EIC Physics: Pion and Kaon Structure

Tanja Horn

CFNS Summer School 2019

Center for Frontiers in Nuclear Science, August 1-2, 2019

Outline

□ The Emergence of Mass

- $\hfill\square$ J/ Ψ and Upsilon Threshold Production at an EIC
- □ Pion and Kaon PDFs History
- Versatility and Detection Capabilities at an EIC
- Off-Shellness Considerations
- □ First Check of Impact of EIC on Pion PDFs
- □ Prospects for Kaon PDFs at an EIC
- □ EIC Measurement of Pion Form Factor at High Q²

Based on...

□ PIEIC Workshops hosted at ANL (2017) and CUA (2018)

Supported by more than 50 authors

Gluons and QCD

- QCD is the fundamental theory that describes structure and interactions in nuclear matter.
- Without gluons there are no protons, no neutrons, and no atomic nuclei
- Gluons dominate the structure of the QCD vacuum

$$L_{QCD} = \sum_{j=u,d,s,...} \bar{q}_{j} [i\gamma^{\mu}D_{\mu} - m_{j}]q_{j} - \frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu}$$

$$D_{\mu} = \partial_{\mu} + ig_{\overline{2}}^{1}\lambda^{a}A_{\mu}^{a}, G_{\mu\nu}^{a} = \partial_{\mu}A_{\nu} + \partial_{\nu}A_{\mu} + igf^{abc}A_{\mu}^{b}A_{\nu}^{c}$$

☐ Facts:

- Unique aspect of QCD is the self interaction of the gluons
- The essential features of QCD asymptotic freedom and (the emergent features) dynamical chiral symmetry breaking and color confinement are all driven by gluons!
- Mass from massless gluons and nearly massless quarks
 - Most of the mass of the visible universe emerges from quark-gluon interactions
 - The Higgs mechanism has almost no role here

Origin of Mass of QCD's Pseudoscalar Goldstone Modes

- □ The pion is both the lightest bound quark system with a valence $\bar{q}q$ structure and a Nambu-Goldstone boson
- □ There are exact statements from QCD in terms of current quark masses due to PCAC (*Phys. Rep.* 87 (1982) 77; *Phys. Rev.* C 56 (1997) 3369; *Phys. Lett.* B420 (1998) 267)
- $f_{\pi}m_{\pi}^{2} = \left(m_{u}^{\zeta} + m_{d}^{\zeta}\right)\rho_{\pi}^{\zeta}$ $f_{K}m_{K}^{2} = \left(m_{u}^{\zeta} + m_{s}^{\zeta}\right)\rho_{K}^{\zeta}$

- Pseudoscalar masses are generated dynamically
 - > From these exact statements, it follows the mass of bound states increases as \sqrt{m} with the mass of the constituents.
 - > In contrast, in, *e.g.* the CQM, bound state mass rises linearly with constituent mass, *e.g.*, with constituent quarks Q: in the nucleon $m_Q \sim \frac{1}{3}m_N \sim 310$ MeV, in the pion $m_Q \sim \frac{1}{2}m_{\pi} \sim 70$ MeV, in the kaon (with one s quark) $m_Q \sim 200$ MeV – This is not real.
 - In both DSE and LQCD, the mass function of quarks is the same, regardless what hadron the quarks reside in – This is real. It is the Dynamical Chiral Symmetry Breaking (D_χSB) that makes the pion and kaon masses light.

The role of gluons in pions

Pion mass is enigma – cannibalistic gluons vs massless Goldstone bosons

Adapted from Craig Roberts:

- The most fundamental expression of Goldstone's Theorem and DCSB in the SM
- Pion exists if, and only if, mass is dynamically generated – "because of B, there is a pion"
- On the other hand, in absence of the Higgs mechanism, the pion mass m_π = 0 the pion mass² is entirely driven by the current quark mass (for reference, for the ρ, only 6% of its mass² is driven by this).

Rapid acquisition of mass is effect of gluon interactions

What is the impact of this for gluon parton distributions in pions vs nucleons? One would anticipate a different mass budget for the pion and the proton In the chiral limit, using a parton model basis: the entirety of the proton mass is produced by gluons and due to the trace anomaly

$$\langle P(p)|\Theta_0|P(p)\rangle = -p_\mu p_\mu = m_N^2$$

In the chiral limit, for the pion $(m_{\pi} = 0)$:

$$\langle \pi(q) | \Theta_0 | \pi(q) \rangle = -q_\mu q_\mu = m_\pi^2 = 0$$

Sometimes interpreted as: in the chiral limit the gluons disappear and thus contribute nothing to the pion mass.

This is unlikely as quarks and gluons still dynamically acquire mass – this is a universal feature in hadrons – so more likely a cancellation of terms leads to "0"

Nonetheless: are there gluons at large Q² in the pion or not?

Mass of the Visible Universe

Emergent- versus Higgs-Mass Generation

Twist-2 PDA at Scale $\zeta = 2 \text{ GeV}$ 2.4 2.0 1.6 D (X)¢ 1.2 0.8 0.4 0.2 0.4 0.6 0.8 0 Х Unfortunately, experimental signatures of the exact PDA

form are, in general, difficult.

A solid (green) curve – pion ⇐ emergent mass is dominant;

B dot-dashed (blue) curve $-\eta_c \leftarrow$ primarily, Higgs mass generation;

C solid (thin, purple) curve - conformal limit result, 6x(1 - x); and

D dashed (black) curve – "heavy-pion", i.e., a pionlike pseudo-scalar meson ($\sim \eta_s$) in which the valence-quark current masses take values corresponding to a strange quark \leftarrow the border, where emergent and Higgs mass generation are equally important.

- > In the limit of infinitely-heavy quark masses, the Higgs mechanism overwhelms every other mass generating force, and the PDA becomes a δ -function at x = $\frac{1}{2}$.
- > The sufficiently heavy η_c meson (**B**), feels the Higgs mechanism strongly.
- The PDA for the light-quark pion (A) is a broad, concave function, a feature of emergent mass generation.

Subatomic Matter is Unique

The Incomplete Nucleon: Mass Puzzle

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quarkantiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light. ..."

Not unambiguous: Physical interpretation of the proton mass decomposition also has to be done with care, as one seemingly treats gluons in the trace anomaly and in kinetic and potential energy as separate entities (C. Lorcé, Eur. Phys. J. C **78** (2018) 120).

The Incomplete Hadron: Mass Puzzle

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quarkantiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light. ..."

Preliminary Lattice QCD results:

Not unambiguous: Physical interpretation of the proton mass decomposition has to be done with care, as one seemingly treats gluons in the trace anomaly and in kinetic and potential energy as separate entities (C. Lorcé, Eur. Phys. J. C **78** (2018) 120).

Elastic J/ Ψ production near threshold at an EIC

At an EIC a study of the Q² dependence in the threshold region is possible

S. Joosten, Z-E. Meziani

Elastic Y production near threshold at an EIC

At an EIC a study of the Q² dependence in the threshold region is possible

The Incomplete Hadron: Mass Puzzle

"Mass without mass!"

Bhagwat & Tandy/Roberts et al

□ EIC expected contributions in:

Upsilon production near the threshold

□ EIC's expected contribution in:

♦ Quark-gluon energy:

 \propto quark-gluon momentum fractions

In π , K and N with DIS and SIDIS

In π and K with Sullivan process

WHY SHOULD YOU BE INTERESTED IN PIONS AND KAONS?

Protons, neutrons, pions and kaons are the main building blocks of nuclear matter

- 1) The pion, or a meson cloud, explains light-quark asymmetry in the nucleon sea
- 2) Pions are the Yukawa particles of the nuclear force but no evidence for excess of nuclear pions or anti-quarks
- 3) Kaon exchange is similarly related to the ΛN interaction correlated with the Equation of State and astrophysical observations

4) Mass is enigma – cannibalistic gluons vs massless Goldstone bosons

Pion Form Factor and Structure Function

Pion FF – first quantitative access to hard scattering scaling regime?

and kaon

Pion SF – $(1-x)^1$ or $(1-x)^2$ dependence at large x?

At some level an old story...

World Data on pion structure function F_2^{π}

Pion Drell-Yan Data: CERN NA3 ($\pi^{+/-}$) NA10 (π^{-})

NA3 200 GeV π^- data (also have 150 and 180 GeV π^- and 200 GeV π^+ data). Can determine pion sea!

$$Q_{\pi}^{\text{sea}} \equiv \int_{0}^{1} x q_{\pi}^{\text{sea}}(x) dx = 0.01$$

NA10 194 GeV π^- data

quark sea in pion is small – few %

First Monte Carlo global analysis of pion pdfs

From combined Leading-Neutron (LN) and Drell-Yan (DY) analysis

P.C. Barry, N. Sato, W. Melnitchouk, C.-R. Ji, Phys. Rev. Lett. 121 (2018) no. 15, 152001, [arXiv:1804.01965]

Quark and gluon pdfs in pions and kaons

- □ At low x to moderate x, both the quark sea and the gluons are very interesting.
 - Are the sea in pions and kaons the same in magnitude and shape?
 - Is the origin of mass encoded in differences of gluons in pions, kaons and protons, or do they in the end all become universal?

At moderate x, compare pionic Drell-Yan to DIS from the pion cloud,

- test of the assumptions used in the extraction of the structure function (and similar assumptions in the pion and kaon form factors).
- □ At high x, the shapes of valence u quark distributions in pion, kaon and proton are different, and so are their asymptotic $x \rightarrow 1$ limits.
 - Some of these effects are due to the comparison of a two- versus three-quark system, and a meson with a heavier s quark embedded versus a lighter quark.
 - ✤ However, also effects of gluons come in. To measure this would be fantastic.
 - At high x, a long-standing issue has been the shape of the pion structure function as given by Drell-Yan data versus QCD expectations. However, this may be a solved case based on gluon resummation, and this may be confirmed with 12-GeV Jefferson Lab data. Nonetheless, soft gluon resummation is a sizable effect for Drell Yan, but expected to be a small effect for DIS, so additional data are welcome.

The issue at large-x: solved by resummation?

 $(1-x)^1$ or $(1-x)^2$

dependence at

large x?

Large x_{Bi} structure of the pion is interesting and relevant

- Pion cloud & antiquark flavor asymmetry
- Nuclear Binding
- Simple QCD state & Goldstone Boson
- Even with NLO fit and modern parton distributions, pion did not agree with pQCD and Dyson-Schwinger Pion SE:

Soft Gluon Resummation saves the day! (or ?)

- JLab 12 GeV experiment can check at high-x
- ➢ Resummation effects less prominent at DIS → EIC's role here may be more consistency checks of assumptions made in extraction
- Additional Bethe-Salpeter predictions to check in π/K Drell-Yan ratio

Towards Pion Structure Functions

Similar as process used to measure the pion elastic form factors, isolate the One Pion Exchange Contribution also to measure pion structure functions

□ Sullivan was the first to consider the "Drell" process, with π +X final states where m_X^2 grows linearly with Q²

- □ A simple calculation gives the minimum momentum transfer squared $t_{min} = (q k)_{min}^2 \rightarrow \infty$ as Q² → ∞
 - > The requirement of being near the pion pole at $t = m_{\pi}^2$ can never be satisfied and processes of this type play no role in the scaling region
- Similar consideration for offshellness as for meson FF a well-constrained experimental analysis should be reliable in regions of -t

Landscape for p, π , K structure function after EIC

Proton: much existing from HERA EIC will add:

Better constraints at large-x
 Precise F₂ⁿ neutron SF data

Pion and kaon: only limited data from:
➢ Pion and kaon Drell-Yan experiments
➢ Some pion SF data from HERA
EIC will add large (x,Q²) landscape for both pion and kaon!

World Data on pion structure function F_{2}^{π}

EIC – Versatility is Key

- Obtain F₂ⁿ by tagging spectator proton from e-d, and extrapolate to on-shell neutron to correct for binding and motion effects.
- Obtain F₂^π and F₂^κ by Sullivan process and extrapolate the measured t-dependence as compared to DSE-based models.

Need excellent detection capabilities, and good resolution in -t

Full Acceptance for Forward Physics!

Example: acceptance for p' in $e + p \rightarrow e' + p' + X$

Huge gain in acceptance for diffractive physics and forward tagging to measure F₂ⁿ!!!

Pion and Kaon Sullivan Process

The Sullivan process can provide reliable access to a meson target as t becomes space-like if the pole associated with the ground-state meson remains the dominant feature of the process and the structure of the related correlation evolves slowly and smoothly with virtuality.

To check these conditions are satisfied empirically, one can take data covering a range in t and compare with phenomenological and theoretical expectations.

□ Recent theoretical calculations found that for $-t \le 0.6 \text{ GeV}^2$, all changes in pion structure are modest so that a well-constrained experimental analysis should be reliable Similar analysis for the kaon indicates that Sullivan processes can provide a valid kaon target for $-t \le 0.9 \text{ GeV}^2$

[S.-X. Qin, C. Chen, C. Mezrag and C. D. Roberts, Phys. Rev. C 97 (2018) 015203.]

Theoretical Off-Shellness Considerations

In the Sullivan process, the mesons in the nucleon cloud are virtual (off-shell) particles

- Recent calculations estimate the effect in the BSE/DSE framework – as long as λ(ν) is linear in v the meson pole dominates
 - Within the linearity domain, alterations of the meson internal structure can be analyzed through the amplitude ratio
- Off-shell meson = On-shell meson for t<0.6 GeV² (v =31) for pions and t<0.9 GeV²(v_s~3) for kaons

This means that pion and kaon structure functions can be accessed through the Sullivan process

Experimental Off-Shellness Considerations

Experimental Validation (Pion Form Factor example)

Experimental studies over the last decade have given <u>confidence</u> in the electroproduction method yielding the physical pion form factor

Experimental studies include:

- Take data covering a range in –t and compare with theoretical expectation
 - $\circ \ \ \mathsf{F}_{\pi} \ \text{values do not depend on -t} \\ \ \text{confidence in applicability of} \\ \text{model to the kinematic regime} \\ \text{of the data}$
- Verify that the pion pole diagram is the dominant contribution in the reaction mechanism
 - $R_L (= \sigma_L(\pi^-)/\sigma_L(\pi^+))$ approaches the pion charge ratio, consistent with pion pole dominance

[G. Huber et al, PRL**112** (**2014**)182501]

[R. J. Perry et al., arXiV:1811.09356 (2019).]

[T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

EIC – Versatility and Luminosity is Key

Why would pion and kaon structure functions, and even measurements of pion structure beyond (pion GPDs and TMDs) be feasible at an EIC?

- \Box L_{EIC} = 10³⁴ = 1000 x L_{HERA}
- Detection fraction @ EIC in general much higher than at HERA
- Fraction of proton wave function related to pion Sullivan process is roughly 10⁻³ for a small –t bin (0.02).
- Hence, pion data @ EIC should be comparable or better than the proton data @ HERA, or the 3D nucleon structure data @ COMPASS
- If we can convince ourselves we can map pion (kaon) structure for -t < 0.6 (0.9) GeV2, we gain at least a decade as compared to HERA/COMPASS.

Ratio of the F_2 structure function related to the pion Sullivan process as compared to the proton F_2 structure function in the low-t vicinity of the pion pole, as a function of Bjorken-x (for JLab kinematics)

Global pion PDF fit with EIC pseudodata

- □ 5 GeV (e-) on 50 GeV (p)
- □ 0.1 < y < 0.8
- EIC pseudodata fitted using self-serve pion PDF framework
- EIC will improve the PDFs, especially for kaons as will have similar-quality data.
- DY measurements by COMPASS++/AMBER could constrain x>02

Precision gluon constraints of pion and kaon PDFs are possible.

Towards Kaon Structure Functions

□ To determine projected kaon structure function data from pion structure function projections, we scaled the pion to the kaon case with the *coupling constants*

S. Goloskokov and P. Kroll, Eur.Phys.J. A**47** (2011) 112: $g_{\pi NN}=13.1$ $g_{Kp\Lambda}=-13.3$ $g_{Kp\Sigma}=-3.5$ (these values can vary depending on what model one uses, so sometimes a range is used, *e.g.*, 13.1-13.5 for $g_{\pi NN}$)

 \Box Good geometric detection efficiencies for n, Λ , Σ detection at low -t

Process	Forward Particle	Geometric Detection Efficiency (at small –t)
¹ H(e,e'π ⁺)n	Ν	> 20%
¹ H(e,e'K⁺)Λ	Λ	50%
¹ H(e,e'K ⁺)Σ	Σ	17%

Folding this together: kaon projected structure function data will be roughly of similar quality as the projected pion structure function data for the small-t geometric forward particle detection acceptances at JLEIC.

Detection of ¹H(e,e'K⁺) Λ , Λ decay to p + π^{-}

Figure from K.Park

Kaon structure functions – gluon pdfs

- Valence quarks carry 52% of the pion's momentum at the light front, at the scale used for Lattice QCD calculations, or ~65% at the perturbative hadronic scale
- At the same scale, valence-quarks carry ²/₃ of the kaon's light-front momentum, or roughly 95% at the perturbative hadronic scale

Thus, at a given scale, there is far less glue in the kaon than in the pion:

- heavier quarks radiate less readily than lighter quarks
- heavier quarks radiate softer gluons than do lighter quarks
- □ Landau-Pomeranchuk effect: softer gluons have longer wavelength and multiple scatterings are suppressed by interference.
- □ Momentum conservation communicates these effects to the kaon's u-quark.

Calculable Limits for Parton Distributions

Calculable limits for ratios of PDFs at x = 1, same as predictive power of $x \rightarrow 1$ limits for spin-averaged and spin-dependent proton structure functions (asymmetries)

$$\frac{u_V^K(x)}{u_V^\pi(x)}\Big|_{x\to 1} = 0.37\,, \quad \frac{u_V^\pi(x)}{\bar{s}_V^K(x)}\Big|_{x\to 1} = 0.29$$

On the other hand, inexorable growth in both pions' and kaons' gluon and sea-quark content at asymptotic Q^2 should only be driven by pQCD splitting mechanisms. Hence, also calculable limits for ratios of PDFs at x = 0, *e.g.*,

$$\lim_{x \to 0} \frac{u^K(x;\zeta)}{u^\pi(x;\zeta)} \stackrel{\Lambda_{\rm QCD} \langle \zeta \simeq 0}{\to} 1$$

The inexorable growth in both pions' and kaons' gluon content at asymptotic Q² brings connection to gluon saturation.

Pion Form Factor and Emergent Mass

Left panel. Two dressed-quark mass functions distinguished by the amount of DCSB: emergent mass generation is 20% stronger in the system characterized by the solid green curve, which describes the more realistic case. <u>Right panel</u>. $F_{\pi}(Q^2)$ obtained with the mass function in the left panel: $r_{\pi} = 0.66$ fm with the solid green curve and $r_{\pi} =$ 0.73 fm with the dashed blue curve. The long-dashed green and dot-dashed blue curves are predictions from the QCD hard-scattering formula, obtained with the related, computed pion PDAs. The dotted purple curve is the result obtained from that formula if the conformal-limit PDA is used, $\phi(x)=6x(1-x)$.

Pion Form Factor Prospects

- 1. Models show a strong dominance of σ_L at small –t at large Q².
- 2. Assume dominance of this longitudinal cross section
- 3. Measure the π^{-}/π^{+} ratio to verify it will be diluted (smaller than unity) if σ_{T} is not small, or if non-pole backgrounds are large

- Assumed 5 GeV(e⁻) x 100 GeV(p) with an integrated luminosity of 20 fb⁻¹/year, and similar luminosities for d beam data
- □ $R=\sigma_L/\sigma_T$ assumed from VR model and assume that π pole dominance at small t confirmed in ²H π^-/π^+ ratios
- Assumed a 10% experimental systematic uncertainty, and a 100% systematic uncertainty in the model subtraction to isolate σ_L

Can we measure the kaon form factor at EIC? Not clear – needs guidance from JLab 12- GeV

[Garth Huber, Tanja Horn]

Conclusions – Pion and Kaon Structure

- Nucleons and the lightest mesons pions and kaons, are the basic building blocks of nuclear matter. We should know their structure (functions).
- □ The distributions of quarks and gluons in pions, kaons, nucleons will differ.
 - Utilizing electroweak processes, be it through parity-violating processes or neutral vs chargedcurrent interactions, some flavor dependence appears achievable.
 - If we can convince ourselves off-shellness considerations are under control, one could also access pion GPDs and TMDs.
- Is the origin of mass encoded in differences of gluons in pions, kaons and nucleons (at non-asymptotic Q²)?
 - How much glue is in the pion?
- □ The pion form factor may be measured at an EIC up to $Q^2 = 35$ GeV², and could provide a direct connection to mass generation in the Standard Model.
- Some effects may appear trivial the heavier-mass quark in the kaon "robs" more of the momentum, and the structure functions of pions, kaons and protons at large-x should be different, but confirming these would be textbook material.

Nuclear Femtography

Proton Viewed in High Energy Electron Scattering: 1 Longitudinal Dimension

Proton Tomography: 2 New Dimensions Transverse to Longitudinal Momentum

Direction of longitudinal momentum normal to plane of slide

Structure mapped in terms of \mathbf{b}_{T} = transverse position \mathbf{k}_{T} = transverse momentum

Nuclei!

Goal: Unprecedented 21st Century Imaging of Hadronic Matter

Valence Quarks: JLab 12 GeV Sea Quarks and Gluons: EIC

Nuclear Femtography – Subatomic Matter is Unique

□ Localized mass and charge centers – vast "open" space:

Molecule:

Crystal:

Rare-Earth metal

Interactions and structure are mixed up in nuclear matter: Nuclear matter is made of quarks that are bound by gluons that also bind themselves. Unlike with the more familiar atomic and molecular matter, the interactions and structures are inextricably mixed up, and the observed properties of nucleons and nuclei, such as mass & spin, emerge out of this complex system.

□ Not so in proton structure!

Nuclear Femtography - Imaging

Exploring the 3D Nucleon Structure

- After decades of study of the partonic structure of the nucleon we finally have the experimental and theoretical tools to systematically move beyond a 1D momentum fraction (x_{Bi}) picture of the nucleon.
 - High luminosity, large acceptance experiments with polarized beams and targets.
 - Theoretical description of the nucleon in terms of a 5D Wigner distribution that can be used to encode both 3D momentum and transverse spatial distributions.
- Deep Exclusive Scattering (DES) cross sections give sensitivity to electron-quark scattering off quarks with longitudinal momentum fraction (Bjorken) x at a transverse location b.
- □ Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross sections depend on transverse momentum of hadron, $P_{h\perp}$, but this arises from both intrinsic transverse momentum (k_T) of a parton and transverse momentum (p_T) created during the [parton \rightarrow hadron] fragmentation process.

3D imaging of the Nucleon

Towards the 3D Structure of the Proton

Cleanest way to probe GPDs

As the DVCS process interferes with BH one can access the DVCS amplitudes At leading twist:

$$d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = \Im (T^{BH} \cdot T^{DVCS})$$

$$d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + \Re e (T^{BH} \cdot T^{DVCS}) + |DVCS|^{2}$$

$$\mathcal{T}^{DVCS} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} + \dots =$$

$$\mathcal{P} \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi} - \underbrace{i\pi H(x=\xi,\xi,t)}_{\xi_0} + \dots$$

Access in helicity-independent cross section

Access in helicity-dependent cross-section

Towards Spin/Flavor Separation

Exclusive Reactions: $\gamma * N \rightarrow M + B$ Deep Virtual Meson **Production** (DVMP) pointlike? π, ρ 0 hard L hard $K. K^*$ Q^2 GPD GPD NNNNΛ. Σ

□ Nucleon structure described by 4 (helicity non-flip) GPDs: -*H*, *E* (unpolarized), $\widetilde{H} \widetilde{E}$ (polarized)

Quantum numbers in DVMP probe individual GPD components selectively
 –Vector : ρ⁰/ρ+/K* select H, E

–Pseudoscalar: π,η,K select the polarized GPDs, \tilde{H} and \tilde{E}

- Need good understanding of reaction mechanism
 - -QCD factorization for mesons

-Can be verified experimentally through L/T separated cross sections

Transverse (sea) quark imaging

 $e p \rightarrow e' \pi^+ n$ Γ dơ/dt 0.02 < x < 0.0510 10 10 10 10 10 10 10 10 0 10 0 0.5 0.5 0 0.5 0 0.5 1 -t (GeV²) 0 1 $e\,p \rightarrow e\,{}^{\prime}\mathrm{K}^{\!+}\,\Lambda$ $\Gamma d\sigma_{k}/dt$ 10 10 10 10 10 10 10 10 10 10 10 -11 10 10 10 0 0.5 0 0.5 ō 0.5 0 0.5 1 -t (GeV²)

GPDs as "x-dependent form factors"

•

- Fourier transform of *t*-distribution provides transverse image

(a)

- Do strange and non-strange sea quark distributions have the same radius?
- πN or KA components in nucleon?

Transverse gluon imaging

- Exclusive J/Ψ production a directly probe of ٠ gluons
- Hard scale given by mass, factorization ok even at low Q^2
- *t*-distribution powerlike for large -*t*?

- Is the quark "radius" larger than the gluon radius?
- "pion cloud"
- Hints in HERA data

Exclusive light meson kinematics

Low (J/Psi) vs. high Q2 (light mesons)

The Incomplete Nucleon: Spin Puzzle

- Proton has spin-1/2
- Proton is a composite system consisting of spin-1/2 quarks and spin-1 gluons

This implies that the sum of angular momentum of quarks and gluons together must amount to 1/2. Can be due to:

Quark spin ~0.25 Gluon spin ~0.25 Quark orbital momentum Gluon orbital momentum

Classical: ~ r x p

Needs a cross-product or something three-dimensional!

Fundamental Questions

For understanding the origin of hadron masses and distribution of that mass within

How do hadron masses and radii emerge for light-quark systems from QCD?

What is the origin and role of dynamical chiral symmetry breaking?

□ What is the interplay of the strong-mass and Higgs generation mechanisms?

What are the basic mechanisms that determine the distribution of mass, momentum, charge, spin, etc. within hadrons?

Requires coherent effort in QCD phenomenology and continuum calculations, exascale computing as provided by lattice QCD, and experiment

Key Experimental Efforts

- Hadron masses in light quark systems
 - Pion and kaon parton distribution functions (PDFs) and generalized parton distributions (GPDs)
- Gluon (binding) energy in Nambu-Goldstone modes
 - Open charm production from pion and kaon
- ❑ Mass acquisition from Dynamical Chiral Symmetry Breaking (DCSB)
 - Pion and kaon form factors
- □ Strong vs. Higgs mass generating mechanisms
 - Valence quark distributions in pion and kaon at large momentum fraction x
 - Timelike analog of mass acquisition
 - Fragmentation of a quark into pions or kaons

Quark Fragmentation into Pions and Kaons

Timelike analog of mass acquisition – measure fragmentation of quarks into pions and kaons

□ Projections for integrated luminosity = 10 fb⁻¹

□ EIC can provide precision data at large x (z>0.5) and transverse momentum (as picked up on the fragmentation process) of k_T=0.1, 0.3, 0.5

The Structure of the Proton

Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + ... The proton sea has a non-trivial structure: $\overline{u} \neq \overline{d}$ & gluons are abundant

Non-trivial sea structure

□ The proton is far more than just its up + up + down (valence) quark structure

Gluon \neq photon: Radiates $\frac{1}{2}$

and recombines:

