH (forward particle ID)

April 26, 2018: SuperKEKB/Belle II joins DORIS/ARGUS, CESR/CLEO, PEP-II/BaBar, and KEKB/Belle

rejoicing first collisions in the Belle II control room

First hadronic event in April 2018 (Phase 2 day 1)

First $B\bar{B}$ event in April 2018 (Phase 2 day 1)

Event activates CDC, TOP, ECL, KLM tracking, particle calorimeter, KL-muon

chamber identifier

identifier

First results from Phase 2: neutrals

First results from Phase 2: charged-track combos

First results from Phase 2: D⁰ candidates

29

First results from Phase 2: *B* mesons

Belle II physics program is broad and deep

Belle II Theory Interface Platform (B2TIP) Workshop series, 2015-2018:

WG1 WG6 Semileptonic & Leptonic B decays Charm WG2 WG7 Radiative & Electroweak Penguins WG3 WG8 $\alpha/\varphi_2 \beta/\varphi_1$ WG9WG4 γ/φ_3 WG5

Quarkonium(-like)

Tau, low multiplicity

New Physics

Charmless Hadronic B Decay

The Belle II Physics Book Emi Kou and Phill Urquijo, editors

689 pages arXiv: 1808.10567 submitted to PTEP

... a fruitful collaboration among theorists and experimentalists

Belle II, like other particle-physics experiments, is looking for evidence of **New Physics**

TERRA INCOGNITA

Image credit: A. Casas (Moriond 2017)

The New York Times June 19, 2017

CERN hosts thousands of scientists, representing 22 member countries, all working to understand how the universe was created. CMS is one of seven detectors on site. Leslye Davis/The New York Times

Yearning for New Physics at CERN, in a Post-Higgs Way

Physicists monitoring the Large Hadron Collider are seeking clues to a theory that will answer deeper questions about the cosmos. But the silence from the frontier has been ominous.

By DENNIS OVERBYE JUNE 19, 2017

But since then, the silence from the energy frontier has been ominous. "The feeling in the field is at best one of **confusion** and at worst **depression**," Adam Falkowski, a particle physicist at the Laboratoire de Physique Théorique d'Orsay in France, wrote recently in an article for the science journal *Inference*. *"These are difficult times for the theorists,"* Gian Giudice, the head of CERN's theory department, said. *"Our hopes seem to have been shattered. We have not found what we wanted."*

Stay calm. Don't panic !!

The intensity frontier will save you – *again!* – as it has done in the past. ($K_L \rightarrow \mu\mu$, B mixing, $A_{FB}(e^+e^- \rightarrow \mu^+\mu^-)$, electroweak corrections, ...

from Tom Browder's 2017 B2SS presentation

Belle II is looking for evidence of New Physics

SuperKEKB/Belle II is the *Intensity Frontier facility* for beauty mesons, charm mesons and τ leptons.

Unique new physics capabilities and unique detector capabilities ("single B meson beam," neutrals, neutrinos), clean environment with good systematics, which are critical for New Physics searches: charged Higgs, new weak couplings and phases, lepton flavor violation, ...

Photo credit: Ron Lipton, Fermilab

2014 US P5 report: This provides unique sensitivity to physics at energy scales far higher than can be accessed directly at colliders.

Belle II Physics: confluence.desy.de/display/BI/Physics+WebHome

Physics Coordinator: @ Phillip Urquijo Alessandro Gaz (on August 31)

Analysis Groups

Semileptonic & Missing Energy Decay	@ Florian Bernlochner ,@ Racha Cheaib	Bottomonium	@ Bryan Fulsom ,@ Umberto Tamponi
Radiative & Electroweak	@ Saurabh Sandilya ,@ Simon Wehle	Charmonium	@ Chengping Shen ,@ Elisabetta Prencipe
Penguin		Charm	@ Vishal Bhardwaj,
Time Dependent CP Violation	@ Alessandro Gaz ,@ Yusa Yosuke		@ Giulia Casarosa
		Low Multiplicity &	@ Torben Ferber ,
Hadronic B to Charmless	@ Pablo Goldenzweig ,@ Diego Tonelli	Dark Sector	@ Enrico Graziani
Hadronic B to Charm	@ James Frederick Libby, @ Trabelsi Karim	τ	@ Kenji Inami,
		@ Armine Rostomya	@ Armine Rostomyan
Semileptonic and Missing Energy Decay WG	 Inclusive and Exclusive Semileptonic b→c, b→u transitions: IVubl, IVcbl, New physics. Semileptonic b→c and b→u transitions with τ leptons Charged leptonic decays, B+ → e/ μ/ τ v Neutral leptonic decays, B0 → τ τ, B(s)0 → τ τ, EWP with neutrinos, B→ K(*) v vbar, B→ v v bar 		
--	---		
Badiative and Electroweak Penguin WG	 Inclusive radiative decays: b→ s γ via inclusive, partial and full reconstruction tagging methods. Inclusive radiative decays: b→ s γ and b→ d γ via sum of exclusive methods. Exclusive radiative decays (polarisation and asymmetries): b→ s: B→ K1 γ, K* γ b→ d: B→ p γ, ω γ Bd,Bs→ γ γ Exclusive dilepton decays with a focus on electron modes at low q² : B→ K(*) e+ e- Inclusive dilepton decays via sum of exclusive, and fully inclusive methods: B→ Xs I+ I- LFV B→II', K(*)II' 		

Time Dependent CP Violation WG	 Φ2: B→ ρρ, ρπ, a1 π Φ1: New phases in b→ s anti-q q transitions, B→ Φ Ks Φ1 gluonic penguins: B→ η 'Ks, KsKsKs Φ 1 EWP: TCPV in Radiative decays, e.g. B→ Ks π0 γ, ργ (overlap with above) CPT violation
Hadronic B to Charmless Decay WG	 Two-body B_(s) → h h⁽ⁱ⁾ decays Full angular analyses and triple product asymmetries in B_(s) → VV decays Three-body decays with Dalitz methods Baryonic B decays Direct CP Violation Tests of QCD factorisation; flavour symmetry breaking
Hadronic B to Charm Decay WG	 Direct CP Violation Φ3 from time integrated methods, e.g. Dalitz Φ3 from time dependent methods

Bottomonium WG	 Bottomonia Y(nS), n=1,2,3,4,5,6 b-Hadron production at 5S Searches for dark matter and light Higgs in Y transitions Energy scan studies of bottomonia
Charmonium WG	 Charmonia, exotic, charmonium-like below the open-charm threshold above the open-charm threshold ISR Charm Spectroscopy
Charm WG	 D0 mixing TCPV in Charm Direct CPV in Charm Rare/Forbidden charm decays and NP: D→ γγ, D→ e e Leptonic and Semileptonic charm decays Charm production Light meson production

Low Multiplicity and Dark Sectors WG	 Dark sector searches in low multiplicity events Dark Photons ALPs iDM/SIMPs Magnetic Monopoles LLPs Precision low multiplicity measurements Fragmentation
Tau WG	 Lepton flavour violating τ decays Radiative τ → Ιγ Leptonic τ→ ΙΙΙ Lepton plus pseudo-scalar, τ → Ι Ρ0 Lepton plus vector, τ → Ι V0 Lepton plus 2-hadrons, τ → Ι h h' Lepton plus 3-hadrons, τ → Ι h T properties and SM decays τ Lepton universality τ CP Violation

New Physics in B Decays

B Physics Analysis Groups

Semileptonic & Missing Energy Decay	@ Florian Bernlochner ,@ Racha Cheaib
Radiative & Electroweak Penguin	@ Saurabh Sandilya ,@ Simon Wehle
Time Dependent CP Violation	@ Alessandro Gaz ,@ Yusa Yosuke
Hadronic B to Charmless	@ Pablo Goldenzweig ,@ Diego Tonelli
Hadronic B to Charm	@ James Frederick Libby , @ Trabelsi Karim

New Physics strategy: look for deviations from Standard-Model expectations in precision measurements

Measuring the CKM-matrix unitarity-triangle angles

Measuring the CKM-matrix angle ϕ_1 [β]

 $B^0 \rightarrow J/\psi K_S$ (the "Golden" mode):

expected 50 ab^{-1} uncertainty: $\delta\phi_1 = 0.4^{\circ}$ (cf: current theory error is 1-2°)

 $B^0 \rightarrow \phi K_S, \eta' K_S, \omega K_S, \pi^0 K_S$ ("penguin" modes):

 $A_{CP} = A\cos(\Delta M \Delta t) + S\sin(\Delta M \Delta t)$

	WA (2017)	5 a	b^{-1}	50 a	b^{-1}
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090
ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011
$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008
ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020
$K^0_S \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
$K^0_S \pi^0$	0.17	0.10	0.09	0.06	0.028	0.018

Measuring the CKM-matrix unitarity-triangle sides

Measuring $|V_{ub}|$ via $B^+ \to \tau^+ \nu_{\tau}$

There is some **tension** at the CKM triangle apex from this measurement vs $sin2\phi_1$

Leveraging fully-reconstructed tag *B*, there should be **zero excess energy** in the calorimeter.

a missing-energy mode

Precise measurements of CKM unitarity triangle

Selected New Physics Topics

QCD allows many color singlets: baryons, mesons, exotics.

48

Charmonium-like exotica ... 2003: the X(3872) is found in $B \rightarrow K (J/\psi \pi^+ \pi^-)$ by Belle; confirmed by CDF, DØ, BaBar, LHCb, CMS

Steve Olsen snags a big one!

This is Belle's most famous paper: 1640 citations.

Charmonium(-bearing) states including exotica

11

Belle II prospects for New Physics

in (semi-)leptonic B decays

					y [ab^{-1}]		
	10			(Discover	J '		
Process	Observable	Theory	Sys. limit	VS LHCb	vs Belle	Anomali	s NP
$B \to \pi \ell \nu_l$	$ V_{ub} $	***	10-20	***	***	**	*
$B \to X_u \ell \nu_\ell$	$ V_{ub} $	**	2-10	***	**	***	*
$B \to \tau \nu$	Br.	***	>50(2)	***	***	*	***
$B \to \mu \nu$	Br.	***	>50(5)	***	***	*	***
$B \to D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**	**	*
$B \to X_c \ell \nu_\ell$	$ V_{cb} $	***	1-5	***	**	**	**
$B \to D^{(*)} \tau \nu_{\tau}$	$R(D^{(*)})$	***	5-10	**	***	***	***
$B \to D^{(*)} \tau \nu_{\tau}$	$P_{ au}$	***	15-20	***	***	**	***
$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***	**	-

Example of a $B^+ \rightarrow \tau^+ \nu$ decay *in Belle data*

Clean e+e- environment and kinematic constraints (known initial 4-momentum, hadronic tag decay) make this possible

Search for NP (e.g., charged Higgs) in $B^+ \to \tau^+ \nu_{\tau}$

For example, in MSSM 2HDM Type II,

$$r = \frac{\mathcal{B}_{\text{meas}}\left(B \to \tau\nu\right)}{\mathcal{B}_{\text{SM}}\left(B \to \tau\nu\right)} = \left(1 - \frac{m_B^2}{m_H^2}\tan^2\beta\right)^2$$

54

Is there new physics in $B \to D^{(*)} \ell \nu$?

missing-energy mode: multiple neutrinos in final state

Tagged analysis:

full or partial reconstruction measure q² distribution, angular distribution, τ polarization, ...

Standard Model:

- ✓ lepton universality
- ✓ hadronic uncertainties
 ≈cancel (manageable)

Is there new physics in $B \to D^{(*)} \ell \nu$?

Is there new physics in $B \to D^{(*)} \ell \nu$?

Belle II New-Physics potential in $b \rightarrow s$ transitions

Observables	Experimental Sensitivity	Multi-Higgs Models (§17.2)	generic SUSY	MFV (§17.3)	Z' models ($\S17.6.1$)	gauged flavour (§17.6.2)	3-3-1 (§17.6.3)	left-right (§17.6.4)	leptoquarks (§18.2.1)	compositeness (§17.7)	dark sector (§16.1)	Sum
-------------	--------------------------	----------------------------	--------------	-------------	----------------------------	--------------------------	-----------------	----------------------	-----------------------	-----------------------	---------------------	-----

$B \to K^{(*)}\ell\ell$ angular	**	×	×	**	**	×	**	×	***	**	×	13
$R(K^*), R(K)$	**	×	×	×	**	×	**	×	***	**	×	11
$\mathcal{B}(B \to X_s \ell \ell)$	***	×	×	***	**	×	**	×	***	**	×	15
$R(X_s)$	***	×	×	×	**	×	**	×	***	**	×	12
$\mathcal{B}(B \to K^{(*)}\tau\tau)$	***	***	×	*	*	×	*	×	***	*	×	13
$\mathcal{B}(B \to X_s \tau \tau)$		***	×	*	*	×	*	×	***	*	×	10
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	×	×	*	*	×	*	×	***	*	×	10
$\mathcal{B}(B \to X_s \nu \nu)$		×	×	*	*	×	*	×	***	*	×	7

 $\star \star \star$ Belle II

X

- unlikely not studied
- ****** Belle II + LHCb \Box
- \star LHCb

58

New-physics sensitivity in $b \to s \ell^+ \ell^-$

Lepton-universality test: $\ell \in \{e, \mu\}$

Belle II has strong capabilities for electrons and muons.

New-physics sensitivity in $b \to s \ell^+ \ell^-$

The effective Hamiltonian leading contribution for the $b \rightarrow s$ transition is

$$H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i$$

 $\checkmark G_F$ is the Fermi constant

 $\checkmark V_{ij}$ are quark mixing matrix (CKM) elements

 $\checkmark C_i$ are the Wilson coefficients and \mathcal{O}_i the corresponding effective operators

- i = 1, 2tree
- \bullet *i* = 3–6, 8 gluon penguin
- photon penguin • i = 7
- electroweak penguin \bullet *i* = 9, 10
- scalar or pseudoscalar penguin \bullet i = S, P

 $\checkmark B \rightarrow X_s \gamma$ is sensitive to C_7

✓ $B \to X_s \ell^+ \ell^-$ and $K^{(*)} \ell^+ \ell^-$ are sensitive to C_7 , C_9 , C_{10} ₆₁

New-physics sensitivity in $b \to s \ell^+ \ell^-$

How to establish New Physics in $b \to s\ell^+\ell^-$?

TABLE I: Projections for the statistical uncertainties on the $B \to K^{(*)} \nu \bar{\nu}$ branching fractions.

Mode	$B[10^{-6}]$	Efficiency	N _{Backg.}	$N_{Sig-exp.}$	$N_{\text{Backg.}}$	$N_{\text{Sig-exp.}}$	Statistical	Total
	_	Belle	$711 fb^{-1}$	$711 \ {\rm fb^{-1}}$	$50 ext{ ab}^{-1}$	50 ab ⁻¹	error	Error
		$[10^{-4}]$	Belle	Belle	Belle II	Belle II	50 ab^{-1}	
$B^+ \rightarrow K^+ \nu \bar{\nu}$	3.98	5.68	21	3.5	2960	245	23%	24%
$B^0 \to K^0_{ m S} \nu \bar{\nu}$	1.85	0.84	4	0.24	560	22	110%	110%
$B^+ \rightarrow K^{*+} \nu \bar{\nu}$	9.91	1.47	7	2.2	985	158	21%	22%
$B^0 \to K^{*0} \nu \bar{\nu}$	9.19	1.44	5	2.0	704	143	20%	22%
$B \to K^* \nu \bar{\nu}$ combined							15%	17%

Belle II New-Physics potential in τ decays

Opservaples Bayerime Multi-Hig Multi-Hig Sauged fi [§17] agauged fi [§17] leptoquar [§17] leptoquar [§17]	Observables	Experimental Sensitivity	Multi-Higgs Models (§17.2) generic SUSY	MFV (§17.3) Z' models (§17.6.1)	gauged flavour (§17.6.2)	$3-3-1$ ($\S17.6.3$)	left-right (§17.6.4)	leptoquarks (§18.2.1)	compositeness (§17.7)	dark sector (§16.1)
---	-------------	--------------------------	--	------------------------------------	--------------------------	------------------------	----------------------	-----------------------	-----------------------	---------------------

 τ tree decays:

$\mathcal{B}(\tau \to K\nu)/\mathcal{B}(\tau \to \pi\nu)$	***	**	×	×	×	×	×	*	***	**
$\mathcal{B}(\tau \to K^* \nu) / \mathcal{B}(\tau \to \rho \nu)$	***	×	×	×	×	×	×	*	***	**

 $\tau \rightarrow \mu$ decays:

$ au o \mu \gamma$	***	*	***	*	*	*	*	×	*	***	
$ au o \mu \pi^0$	***	*	**	×	***	×	***	×	***		
$ au o \mu K_S$	***	*	*	×	*	×	*	×	***		
$ au o \mu ho^0$	***	×	**	×	***	×	***	×	***		
$ au o \mu K^{0*}$	***	×	*	×	*	×	*	×	***		
$\tau^- \to \mu^- \ell^- \ell^+$	**	**	*	×	***	***	***	×	*	***	
$\tau^- \to \mu^- \mu^- e^+$	**	*	×	×	*	***	*	×	×	***	

 $\star \star \star$ Belle II

 \times unlikely

****** Belle II + LHCb \Box not studied

 \star LHCb

Belle II will improve sensitivity for many LFV τ decays

Belle II New-Physics potential in the dark sector

Observables Dark boson A' , fermion χ	Experimental Sensitivity	Multi-Higgs Models (§17.2)	generic SUSY	MFV (\$17.3)	Z' models (§17.6.1)	gauged flavour (§17.6.2)	3-3-1 (§17.6.3)	left-right (§17.6.4)	leptoquarks (§18.2.1)	compositeness (§17.7)	dark sector (§16.1)	Sum
---	--------------------------	----------------------------	--------------	--------------	---------------------	--------------------------	-----------------	----------------------	-----------------------	-----------------------	---------------------	-----

$e^+e^- \to A' \to \text{invisible}$	***	×	×	×	×	×	×	×	×	***	6
$e^+e^- \to A' \to \ell\ell$	***	*	×	*	×	*	×	×	×	***	9
$e^+e^- ightarrow A'\gamma$	***	*	×	*	×	*	×	×	×	***	9
$B \rightarrow \text{invisible}$	***	×	×	*	×	*	×	***	×	***	11
$B \to KA'$	***	×	×	×	×	×	×	×	×	***	6
$B \to \pi A'$	***	×	×	×	×	×	×	×	×	***	6
$B^+ \to \mu^+ \chi$	***	×	×	×	×	×	×	×	×	***	6
$B^+ \to \mu^+ \nu A'$	***	×	×	×	×	×	×	×	×	***	6
$\Upsilon(3S) \to \gamma A'$	***	×	×	×	×	×	×	×	×	***	6

 $\star \star \star$ Belle II

 \times unlikely

not studied

- ****** Belle II + LHCb
- \star LHCb

Dark-photon search requires single-photon trigger

since the event contains exactly one photon ... and nothing else

Axion-like pseudoscalars coupling to bosons

Belle II time-dependent CP sensitivity projections

Belle II direct CP sensitivity projections

using publicly available LHCb projections

Belle II semileptonic-decay sensitivity projections

Year

using publicly available LHCb projections

71

Belle II new-physics prospects vs time

72
Summary

- Belle II will explore New Physics and make precision measurements of SM physics with 50x more data than Belle.
- Belle II Physics Book (arXiv:1808.10567) provides a wealth of detail on the machine, detector, analysis tools and physics.
- Belle II will be complementary to LHCb. Any NP measurement in one will have to be confirmed in some way by the other. "Symbiotic"
- The world is waiting for your results!

Backup

Machine Parameters

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	2.6	Α	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξx/ξγ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

Belle II collaboration

- 948 collaborators, of whom 15% are women and 32% are graduate students
- 115 institutions
- 25 countries/regions

Complementarity of e+ e- and LHC for MSSM

Thanks to Luis Pesantez and Phil Urquijo

The current combined $B \rightarrow \tau \nu$ limit places a stronger constraint than direct searches from LHC experiments for next few years.

Currently, $B \rightarrow X_s \gamma$ rules out m_{H+} below ~480 GeV/c² at 95% CL (for any tan β), M. Misiak *et al.* (assuming no other NP) – arxiv: 1503.01789

Adapted from Adrian Bevan 77

Full-reconstruction tag for missing-energy B decays

Full-reconstruction tag for missing-energy *B* decays

missing-energy decays, absolute branching fractions, inclusive rates, ...

Consumer's Guide to the Charged Higgs

- <u>Higgs doublet of type I</u> (φ₁ couples to upper (utype) and lower (d-type) generations. No fermions couple to φ₂)
- <u>Higgs doublet of type II (</u>φ_u couples to u type quarks, φ_d couples to d-type quarks, u and d couplings are different; tan(β) = v_u/v_d) [<u>favored NP scenario</u> e.g. MSSM, generic SUSY]
- <u>Higgs doublet of type III</u> (not type I or type II; anything goes.
 "FCNC hell"→many FCNC signatures)