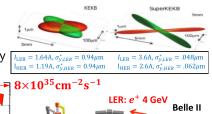
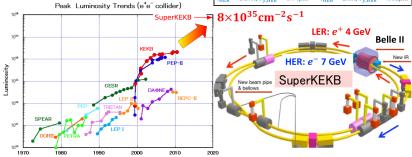
Beam-induced backgrounds at SuperKEKB

Jeff Schueler

University of Hawai'i at Mānoa ischuel@hawaii.edu

July 31, 2019




Overview

- Background of backgrounds
 - Motivation
 - Background sources
 - How beam backgrounds arise
 - Beam Commissioning and BEAST
- Phase 1
 - Measuring Backgrounds
 - Phase 1 Results
- 3 Phase 2
- 4 Phase 3

SuperKEKB

- Upgrade to KEKB asymmetric e^-e^+ collider
- Projected 40 fold increase over KEKB's world record luminosity

High luminosity comes at the cost of elevated beam backgrounds.

Why do we care about beam backgrounds?

Beam Backgrounds

Undesirable background particles generated by the SuperKEKB accelerator.

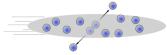
- Negative effects of beam backgrounds
 - Performance degradation in Belle II detectors
 - Increased hit occupancies
 - Increased analysis backgrounds
 - Can damage Belle detectors

Belle II detector	Quantity	Expected value	Upper limit value	Safety factor	Dominant process(es)
PXD	occupancy	1.1%	3%	3	two-photon, synchrotron radiatio
CDC	wire hit rate	400 kHz	200 Hz	0.5	radiative Bhabha, two-photon
CDC	electr. neutron flux	2.5	1	0.3	radiative Bhabha, Touschek
CDC	electr. dose rate	250 Gy/yr	100	0.3	radiative Bhabha, two-photon
TOP	PMT hit rate	5-8 MHz	1 MHz	0.2	radiative Bhabha, two-photon
TOP	PCB neutron flux	0.35	0.5	3	radiative Bhabha, Touschek
ARICH	HAPD neutron flux	0.3	1.0	3	radiative Bhabha
ECL	crystal dose rate	6 Gy/yr in BWD	10 Gy/yr	2	radiative Bhabha, two-photon

An important early goal is to validate and improve this BG simulation. This will improve phase 3 predictions, and will tell us if extra background remediation measures are needed.

Some essential accelerator terminology

- Injection: Charge is injected into the main ring to increase the beam current
 - Increases background rates
 - In general, Belle II detector HV is turned off
- Storage: When stable beams are circulating. No additional charge is injected
 - · Generally safe for Belle II data taking
 - · Lower background levels than injection
- Continuous injection (not shown in picture): Continuous rapid short injections to keep the current constant
 - If backgrounds are low enough to support Belle data taking, this mode is ideal for producing high luminosities


Traces indicate relative Thick blue trace background levels is beam current nob 0, Trig=Aux, Nbunch=1576 0.21mRad at I=250mA - Injection Storage

Beam background sources

Single Beam Backgrounds

 Beam-gas: Bremsstrahlung and Coulomb scattering of beam particles with gas atoms in the beam pipe

- Touschek Effect: Coulomb scattering between particles within a beam bunch
- Synchrotron Radiation: Produced by bending magnets

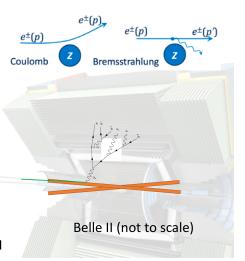
Luminosity Dependent Backgrounds

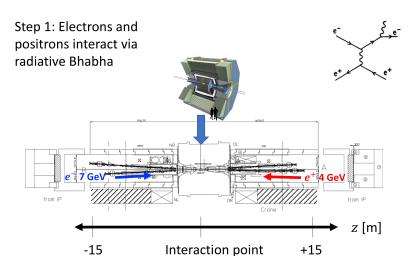
 Radiative Bhabha: Produced from collisions

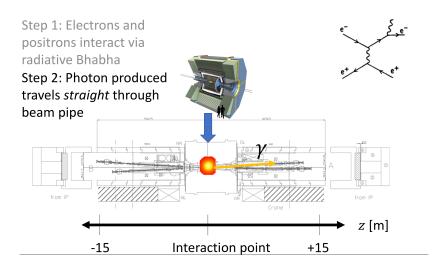
 Two γ processes: Electron-positron pairs produced from low momentum ee → eeee processes

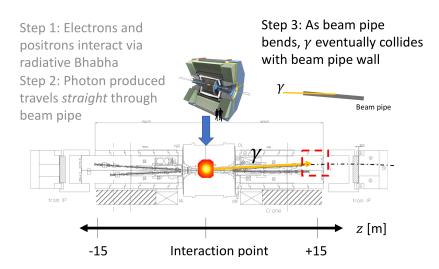
Injection Background

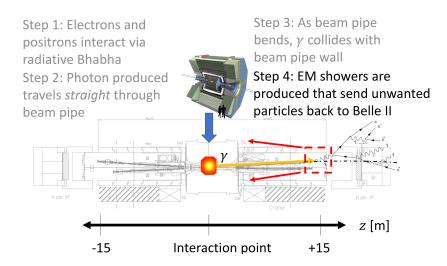
- Arise when charge is injected into a circulating beam bunch. This injection perturbs the bunch causing a brief spike in background rate
- Difficult to simulate!
- Essential to reduce before continuous injection

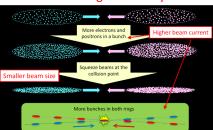

Single beam background example: beam-gas


Step 1: beam particle deflected from nominal orbit


Step 2: deflected beam particle eventually hits beam pipe wall, near interaction point


Step 3: secondaries produced in EM shower, including enutrons via giant dipole resonance


Step 4: secondaries reach Belle II



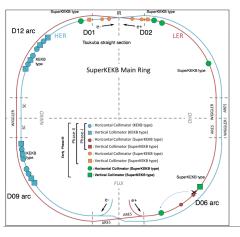
Luminosity and background

Increasing Luminosity

Elevated Backgrounds

Higher beam currents lead to increased beam-gas and Touschek scattering rates

Smaller beam sizes lead to increased intra-bunch scattering (Touschek)


Increasing luminosity leads to increased rates of radiative Bhabha and two photon processes

Careful beam optics tuning and collimation are essential for background mitigation.

Collimators Overview

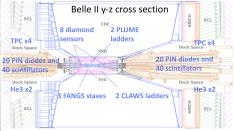
Beam optics tuning and collimation help to mitigate backgrounds!

- Horizontal collimators on both inner and outer sides of the rings are effective for reducing Touschek backgrounds
 - KEKB only had horizontal collimators on inner side
- SuperKEKB Coulomb beam-gas levels are expected to be 100 that of KEKB
 - Vertical collimators are essential for reducing this background
- Collimators must be optimized when beam optics are changed!

Beam Commissioning and BEAST

Commissioning Overview

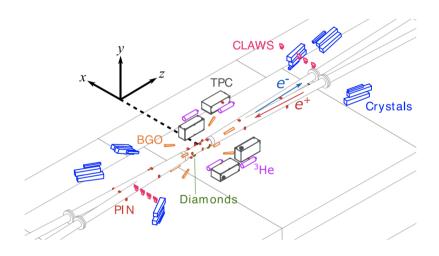
Beam commissioning has been divided up into three phases.



Phase 2 (Feb 2018-July 2018)

Phase 3 (March 2019-???)

P1 Goals: First measurements of single beam backgrounds, search for SR, vacuum scrubbing



P2 Goals: Measure single beam and collision backgrounds and assess if background levels are safe for VXD operation

P3 Goals: Background remediation, collimator optimization, reach design luminosity!

Phases 1 and 2 had a dedicated suite of BEAST background detectors. A few remnants of BEAST remain in phase 3, but are (mostly) no longer contained within Belle

BEAST Phase 1 System

Phase 1 Results

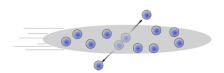


Beam-gas: Bremsstrahlung and Coulomb scattering of beam particles with gas atoms in the beam pipe

Question

Which *beam* quantities would you suspect beam-gas background rates to depend on?

Beam-gas: Bremsstrahlung and Coulomb scattering of beam particles with gas atoms in the beam pipe

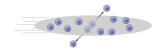

Question

Which *beam* quantities would you suspect beam-gas background rates to depend on?

Single Event Level Contribution	Contribution around ring
Coulomb scattering, for instance $\propto q^2 Z_{eff}^2$	Depends on beam current and beam pressure $\propto IP$

Answer:

$$Rate_{bg} = B \cdot IPZ_{eff}^2$$
.



Question

Which *beam* quantities would you suspect Touschek background rates to depend on?

Touschek is a bit more complicated overall ¹.

¹See here for details

Question

Which *beam* quantities would you suspect Touschek background rates to depend on?

Single Event Level Contribution	Contribution around ring
Scattering of particles within a bunch	Depends on number of bunches and current within bunch
$\propto \frac{I_{bunch}}{\sigma_r \sigma_v \sigma_z}$	$\propto N_b I_{bunch}$

Answer:

$$\mathsf{Rate}_{\mathcal{T}} = T \cdot \frac{N_b I_{\mathsf{bunch}}^2}{\sigma_{\mathsf{v}}} = T \cdot \frac{I^2}{\sigma_{\mathsf{v}} N_b}.$$

$$Rate = Rate_{bg} + Rate_{T}$$

 During single beam background studies the assumption is that contributions to background rates are exclusively due to beam-gas and Touschek effects

Combined Heuristic

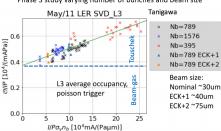
$$\mathsf{Rate} = B \cdot \mathit{IPZ}_{\mathsf{eff}}^2 + T \cdot \frac{\mathit{I}^2}{\sigma_{\mathsf{v}} \mathit{N}_{\mathsf{b}}},$$

where B and T, respectively, are beam-gas and Touschek sensitivity parameters. B and T can be measured in both experiment and simulation!

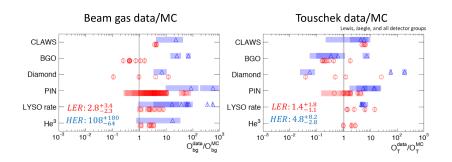
Using the combined heuristic

Divide Rates by
$$IPZ_{eff}^2$$
 and plot the scaled rates vs $\frac{1}{P\sigma_V N_b Z_{eff}^2}$

$$\frac{\mathsf{Rate}}{\mathsf{IPZ}_{\mathsf{eff}}^2} = \mathsf{B} + \mathsf{T} \cdot \frac{\mathsf{I}}{\mathsf{P}\sigma_{\mathsf{y}} \mathsf{N}_{\mathsf{b}} \mathsf{Z}_{\mathsf{eff}}^2}$$

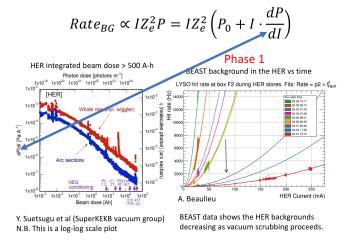

Phase 1 study varying beam size

300 Colors: size settings Shapes: currents

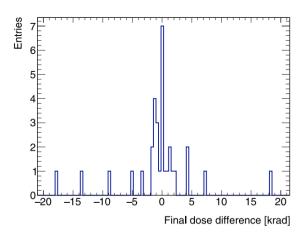

P. Lewis

P.

Phase 3 study varying number of bunches and beam size



Phase 1 Results Summary: Beam-gas and Touschek


Observed rates exceeded predictions from simulation. HER beam-gas rates two orders of magnitude above prediction. Thermal neutrons are slightly elevated.

Phase 1 Results: Vacuum Scrubbing

Vacuum scrubbing reduces the dynamic pressure in the ring, causing a reduction in beam-gas backgrounds. HER is "better scrubbed" than LER (more on this when we talk about phase 3).

Phase 1 Results: Synchrotron

Differences between aluminum-shielded and gold-shielded PIN diode pairs used to set an upper limit on SR

Phase 1 Takeaways

Background (Component	Simulation Method			
Touschek Beam-gas Coulomb Beam-gas Bremsstrahlung Radiative Bhabha QED 2-photon Synchrotron Radiation Injection BG Beam dust			tracking code) gener particles. If lost near I	ates and IP: passed	Fouschek slightly elevated. 100 iold excess of HER beam-gas in data. Simulation suggests beam gas won't dominate later on
		BBBrem/BHWide → GEANT4		7	Not measured in phase 1
		Aafh → GEANT4	Aafh → GEANT4 SR generation in GEANT4 Injection particles provided by accelerator group→ SAD → GEANT4		
		SR generation in			
					Detailed measurements performed. These
		-			backgrounds don't look problematicsee paper!
Neutrons		All of above			
elle II detector	Quantity	Expected value	Upper limit value	Safety factor	Dominant process(es)
Œ	occupancy	1.1%	3%	3	two-photon, synchrotron radiation
OC	wire hit rate	400 kHz	200 Hz	0.5	radiative Bhabha, two-photon
OC	electr. neutron flux	2.5	1	0.3	radiative Bhabha, Touschek
OC	electr. dose rate	250 Gy/yr	100	0.3	radiative Bhabha, two-photon
OP OP	PMT hit rate PCB neutron flux	5-8 MHz	1 MHz	0.2	radiative Bhabha, two-photon
RICH	HAPD neutron flux	0.35	0.5 1.0	3	radiative Bhabha, Touschek radiative Bhabha
CL	crystal dose rate	6 Gv/vr in BWD	1.0 10 Gv/vr	2	radiative Bhabha, two-photon

Conclusion

Single beam bkgs safe when extrapolated to full luminosity operation with full set of perfect collimators \longrightarrow safe to install Belle II

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

iournal homepage: www.elsevier.com/locate/nima

First measurements of beam backgrounds at SuperKEKB

P.M. Lewis', I. Jaegle', H. Nakayama h, A. Aloisio's, F. Ameli h, M. Barrett v, A. Beaulieu u, L. Bosisio', P. Branchini', T.E. Browder', A. Budano', G. Cautero's, C. Cecchi', Y.-T. Chen's, K.-N. Chu', D. Cinabro', P. Cristaudo', S. de Jong'', R. de Sangro'', G. Finocchiaro'', J. Flanagan', Y. Funakoshi', M. Gabri

N. Honkamen', H. Ikeda , T. Ishibash Phase 1 Paper P. Križan'', C. La Licata', L. Lanceri', E. Manoni', C. Marinas', K. Miyabaya 101 Pages Y. Ohnishi', A. Passeri', P. Poffenber, M. Seddom', J. L. S. Song', J. J. G. Shiu

R.M. Seddon P. I.S. Seong J. J.-G. Shiu S. Terui J. G. Tortone J. S.E. Vahsen J.* 127 Figures S. Yokovama J

³ University of Bonn, Institute of Physics, Naßallee 12, 53115 Bonn, Germany
^b Deutsches Blektronen-Synchrotron. Notkestraße 85, 22607 Hambure, Germany

Elettra - Sincrotrone Trieste S.C.p.A., AREA Science Park, 34149 Basovizza, Trieste, Italy
 University of Florida, Department of Physics, P.O. Box 118440, Gainesville, FL 32611, USA

⁶ The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho Tsukuba, Ibaraki 305-0801, Japan University of Hawaii, Department of Physics and Astronomy, 2505 Correa Road, Honolulu, HI 96822, USA

⁸ Heidelberg University, Institute of Computer Engineering, B6, 26, 68159, Mannheim, Germany
^b High Energy Accelerator Research Organization (KEK), Institute of Particle and Nuclear Studies, Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan

High Energy Accelerator Research Organisation (KEK), Accelerator Laboratory, Oho 1-1, Tukuba, Ibaraki, 305-0801, Japan

1 NNN - Sex. dl Peragia, Vis A. Pascoll, 66123, Peragia, Italy

k INFN - Sex. ROMA, P.le Aldo Moro, 2 00185, Roma, Italy

INFN - Sex. ROMA 3, V. della Vasca Navale, 84, 00146 Roma, Italy
 S. Sefam Institute, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
 Euborearon' Reinstonal di Prescal dell'EVFN, Via E. Fermi 40, 100044, Prascat, Italy

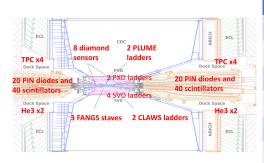
* Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

McGill University, Department of Physics, 3600 rue University, Montréal, QC H3A 2T8, Canada

⁴ University of Naples Federico II & INFN Sezione di Napoli, Strada Comunale Cintia, 80126 Napoli, Italy

;o, S. Koiralas,

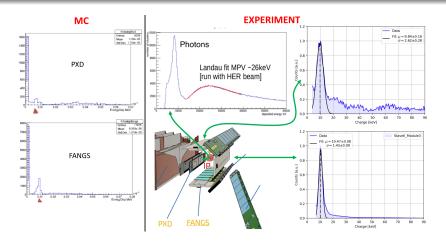
Liptak f, S. Longo u,


kao h, M. Nayak v, ssi j. T. Röder o.

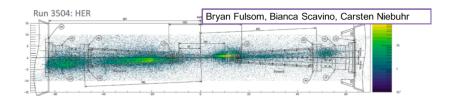
Vang 5, H. Windel 9,

ru 1, M. Szalay 0.

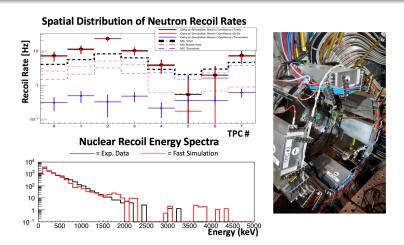
Lots of additional results found here!


BEAST Phase 2 System

Rest of Belle II detector operational as well!

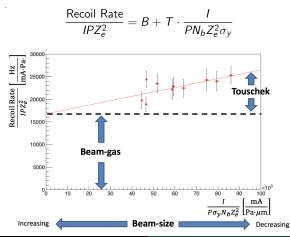

Detector	Unique Measurement		
FANGS	Synchrotron spectrum		
CLAWS	Injection Background		
PLUME	Tracklets with pointing		
Diamonds	Beam abort and ionizing dose		
He3	Thermal neutrons		
TPCs	Fast neutrons		
PIN	Radiation dose around QCS -> Collimator adjustment		
QCSS	X-ray and total loss distribution -> Collimator adjustment		

Phase 2 first observation of SR


SR observed in PXD, FANGS, and Diamonds. This was *post*-dicted by simulation after removing a Geant4 low energy cut. Extrapolated to phase 3 conditions and deemed safe, however still more work is needed

Phase 2 scraping backgrounds

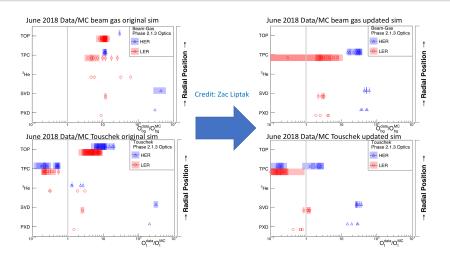
Large scraping backgrounds observed in HER. Optimizing collimators and beam orbit adjustments help reduce these (more in phase3 slides)


Phase 2 other results: Neutrons

Neutrons critical for several Belle II detectors (see table, p. 27). Spatial distribution and energy spectra in good agreement with simulation.

Phase 2 Principal Studies

- 1. HER study June 11th, 2018
- 2. LER study June 12th, 2018
- 3. HER study July 16th, 2018
- 4. LER study July 16th, 2018



Simulation Improvements

- 1. Improved Geant4 beam-pipe geometry inside QCS (a few improvements listed below)
 - Change beam pipe material from Tantalum to SUS316L
 - Modify beam pipe geometry to fit to the latest CAD drawing
 - Implement elliptical inner radius around QC1
- 2. Include beam-gas bremsstrahlung in all samples

Phase 1 and 2 background measurements provide feedback on simulation accuracy. Improved data/mc agreement is required for trustworthy extrapolations to design luminosity (see bottom of p.4)

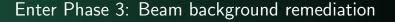
Phase 2 summary results after simulation improvements

Simulation reliability improved with these changes. Possible HER simulation problem.

Status at the end of Phase 2

Generally speaking, we want to measure, fully understand, and mitigate the following beam background components to safe levels

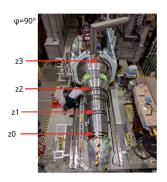
Background Component		
Touschek Beam-gas Coulomb Beam-gas Bremsstrahlung	SAD (accelerator tracking code) generates and tracks scattered particles. If lost near IP: passed to GEANT4.	Measured in Phases 1,2. Too high for early Phase Large data/mc discrepan Mitigate with collimators
Radiative Bhabha	BBBrem/BHWide → GEANT4	Expected to dominate in
QED 2-photon	Aafh → GEANT4	Marginal observation in F Lowest simulation uncert
Synchrotron Radiation	SR generation in GEANT4	measured in Phase 2. ~O
Injection BG	Injection particles provided by accelerator group → SAD → GEANT4	measured in Phases 1,2
Beam dust - Neutrons All of above		LER injection BG is ~ OK mitigation is purely expe
		(injection tuning) not sin
		_


mc discrepancy th collimators based on simulation dominate in Phase 3 servation in Phase 2 ulation uncertainty. n Phase 2, ~OK

early Phase 3

Phase 2 Takeaways

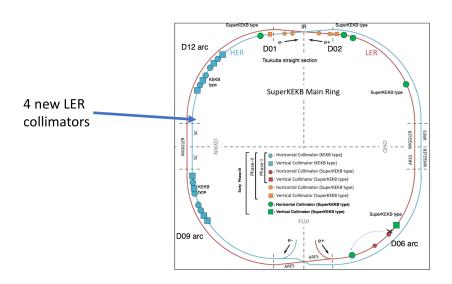
- Based on simulation corrected by data/MC, beam backgrounds must be reduced by a factor of 2 in short term and 10 in long term
- 2. Simulation reliability improved between phase 2 and phase 3
- 3. Simulation predicted that new phase 3 collimators will provide a factor of 5 reduction in single beam backgrounds


Belle II detector	Quantity	Expected value	Upper limit value	Safety factor	Dominant process(es)
PXD	occupancy	1.1%	3%	3	two-photon, synchrotron radiation
CDC	wire hit rate	400 kHz	200 Hz	0.5	radiative Bhabha, two-photon
CDC	electr. neutron flux	2.5	1	0.3	radiative Bhabha, Touschek
CDC	electr. dose rate	250 Gy/yr	100	0.3	radiative Bhabha, two-photon
TOP	PMT hit rate	5-8 MHz	1 MHz	0.2	radiative Bhabha, two-photon
TOP	PCB neutron flux	0.35	0.5	3	radiative Bhabha, Touschek
ARICH	HAPD neutron flux	0.3	1.0	3	radiative Bhabha
ECL	crystal dose rate	6 Gy/yr in BWD	10 Gy/yr	2	radiative Bhabha, two-photon

Remnants of the BEAST

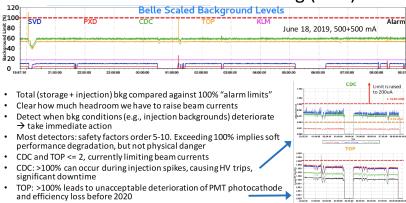
BEAST Detectors in Phase 3

- Most of "BEAST" retired
- A few dedicated BG detectors remain
 - Diamonds
 - CLAWS++ on QCS
 - · PINs on QCS
 - He-3 in tunnel
 - TPCs in tunnel
- BEAST online DAQ for BG monitoring via EPICS will keep running

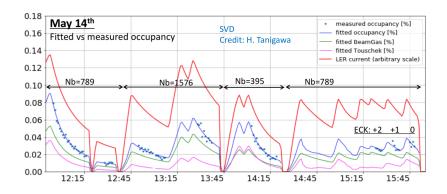


BEAST detectors are now primarily used to monitor conditions outside of the IR. Diamonds system now includes sensors around the beam pipe and throughout the QCS regions.

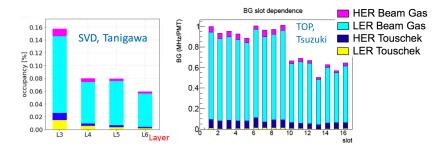
Rough background timeline


- 1. March-April 3rd:
 - $\beta_y^* = {\sf detuned} \to 8 {\sf mm} \to 6 {\sf mm} \to 4 {\sf mm} \to 3 {\sf mm}$ (stopped by fire accident)
- 2. April 25th-26th: Recover back to 3mm optics
- 3. May 9th and May 10th: Aggressive collimator studies (LER and HER, respectively)
 - reduced LER storage background by 20% and HER storage bkg by 50%
- 4. May 11th: LER Background Study
- 5. May 12th: HER Background Study
- 6. May 14th: LER Background Study with narrower collimators
- 7. June 9th: LER beam size study

Global picture (1)


Global picture (2)

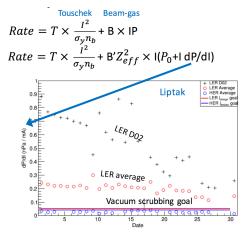
New: Online Rate Monitoring (BCG)


CDC and TOP were limiting max beam currents and hence, luminosity, in early phase 3.

Global picture (3)

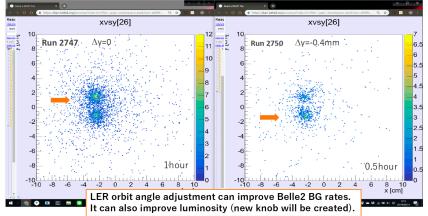
Combined Heuristic fits data well for SVD, TOP, and diamonds.

Global picture (4)

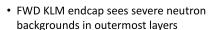

LER Beam-gas is dominant storage background in all detectors.

Global picture (5)

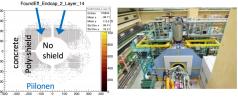
- · Why is LER beam gas bkg so high?
- Because dynamic pressure is high in all of LER, especially in DO2
- Possible options for reducing LER beam-gas
 - Modify IP beam steering
 - Add collimators
 - Modify optics to match existing collimators better
 - Reduce dynamic pressure
- Recommendation: pursue all four
- Dynamic pressure reduction via
 - Vacuum scrubbing with detuned beams,
 Belle II off
 - Beam pipe heating
 - Additional / improved pump

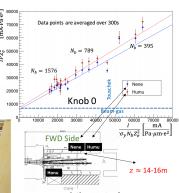

Note: may also improve Z_{eff}

Slide Credit: S. Vahsen



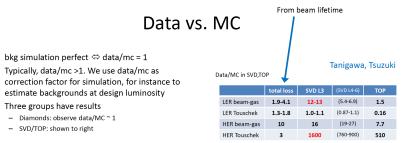
Global picture (6)


x-y view around z=+60cm Slide Credit: Nakayama-san before/after moving LER orbit downward



Global picture (7)

• May require additional shielding...



 Meanwhile TPCs (neutron detectors) observe large LER Touschek background

Extrapolating the Touschek rates seen in the TPCs provides an upper limit of $\mathcal{O}(10^{11})$ neutrons/year/cm² (above threshold of 65 keV) toward the FWD KLM endcap.

Global picture (8)

- Total loss rate data/MC <=10. SAD simulation reasonably accurate.
- · LER Touschek: good.

Three groups have results

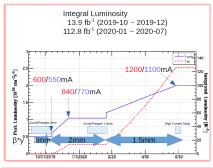
- SVD/TOP: shown to right

Diamonds: observe data/MC ~ 1

- HER Touschek: suspect simulation problem (MC rate is toooo small).
- · Beam gas: data/mc high even for total loss rate. Note that dynamic pressure is already accounted for in these ratios and does not include measured Z_{eff}. Need to investigate beam-gas normalization. Gas injection study?

Loss rates indicate that HER SAD simulation is fine, yet SVD and TOP both see large HER excesses in data indicating a potential problem in Geant4 HER simulation.

Roadmap through summer 2020


recently updated at 33rd B2GM

Credit: Nakavama-san

ASSUMPTIONS

(risky realistic)

- Integral Efficiency (~65%)
 - Integration Time Efficiency ~90%
 - 8H maintenance & 4H startup / 2weeks
 - 12H linac study / week
 SuperKEKB Availability 85%
 - Belle2 Availability 85%
 - Belle Availability 85%
 Availability @ 2019-06-02 is 89.6%
- Luminosity Performance
 Baseline: 0.5 x 10³⁴ @ 600/550mA(n.=1576, B*v=3mm)
 - No beam-beam parameter improvement
 - B*v staging: 2mm @ 2019-11 → 1.5mm @ 2020-02
 - Improvement by squeezing β^*y : $1/\sqrt{\beta^*y} \rightarrow 1/\beta^*y$ during operation period
 - Assuming detector background independence with β*y.
 Beam current limit improvement: x√2 @ 2019-12-12 → x2 @ 2020-06-24
 - Beam current limit improvement: x√2 @ 2019-12-12 → x2 @ 2020-06-- Assuming factor 2 improvement of CDC current limit until next summer.
 - Assuming no current limit for protecting detector.
- · Machine Study
 - No future beam development time is counted.

In this slide, we assume 2019 winter: 0.84/0.77A, beta_y*=2.0mm, L=1.0*10^34 2020 summer: 1.20/1.10A, beta_y*=1.5mm, L=2.0*10^34

Extrapolations through summer 2020

This extrapolation based on the scaling the latest BG measurement using machine parameters.

Another approach is being prepared, to scale the BG simulation with future optics, using latest Data/MC ratio.

In this slide, we assume

2019 winter: 0.84/0.77A, beta_y*=2.0mm, L=1.0*10^34 2020 summer: 1.20/1.10A. beta_y*=1.5mm, L=2.0*10^34

LER Touschek	2019 winter	2020 summer
Beam current (I^2)	x2(0.84A)	x4(1.2A)
Collimator reduction factor	x1	x1
Total	x2	х4

LER Beam-gas	2019 winter	2020 summer	
Beam current(I^2)	x2(0.84A)	x4(1.2A)	
1/beta_y*	x1.5	x2	
Vacuum scrubbing (dP/dI) *	x2/3	x1/2	
Collimator reduction factor **	x1	x1	
Total	x2	x4	

- * My personal guess
- ** "x1" might be optimistic. Vertical collimation at squeezed optics will be more difficult

- HER Touschek, HER Beam-gas are assumed to be much smaller than LER also in 2020.
- Lumi-BG is not yet measured in Phase3. We expect x2(x4) lumi-BG in 2019(2020) than now, which we assume to be smaller than LER BG.
- Based on these assumptions, LER beam-gas will be still a dominant background source in 2020

Simply increasing beam currents will lead to intolerable BG, even with vacuum scrubbing

- New LER collimator(s)
- Optics adjustments
- Intensive vacuum scrubbing

Concluding remarks

- Beam backgrounds are a critical issue at Belle II
- The Belle II beam background group has performed extensive measurements of single-beam backgrounds, which are the most uncertain
- Currently, LER beam-gas backgrounds in CDC and TOP limit the maximum beam currents, and hence the luminosity

Background remediation is ongoing work that requires careful coordination between accelerator and detector experts to ensure the safety and longevity of Belle II detectors

Useful Resources

Selected Papers

- 1. BEAST Phase 1 Paper: 101 page tome containing thorough descriptions and analyses of phase 1 backgrounds.
- 2. Shameless plug for the TPC development paper

For online background monitoring and online analysis

- Git repository with CSS OPI files that you can clone. (Requires DESY account and KEK VPN. There's a bit of a learning curve.)
- 2. List of PVs currently being archived.

For offline background analysis

- 1. Most recent background Monte Carlo campaigns
- 2. Phase3 summary data prepared by Zac Liptak
- Alternative phase 3 summary data prepared by Luka can be found at /home/belle/luka/public/background on KEKCC

Backup

Summary

Status

- Horizontal collimators are added after Phase 2, and they suppress Touschek bkg
- LER beam gas bkg now dominates (>= 70% of total background)
- CDC and TOP limit max beam currents
- Injection bkg bursts are a persistent problem, causing CDC HV trips
- QCS and (we think) beam-dust related background bursts endanger detectors

· Recommendations

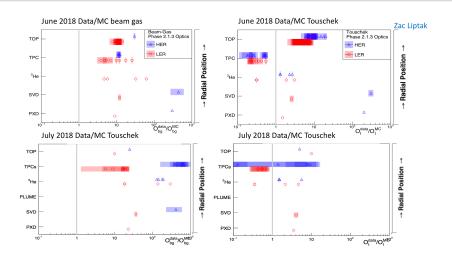
- LER beam gas reduction: beam steering study, optics modification, new vertical collimators, intense LER vacuum scrubbing
- Improve HER simulation for improved long-term bkg prognosis
- Check beam-gas normalization with gas injection study
- Improve injection further, especially for HER
- Improved / faster / redundant abort system (See Ikeda-san's talk later)

Minor/Major troubles

Minor

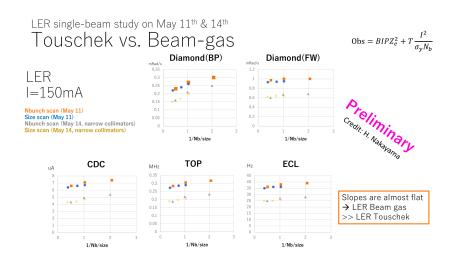
Impact on operation	Frequency
Injection stops for a minute	few per hour
Injection stops for few minute	1~2 per shift
Takes ~20min to accumulate the beam again	1~2 per day
Injection stops for ~30 minutes	several times during phase3
Takes few hours to resume QCS operation	several times during phase3
Damage on collimators or Belle2 sensors	several times during phase3
	Injection stops for a minute Injection stops for few minute Takes ~20min to accumulate the beam again Injection stops for ~30 minutes Takes few hours to resume QCS operation Damage on collimators or Belle2

Major

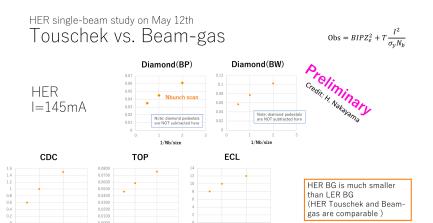

Beta Squeezing

Slide Credit: Morita-san

Phase	e βx* [mm]		Ву*	[mm]	State	L _{peak} cm ⁻² s ⁻¹	I _{LER} /I _{HER} , nb [mA]	Start	Important machine parameter eta_y^* !
	LER	HER	LER	HER					
2.0	384	400	48.6	81	Detuned for Beam Capture				$\sigma_{y}^{*} = \sqrt{\epsilon_{y} \beta_{y}^{*}}$
2.1.0	200			В	Collision	9.3 x 10 ³²	250/220, 600	04/16	
2.1.1	2	00		6	Collision	13.7 x 10 ³²	340/285, 789	05/22	Vertical beam size!
2.1.2	20	00		4	Collision	13.6 x 10 ³²	340/285, 789	05/28	
2.1.3	20	00	4	3	Collision	13.2 x 10 ³²	240/285, 789	06/08	SuperKEKB/Belle II • \$ = 8mm
2.1.4	20	00	:	3	Collision	10.5 x 10 ³²	320/265, 789	06/11	2018 (preliminary) 5 p = 6mm
2.1.5	10	00		4	Collision	10.9 x 10 ³²	340/285, 789	06/12	2.5 β ₁ = 4mm β ₂ = 3mm
2.1.6	200	100		4	Collision	19.0 x 10 ³²	340/285, 789	06/13	2
2.1.7	200	100		3	Collision	26.6 x 10 ³²	340/285, 789	06/20	1.5
2.2.0	20	00	:	2	Optics Correction			06/07	0.5
2.3.0	10	00		2	Not achieved				0 05/03 05/17 05/31 06/14 06/28 07/12

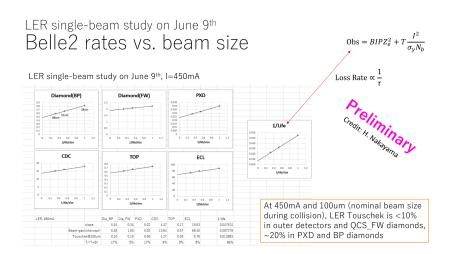

 β_y^* = 2mm in most recent runs and background levels were too high for Belle data taking! Ultimately, the goal is to push β_y^* to 0.27mm in LER and 0.30mm in HER so we've got a long way to go!

Phase 2 initial summary results

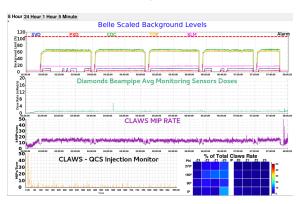

Overall, LER background rates dominate, but HER data rates $\mathcal{O}(1000)$ times higher than predicted?!

Early Phase 3 LER study results

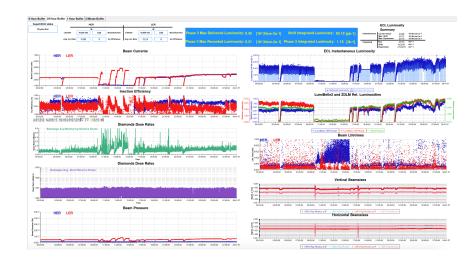
Early Phase 3 HER study results


1/Nb/size

1/Nb/size

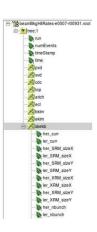

1/Nb/size

Early Phase 3 LER study results

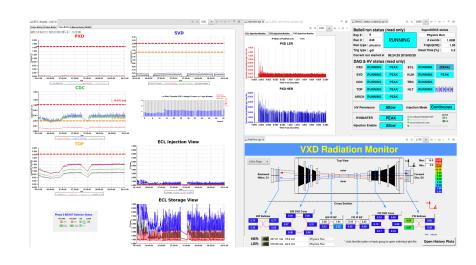


Live Online Monitoring

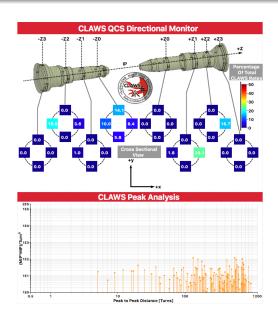
- Set of CSS displays that display live 1-second summary accelerator and detector data
- Displays EPICs process variables which are archived and can be accessed for real time "online" analysis
- Can be accessed on your local machine (links for instructions in the *Useful Resources* slide)



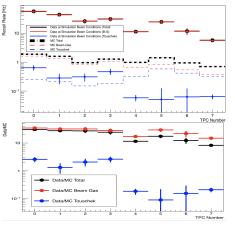
Live Online Monitoring

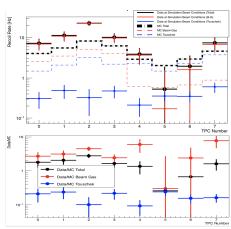


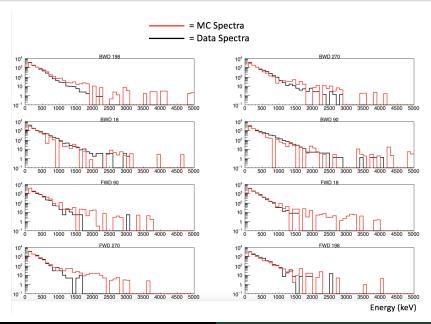
Offline global data


- Basf2 module now exists for producing Belle II detector summary ntuples (thanks to M. Staric and J. Bennett)
 - Modules and classes found: background/modules /BeamBkgHitRateMonitor/
 - Steering file: background/tools/beamBkgHitRates.py
- Belle II summary data is then merged with SuperKEKB data into a "global" ntuple that can be readily used for analysis

Live Online Monitoring

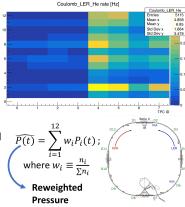



Live Online Monitoring


Recoil Rate Results June 2018 Studies

HER LER

Electron Ring Recoil Spectra June 2018 Studies


Pressure Reweighting Motivation

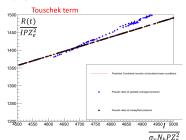
 We've been naively using the average pressure around the ring for background analyses

 Since pressure around the ring is not uniform, it would be better to use something that's more representative of exp. conditions

• Litmus test:

- Use MC that gives rate contributions for each of the 12 ring sections → won't follow the combined heuristic using average pressure
- Use these rates to come up with a weighted pressure (one for each TPC in LER and one for each TPC in HER)
- 3. Show that using this weighted pressure "reconstructs" the combined heuristic

Pressure Reweighting Test Results


• To test this new reweighted pressure with the combined Heuristic, we come up with "pseudo"-rates, R(t), where beam gas is scaled to pressure conditions in data:

$$R(t) \equiv \sum_{i=0}^{12} n_{i,BG}^{MC} \left(\frac{P_i^{data}(t)}{P^{MC}} \right) + \sum_{i=0}^{12} n_{i,T}^{MC} \xrightarrow{\text{Pseudo-rates}}$$

Beam-gas term

Note: $P_i^{data}(t)$ is the spatially averaged CCG pressure reading in region D-i; $i \in [1,12]$

Compare
$$\frac{R(t)}{I_{MC}PZ_e^2} = B + T \cdot \frac{I_{MC}}{PZ_e^2\sigma_y N_b}$$
 for $P(t) = \overline{P(t)}$ and $\widehat{P(t)} = \sum_{i=1}^{12} w_i P_i(t)$

Pressure Reweighting Remarks

- Pressure reweighting using $\widehat{P(t)} = \sum_{i=1}^{12} w_i P_i(t)$, where the P_i 's are the average CCG pressure reading for the ith ring section in data yields only marginal differences in predicted B and T
- Using the average CCG pressure reading in each ring section is a step better than using the average CCG pressure reading over the entire ring, but it still may be overly simplified
- We have not included any dynamic pressure corrections
 - From p. 49 of phase 1 paper: $P_{beam} = 3 \cdot P_{CCG} 2 \cdot P_{base}$
 - In phase 1 LER, $P_{CCG} \gg P_{base}$ so we're overestimating B by nearly a factor of 3!
 - We must include dynamic pressure corrections as they are more representative of experimental conditions and may also improve agreement in data/MC