

Concerted Flows: Infrastructure for Terabit/s Data Transfer

Venkat Vishwanath

venkat@anl.gov

Raj Kettimuthu, Eunsung Jung+, Jun Yi*, Steve Tuecke, Mark Hereld, Mike Papka, Bob Grossman and Ian Foster

Argonne National Laboratory

rgonne Terabit/s Data Transfer

Objectives

- Develop new parallel protocols that scale to Terabit/s networks
- Capture the diverse flow characteristics and needs of applications
- Create data transfer benchmark kernels for representative applications
- Exploit parallel end system topology

Impact

- Enable DOE applications to make effective use of future end systems and advanced network infrastructure
- Build knowledge base capturing the data transfer patterns of several DOE applications

Progress and Accomplishments

- Application kernel for tomography workflow at Advanced Photon Source
- Abstraction to evaluate multiple protocols
- Developed a prototype end system aware and network aware parallel data movement
- End system aware data movement achieves up to 3x improvement in throughput

Tomography at APS

Current

Experimental-time analysis is critical for enabling interactive changes to experiment parameters

Data processed – 5.6 TB/day

Data distributed to users – 3.3 TB/day

Simulation-time Data Staging, Analysis and Visualization of FLASH Astrophysics Simulation

Intrepid BG/P Compute Resource

Simulation-time data analysis is critical to reduce the data written to storage and to generate faster insights. This is of critical importance for doing productive science at Petascale and beyond.

Data Movement Trends

Disk-to-Disk Transfers

Memory-to-Memory Transfers

Disk-to-Memory Transfers

Memory-to-Disk Transfers

Data Movement is being increasingly characterized by Parallel M-to-N Data Flows

Characteristics of Application Flows

Арр	Type of Flow	# of Flows	BW	Latency	Burstine ss	Size	Protocol	
Globus Online	Data	1 per node	High	Ν	Y	Large	TCP, UDT	
	Control	1 per session	Low	Y	Y	Small	ТСР	
APS	Data	1 per detector	High	Ν	Y	Large	ТСР	
	Control	1 per app	Low	Y	Y	Small	ТСР	
FLASH Simulation- time Analysis	Data	1 per core	High	N*	Y	Variable	TCP, RDMA	
	Control	1 per app	Low	Y	У	Small	TCP, RDMA	
ENZO Remote Viz	Data	1 per display	High	Y	Ν	Large	TCP, UDP	
	Control	1 per app	Low	Y	Y	Small	ТСР	

A mechanism to characterize and model an application's data movement behavior will be critical to better architect future networks **End Systems**

Applications need to contend with the deep and complex system hierarchies and take advantage of parallelism in the various sub-systems

Objectives

- Develop concerted flows API
 - Capture the requirements of the application
 - Capture the characteristics of various components in the end-to-end path
 - Network, End-systems
- Create data transfer kernels for representative applications
 - Flash, Enzo, Select APS beamlines, Globus Online
- Benchmarking utilities for concerted flows (M-to-N)
- Performance optimizations at end systems and in a LAN

APS Tomography Data Workflow

APS Facility

Home Institution

Realtime analysis and reconstruction is of increasing importance for APS

Modeling Application Behavior using Code Skeletons

Language features:

- Control flow
 - Parallelism
 - Reduction
 - Loops
 - Function calls
- Data flow
 - Arrays and data types
 - Indices in accesses
 - Allocation / Deallocation

- Communication
 - Point-to-point
 - Collective operations
- Characteristics
 - Instruction mix
 - Computation intensity

Investigating using code skeletons and swift to model the data movement characteristics of applications

Resource Aware Data Movement

of simultaneous transfers

Disk-to-Disk throughput over heterogeneous nodes (combination of 1G and 10G on 4 nodes) between Argonne and NERSC using resource aware data movement has **300% improvement** over current GridFTP mechanisms

Optimizing for Storage Systems

Exploiting parallelism using multiple I/O and network threads is critical for improving end-to-end transfer time

Improving Data Movement: Multipathing

ANL and NERSC

UMichigan and Caltech

Exploiting both dedicated and best-effort paths improves the achievable throughput

Publications

- "Toward Characterization of Data Movement in Large-Scale Scientific Applications", Jun Yi, Rajkumar Kettimuthu, and Venkatram Vishwanath, 8th IEEE International Conference on eScience, Oct. 2012.
- "Exploiting Network Parallelism for Improving Data Transfer Performance", Daniel Gunter, Rajkumar Kettimuthu, Ezra Kissel, Martin Swany and Jason Zurawski, IEEE/ACM Annual SuperComputing Conference (SC12) Companion Volume, Nov 2012.
- "Accelerating Data Movement Leveraging Endsystem and Network Parallelism", Jun Yi, Raj Kettimuthu, Venkatram Vishwanath, IEEE/ACM Annual SuperComputing Conference (SC12) Worskhop on Network-aware Data Management

M-to-N Data Movement Demo

- Parallel Memory-to-Memory Data Movement
- 24 Nodes of the ALCF Eureka Cluster
 - Each Node has a 10G Myrinet Network Interface
- Parallel Data Movement leverages XIO enabling one to test various protocols by swapping drivers
 - Current demo will use the TCP drivers
- Data Movement exploits parallelism within a node by using multiple threads

Questions

