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Why QCD evolution is interesting?

Study of evolution gives us insight on different aspects and origin
of confined motion of partons, gluon radiation, parton fragmentation

Gluon shower

Emergence of a hadron
hadronization

Confined motion

Evolution allows to connect measurements at very different scales.

TMD evolution has also a universal non-perturbative part. The result of evolution cannot be
uniquely predicted using evolution equations untill the non-perturbative part is reliably
extracted from the data.
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Parton distribution: energy dependence

= Experiments operate in very different kinematic ranges
=  Typical hard scale Q is different: Q ~ 1 -3 GeV in SIDIS, Q ~4 - 90 GeV in pp
= Also center-of-mass energy is different

= Such energy dependence (evolution) has to be taken into account
for any reliable QCD description/prediction

= Both collinear PDFs and TMDs depend on the energy scale Q at
which they are measured, such dependences are governed by
QCD evolution equations

Collinear PDFs TMDs

F(z,Q) F(x,k1;Q)
Q5 Q* > Qf




Divergence and evolution

= Divergence leads to evolution

= Ultraviolet divergence: renormalization group equation, e.g. running of coupling
constant

= Collinear divergence: DGLAP evolution of collinear parton distribution function,
fragmentation function, semi-inclusive jet function

= Rapidity divergence (light-cone singularity): TMD evolution




Understanding QCD: running coupling (asymptotic freedom)

+

£
+-_® .
+ "+

Screening: Qiepy (1) T as 1 |

20, (0
acD: G190 =Ba) <0

Compare

) O iy (Qz)
QED: dInQ?

2004 Nobel Prize in Physics

@ » |NNLO

Inelastic Scattering
¢*< Annihilation

Hadron Collisions

Heavy Quarkonia

Oe¢ © b|NLO

275 MeV —— 0.123
220 MeV—0.119 |
175 MeV —=0.115

=,B(aEM) > ()

Rough qualitative picture: due to gluon carrying color charges
Value of the strong coupling as depends on the distance (i.e., energy)
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Why does the coupling constant run?

= Leading order calculation is simple: tree diagrams — always finite

= Study a higher order Feynman diagram: one-loop, the diagram is
divergentas q — «

= Make sense of the result: redefine the coupling constant to be
-




normalization (  define the coupling constant)

= Renormalization
= UV divergence due to “high momentum” states
= Experiments cannot resolve the details of these states
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Low momentum state High momentum state
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= Combine the “high momentum” states with leading order

LO: ~o + }Ffv = g(p) Renormalized coupling




QCD factorization

= Take deep inelastic scattering as an example
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Parton Distribution Functions (PDFs):

fq,g/proton (37) Probability for finding a parton in a
proton with momentum fraction x

Uproton(Q) — fq,g/proton(x) & 5-q,g(Q)

measured extracted calculable

= Proton structure: encoded in PDFs

dynamics at high-energy scale O




What about higher order?

= pQCD calculations: understand and make sense of all kinds of
divergences

= Ultraviolet (UV) divergence k —> o0: renormalization (redefine coupling
constant)

= Collinear divergence k//P: redefine the PDFs and FFs

= Soft divergence k —> () : usually cancel between real and virtual diagrams for
collinear PDFs/FFs; do not cancel for TMDs, leads to new evolution equations

= Going beyond the leading order of the DIS, we face another
divergence




QCD dynamics beyond tree level

= Going beyond leading order calculation
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Collinear dlvergence"' (from k¥ ~ 0)

= /d“k _'i_ = 50 kf = (k + k_q)“ = 2FEFE, (1 —cosf)
k$+ie k

2—1(

< kI ~ 0 intermediate quark is on-shell

lap — o<
% gluon radiation takes place long before the photon-quark interaction
= a part of PDF

Partonic diagram has both long- and short-distance physics >




QCD factorization: beyond parton model

= Systematic remove all the long-distance physics into PDFs
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Scale-dependence of PDFs

" Logarithmic contributions into parton distributions
q
vyt 4 u - 2 %
C(Q*/1?)

= Going to even higher orders: QCD resummation of single logs




DGLAP evolution = resummation of single logs

= Evolution = Resum all the gluon radiation
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= By solving the evolution equation, one resums all the single
~ logarithms of type /ﬂ =
- o In v




Evolutions of PDFs

= Perturbative change:
Qs Q* > Qf

= Feynman diagrams for unpolarized PDFs
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PDFs also depends on the scale of the probe

" [ncrease the energy scale, one sees parton picture differently
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QCD evolution: meaning

= Evolution = include important perturbative corrections

= DGLAP evolution of collinear PDFs: what it does is to resum the so-called single
logarithms in the higher order perturbative calculations

= TMD factorization works in the situation where there are two
observed momenta in the process, Q>>qgt: what it does is to

resum the so-called double logarithms in the higher order

perturbative corrections
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Energy dependence of TMDs

= Experiments operate in very different kinematic ranges
=  Typical hard scale Q is different: Q ~ 1 -3 GeV in SIDIS, Q ~4 - 90 GeV in pp
= Also center-of-mass energy is different

= Such energy dependence (evolution) has to be taken into account
for any reliable QCD description/prediction

= Both collinear PDFs and TMDs depend on the energy scale Q at
which they are measured, such dependences are governed by
QCD evolution equations

Collinear PDFs TMDs

F(z,Q) F(z,k1;Q)




Another important concept: gauge link

= The correlator is not gauge invariant (without gauge link)
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Take DIS as an example
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How gauge link appears
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They can be resumed to all orders

= Gauge link: eikonal line

®(z,S) ~ (P, S|1(0) Ujp,oo-] Upoo- e-1%(€) | P, S




TMD factorization in a nut-shell
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Factonzatlon of regions:
(1) k//Py, (2) k//P5, (3) k soft, (4) k hard

f(x2,k21)
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= Factorized form and mimic parton mode
do

X /kou d°koy d*X ) H(Q) f (w1, k11) f(wa, kot )S(AL)6* (k1L + kot + AL —qu)

dQ*dyd?q.
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Divergence and evolution

= Divergence leads to evolution

= Ultraviolet divergence: renormalization group equation, e.g. running of coupling
constant

= Collinear divergence: DGLAP evolution of collinear parton distribution function,
fragmentation function, semi-inclusive jet function

= Rapidity divergence (light-cone singularity): TMD evolution

= What is rapidity divergence?




Different ways to regularize rapidity divergences

= There are different ways to regularize rapidity divergences
= Off-light-cone
= S-regulator

Collins, Soper 79, ...

Chiu, Fuhrer, Hoang, Kelley, Manohar, 09, Echevarria, Idilbi, Scimemi, 11, ...

. Analytic regU|ator Becher, Bell, 11, ...
* Rapidity regulator Chiu, Jain, Neill, Rothstein, 11, 12, ...
=  Exponential regulator Li Neill, zhu, 16, ...

= Rapidity regulator
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TMD evolution in b-space

= Quark TMD at one loop
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= Soft factor

My = 2 E /b

" |nteresting features
» Rapidity divergence cancels in F3j¢(z,b) = fq/q(x,b)y/S(b)
= foq(x b) and S(b) lives in the same u ~ uyp, but different rapidity scale v ~ p*, u,

= Two evolution equations: u-RG and v-RG
d
,u@ In fo/q(z,b) = 'y,f ,u% InS(b) = ’yf
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TMD evolution in b-space

= Solution of TMD evolution equations "
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A = Z A(n) (%)n B — Z B(n) (%)n Collins-Sopoer-Sterman papers
™ - ) _ - Kang, Xiao, Yuan, PRL 11,
n=1 — Aybat, Rogers, Collins, Qiu, 12,
Aybat, Prokudin, Rogers, 12,
Sun, Yuan, 13,
Echevarria, |dilbi, Schafer, Scimemi, 13,
) Echevarria, Idilbi, Kang, Vitey, 14,
Only valid for small b Kang, Prokudin, Sun, Yuan, 15, 16, ...




TMD evolution contains non-perturbative component

= Fourier transform back to the momentum space, one needs the whole b
region (large b): need some non-perturbative extrapolation

= Many different methods/proposals to model this non-perturbative part

s

Collins, Soper, Sterman 85, ResBos, Qiu, Zhang 99, Echevarria, Idilbi, Kang, Vitev, 14,
Aidala, Field, Gamberg, Rogers, 14, Sun, Yuan 14, D’Alesio, Echevarria, Melis, Scimemi,
14, Rogers, Collins, 15, ...

= Eventually evolved TMDs in b-space

F(z,b;Q) ~ G @ (@, e/b") < exp (~Snon-pert (- Q))

/ \

longitudinal/collinear part transverse part v" Non-perturbative: fitted from

data |
Since the polarized scattering data is still limited kinematics, we v The key ingredi

can use unpolarized data to constrain/extract the key ingredient
for the non-perturbative part




Different treatments at large b

= |n terms of b* prescription (see also other proposals Qiu, Vogelsang)

b* prescription o, Gev ) . exp prescription

2e—E oo bmax o o o ol
— 4f 3 b —
/#b' b* z';" b}
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L b 0 1 2 3 4 bmax
b by [GeV' ']
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= Non-perturbative Sudakov factor

exp :—gsz In(Q/Qo) + - ] CSS, Echevarria, Idlibi, Kang, Vitev, 14, ...

exp [ o BBJEN) 10 (Q/ Qo) + - -

Aidala, Field, Gamberg, Rogers, 1401.2654, Sun, Isaacson, Yuan, Yuan, 1406.3073
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TMD evolves

= Just like collinear PDFs, TMDs also depend on the scale of the

probe = evolution

Collinear PDFs

F(z,Q)
v" DGLAP evolution

v’ Resum [053 ln(QQ/ILLQ)] .

v' Kernel: purely perturbative

TMDs
F(ZB, kJ_? Q)

v' Collins-Soper/rapidity
evolution equation

v" Resum [Ozs 1H2(Q2/ki)] .

v' Kernel: can be non-
perturbative when k1 ~ Agcp

F(LU, kJ_a QZ)

RTMD(ZU7 kJ_a Qia Qf)

|

F(:Ca kJ_a Qf)




TMD global analysis

= Qutline of a TMD global analysis: numerically more heavy

Model ansatz for TMDs

with initial set of parameters

a

Model ansatz for non- Evolve TMDs to relevant scale
perturbative evolution kernel with TMD evolution

Fourier transform back to
momentum space

all data points
adjust parameters

calculate the cross
section/asymmetry as well as

X2

1

yes

¥2 minimum?



SIDIS structure functions
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Structure functions related to TMDs

= Sjvers term

sin — ﬁ *
FUT%h l=c [— AnglJ’:l’Dl] :

= Collins term

h-kp
My,

Flj'i;‘(¢h+¢3) —C [_ thiL]

= etc: total 18 terms

C[’wa] =T Z eﬁ/dsz Pk 5 (PT —kr — PhJ_/Z) w(pr, kr) f(z,p%) D*(2, k7),




Drell-Yan: 48 structure functions
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TMD hadron distribution inside the jet?

= Definition o

F( , ) do™ do h
ZhyJLl; — :

Ry J L5 PT dprdndzd?j ./ dprdn

Zh = pk_lr/ pjz?t

j1 : hadron transverse momentum with respect to the jet direction

= Factorization formalism
Kang, Liu, Ringer, Xing, 1705.08443

do
dprdndznd?j |

X Z fa ) fb ®Hab—>c ®g?(2,2h,WJR,jJ_,,LL)

a,b,c
= Re-factorization of semi-inclusive fragmenting jet function

G (2, 2h,wiR, j1, 1) =Hesi(2,wsR, 1) /d2k¢d2>\¢52 (zpAL + kL —71)

X Dh/i('zh7 kJ.):“’) V)S;




What'’s different for hadron in the jet?

= Soft radiation has to happen inside the jet
= For single inclusive jet production, first we produce a high-pt jet

= This process only involves hard-collinear factorization, and such a process is not
sensitive to any soft radiation

»= This is the usual standard “collinear factorization”

o0 d tan? % d
/ —y = —y P ZCDE
o Y 0 Y § c
g—l—
~Y 6—— , b

=  Once such a high-pt jet is produced, we further observe a hadron inside the jet

= At this step, we measure the relative transverse momentum of hadron w.r.t the jet.
For such a step, soft radiation matters

=  However, only those soft radiation that happens inside the jet matters
= Restricts soft radiation to be within the jet: cuts half of the rapidity divergence

= Rapidity divergence cancel between restricted “soft factor” and TMD FFs

= At least up to this order, the combined evolution is the same as the usual TMD
evolution in SIDIS, DY, e+e-; justify the use of same TMD evolution here

B /S5 D" —5(b. R)D"(:




TMD + DGLAP evolution

= FEvolution structure

-l Resum In(R)

DGLAP evolution |

pg ~pr X R

TMD evolution (#h, 1) Evolve TMD FFs from u, to pT*R
My ~ 1/b

= TMD FFs thus are related to the usual TMD FFs in SIDIS at scale
pT*R

= Thus hadron TMD distribution inside the jet could be used to test
the universality of TMD FFs from SIDIS, e+e- processes




Hadron TMD distribution inside jets

= Unpolarized p+p collisions: very sensitive to gluon TMDs

= |f we want to be able to compare gluon TMDs in p+p and e+p,
then p+p measurements are essentially necessary

35 “““““““““““““““““““
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sue of non-global logarithms (NGLsS)?  Dasgupta, Salam, 01, Banfi




Collins asymmetry in p+p

= Collins asymmetry can also be studied through the azimuthal
distribution of hadrons inside a jet in p+p collisions

P [S1(89)] +p = lieth(gm)] + X

do
dyd?p' dzd2 jr

= Fyy + sin(¢g — ¢H)F(S]i;(¢s_¢H)

Jjr
ZMh

jr : hadron transverse momentum with respect to the jet direction

Hi (2, 1) ® Hyp o™ (3, £, 4)

F(SJi;(¢S_¢H) x hi(r1) ® fb/B(ajg) %Y

= Such an asymmetry has been measured by STAR at RHIC

=  Could be used to test the universality of the Collins functions
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Calculated Collins azimuthal asymmetry
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without TMD evolution

P
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= Test universality of Collins function between e+p, e+e, and p+p

Test TMD evolution

Kang, Prokudin, Ringer, Yuan, 1707.00913




Jet fragmentation functions in Z+jet

=z dIStrl bution Kang, Lee, Terry, Xing, arXiv:1906.07187
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= For the reason mentioned, a direct comparison with LHCb data on
j7 distribution does now work well

Z +jet, v/s=8 TeV, R=0.5 I 01w <05 | Theory [
2.5 <ny <4.0 : b Pythia

~r=

20 < pyT < 30 GeV F 30 < pyT < 50 GeV 50 < pyT < 100 GeV

20<nz <45




= TMDs open a new door for us to study structure of the nucleon and
QCD dynamics, and much more

= Nucleon as a QCD “laboratory”: in particular topics/ideas that are
similar to those in AMO/Condensed Matter Physics

* Quantum correlation: spin-spin correlation, spin-orbit correlation, orbital motion,
quantum phase interference effects ...

= 3D imaging of the nucleon at the most fundamental level

= Exciting opportunities: lots of experiments activities/measurements
_ bei_rlw_%/to be performed/planned in current and future experimental
facilities




