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Why QCD evolution is interesting?
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Parton distribution: energy dependence

§ Experiments operate in very different kinematic ranges
§ Typical hard scale Q is different: Q ~ 1 – 3 GeV in SIDIS, Q ~ 4 – 90 GeV in pp

§ Also center-of-mass energy is different

§ Such energy dependence (evolution) has to be taken into account 
for any reliable QCD description/prediction

§ Both collinear PDFs and TMDs depend on the energy scale Q at 
which they are measured, such dependences are governed by 
QCD evolution equations
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Divergence and evolution

§ Divergence leads to evolution
§ Ultraviolet divergence: renormalization group equation, e.g. running of coupling 

constant

§ Collinear divergence: DGLAP evolution of collinear parton distribution function, 
fragmentation function, semi-inclusive jet function

§ Rapidity divergence (light-cone singularity): TMD evolution
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Understanding QCD: running coupling (asymptotic freedom)

§ Rough qualitative picture: due to gluon carrying color charges
§ Value of the strong coupling αs depends on the distance (i.e., energy)
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Why does the coupling constant run?

§ Leading order calculation is simple: tree diagrams – always finite

§ Study a higher order Feynman diagram: one-loop, the diagram is 
divergent as q → ∞

§ Make sense of the result: redefine the coupling constant to be 
physical
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Renormalization (Redefine the coupling constant)

§ Renormalization
§ UV divergence due to “high momentum” states

§ Experiments cannot resolve the details of these states 

§ Combine the “high momentum” states with leading order
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QCD factorization

§ Take deep inelastic scattering as an example

§ Proton structure: encoded in PDFs

§ QCD dynamics at high-energy scale Q
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What about higher order?

§ pQCD calculations: understand and make sense of all kinds of 
divergences
§ Ultraviolet (UV) divergence                 : renormalization (redefine coupling 

constant)

§ Collinear divergence             : redefine the PDFs and FFs 

§ Soft divergence                : usually cancel between real and virtual diagrams for 
collinear PDFs/FFs; do not cancel for TMDs, leads to new evolution equations

§ Going beyond the leading order of the DIS, we face another 
divergence
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QCD dynamics beyond tree level

§ Going beyond leading order calculation
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QCD factorization: beyond parton model

§ Systematic remove all the long-distance physics into PDFs
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Scale-dependence of PDFs

§ Logarithmic contributions into parton distributions

§ Going to even higher orders: QCD resummation of single logs
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DGLAP evolution = resummation of single logs

§ Evolution = Resum all the gluon radiation

§ By solving the evolution equation, one resums all the single 
logarithms of type
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§ Perturbative change:

§ Feynman diagrams for unpolarized PDFs 
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Evolutions of PDFs
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PDFs also depends on the scale of the probe

§ Increase the energy scale, one sees parton picture differently

15

Q2
0 Q2 > Q2

0

ZEUS

0

1

2

3

4

5

1 10 10
2

10
3

10
4

10
5

F
2
 

em
-l

o
g

1
0
(x

)

Q
2
(GeV

2
)

ZEUS NLO QCD fit

tot. error

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5
x=0.000102

x=0.000161
x=0.000253

x=0.0004
x=0.0005

x=0.000632
x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65



QCD evolution: meaning

§ Evolution = include important perturbative corrections
§ DGLAP evolution of collinear PDFs: what it does is to resum the so-called single 

logarithms in the higher order perturbative calculations

§ TMD factorization works in the situation where there are two 
observed momenta in the process, Q>>qt: what it does is to 
resum the so-called double logarithms in the higher order 
perturbative corrections
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Energy dependence of TMDs

§ Experiments operate in very different kinematic ranges
§ Typical hard scale Q is different: Q ~ 1 – 3 GeV in SIDIS, Q ~ 4 – 90 GeV in pp

§ Also center-of-mass energy is different

§ Such energy dependence (evolution) has to be taken into account 
for any reliable QCD description/prediction

§ Both collinear PDFs and TMDs depend on the energy scale Q at 
which they are measured, such dependences are governed by 
QCD evolution equations
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Another important concept: gauge link

§ The correlator is not gauge invariant (without gauge link)
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How gauge link appears

§ Take DIS as an example
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They can be resumed to all orders

§ Gauge link: eikonal line
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TMD factorization in a nut-shell

§ Drell-Yan:

§ Factorized form and mimic “parton model”
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Divergence and evolution

§ Divergence leads to evolution
§ Ultraviolet divergence: renormalization group equation, e.g. running of coupling 

constant

§ Collinear divergence: DGLAP evolution of collinear parton distribution function, 
fragmentation function, semi-inclusive jet function

§ Rapidity divergence (light-cone singularity): TMD evolution

§ What is rapidity divergence?
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Different ways to regularize rapidity divergences

§ There are different ways to regularize rapidity divergences
§ Off-light-cone

§ !-regulator

§ Analytic regulator 

§ Rapidity regulator 

§ Exponential regulator 

§ Rapidity regulator
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TMD evolution in b-space

§ Quark TMD at one loop

§ Soft factor

§ Interesting features
§ Rapidity divergence cancels in 

§ fq/q(x, b) and S(b) lives in the same ! ~ !b, but different rapidity scale " ~ p+, !b

§ Two evolution equations: !-RG and "-RG
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TMD evolution in b-space

§ Solution of TMD evolution equations

§ The well-known CSS solution
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§ Fourier transform back to the momentum space, one needs the whole b 
region (large b): need some non-perturbative extrapolation
§ Many different methods/proposals to model this non-perturbative part

§ Eventually evolved TMDs in b-space

TMD evolution contains non-perturbative component
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Different treatments at large b

§ In terms of b* prescription (see also other proposals Qiu, Vogelsang)

§ Non-perturbative Sudakov factor 
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TMD evolves

§ Just like collinear PDFs, TMDs also depend on the scale of the 
probe = evolution
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TMD global analysis

§ Outline of a TMD global analysis: numerically more heavy
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SIDIS structure functions
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Structure functions related to TMDs

§ Sivers term

§ Collins term

§ etc: total 18 terms
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Drell-Yan: 48 structure functions
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TMD hadron distribution inside the jet?

§ Definition

§ Factorization formalism

§ Re-factorization of semi-inclusive fragmenting jet function
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What’s different for hadron in the jet?
§ Soft radiation has to happen inside the jet

§ For single inclusive jet production, first we produce a high-pt jet
§ This process only involves hard-collinear factorization, and such a process is not 

sensitive to any soft radiation
§ This is the usual standard “collinear factorization”

§ Once such a high-pt jet is produced, we further observe a hadron inside the jet
§ At this step, we measure the relative transverse momentum of hadron w.r.t the jet. 

For such a step, soft radiation matters
§ However, only those soft radiation that happens inside the jet matters
§ Restricts soft radiation to be within the jet: cuts half of the rapidity divergence

§ Rapidity divergence cancel between restricted “soft factor” and TMD FFs
§ At least up to this order, the combined evolution is the same as the usual TMD 

evolution in SIDIS, DY, e+e-; justify the use of same TMD evolution here
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TMD + DGLAP evolution

§ Evolution structure

§ TMD FFs thus are related to the usual TMD FFs in SIDIS at scale 
pT*R

§ Thus hadron TMD distribution inside the jet could be used to test 
the universality of TMD FFs from SIDIS, e+e- processes
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Hadron TMD distribution inside jets

§ Unpolarized p+p collisions: very sensitive to gluon TMDs

§ If we want to be able to compare gluon TMDs in p+p and e+p, 
then p+p measurements are essentially necessary

§ Issue of non-global logarithms (NGLs)?
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§ Collins asymmetry can also be studied through the azimuthal 
distribution of hadrons inside a jet in p+p collisions

§ Such an asymmetry has been measured by STAR at RHIC
§ Could be used to test the universality of the Collins functions

Collins asymmetry in p+p
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Calculated Collins azimuthal asymmetry
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§ Test universality of Collins function between e+p, e+e, and p+p
§ Test TMD evolution



Jet fragmentation functions in Z+jet

§ zh distribution

§ For the reason mentioned, a direct comparison with LHCb data on 
jT distribution does now work well
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Summary
§ TMDs open a new door for us to study structure of the nucleon and 

QCD dynamics, and much more

§ Nucleon as a QCD “laboratory”: in particular topics/ideas that are 
similar to those in AMO/Condensed Matter Physics
§ Quantum correlation: spin-spin correlation, spin-orbit correlation, orbital motion, 

quantum phase interference effects …
§ 3D imaging of the nucleon at the most fundamental level

§ Exciting opportunities: lots of experiments activities/measurements 
being/to be performed/planned in current and future experimental 
facilities
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