EICUG Working Group on the Interaction Region
Video Conference on High Precision Luminosity Measurements
15 February 2019

Charles Hyde
chyde@odu.edu
Old Dominion University
EICUG IR working group co-convener
Purpose of Meeting

• Review previous techniques / achievements / limitations for precision luminosity measurements.
• Review luminosity precision requirements for EIC physics program
• Stimulate necessary R&D efforts for EIC program
Techniques

• Van der Meer Scans
• Total Absorption Bremsstrahlung Calorimeter at 0°
• Small angle (2-10 mrad) “QED Compton”
 • $^A_Z(e,e' \gamma)^A_Z$
• Forward Pair spectrometer (thin convertor):
 $\gamma \rightarrow e^+e^-$
Challenges

• Absolution Precision < 2%
• Relative Precision < 1%
• Polarization dependence
• 100x → 1000x greater luminosity than HERA
• Valid for ep to eU
 • Polarized p, d, ³He, Li
• Bunch-by-Bunch measurements (time-averaged)
 • Emittance growth & polarization can be bunch specific
Program

- Following (backup) slides review some previous methods, and give references
Van der Meer Scans

• Absolute determination of Luminosity
 • Monitor a physics rate as the colliding beams are scanned across each other in 2D
 • Requires precision measurement of beam currents and collision centroid stability (3-D)
 • Does not require a priori knowledge of cross section.

• Interrupts experimental data taking
 • Not a continuous monitor

• V. Balagura, NIM A 654 (2011) 634–638
 • RHIC: (IPAC’10, Kyoto Japan, May 2010 proceedings)
 • K.A. Drees, S.M. White, Vernier scan results from the first RHIC proton run at 250 GeV,
 • LHC:
Bremsstrahlung

• At $\mathcal{A} = 10^{33}$/cm2/sec:
 - Bremsstrahlung power ~ 0.04 Watt
 - Angular distribution dominated by rms angular spread of e^- beam: Photon $rms \approx 4$ mm @ 20 m
 - Total Absorption ECal dose (10^7 sec exposure per year)
 - 0.4 MGray/year
 - Each photon absorbed in ~ 1 kg of high-Z material
 - Calorimeter options
 - Liquid Argon
 - Quantameter (SLAC 1960s): Alternating HV plates in vacuo
 - D. Yount, NIM 52 (1967) 1–14
 - Calibrate with electron beam?
 - Pair Spectrometer (ZEUS method)
 - Rate is tunable (detector out of synchrotron and brem beam)
QED Compton: HERA experience

• Challenges:
 • acceptance, alignment, absolute precision

 • DOI 10.1140/epjc/s10052-012-2163-2
 • Erratum DOI 10.1140/epjc/s10052-014-2733-6
 • Electron gamma detection at 10° to 25° from e⁻-beam

• Theory:
 • K. Gaemers, M. van der Horst, Nuclear Physics B 316 (1989) 269-288: (Small angle theory, simulation)

• Compton22 Generator:
Luminosity Monitor: HERA Summary

Luminosity Detector

Concept:
- Use Bremsstrahlung $ep \rightarrow ep\gamma$ as reference cross section
- different methods:
 - Bethe-Heitler, QED Compton, Pair Production
 - Hera: reached 1-2% systematic uncertainty

Goals for Luminosity Measurement:
- Integrated luminosity with precision $\Delta L/L < 1\%$
- Measurement of relative luminosity:
 - physics-asymmetry/10 $\rightarrow 10^{-4}$ - 10^{-5}

EIC challenges:
- with 10^{32} cm$^{-2}$s$^{-1}$ one gets on average 23 bremsstrahlungs photons/bunch for proton beam
 - A-beam Z^2-dependence
- Need more sophisticated solution
- BH photon core < 0.03 mrad
 - acceptance completely dominated by lepton beam size

Set up at ZEUS

At H1

- pair spectrometer low rate
 - High precision measurement for physics analysis
 - The calorimeters are outside of the primary synchrotron radiation fan

- zero degree photon calorimeter high rate
 - Fast feedback for machine tuning
 - measured energy proportional to # photons
 - subject to synchrotron radiation