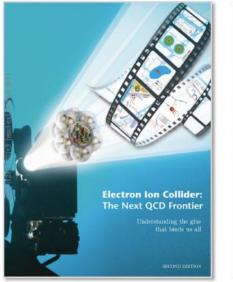
EIC Detectors: Calorimeters and glass scintillator development

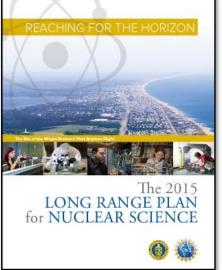
Tanja Horn

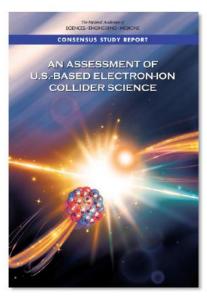
CFNS Summer School 2019

Center for Frontiers in Nuclear Science, August 1-2, 2019

Outline Lecture 2

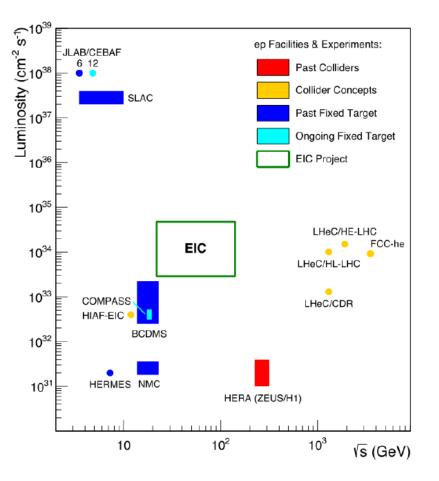

- Electron-Ion Collider (EIC) Imaging the Gluons and Sea Quarks of Nucleons and Nuclei
- Detector Design
- Central Detector
- Detector example: calorimeter
 - > Overview calorimeter concepts
 - Inorganic scintillators
 - Glass scintillators as alternative active material in calorimetry


Why EIC?


Right tool:

- to precisely image quarks and gluons and their interactions
- to explore the new QCD frontier of strong color fields in nuclei
- to understand how matter at its most fundamental level is made.

Understanding of nuclear matter is **transformational**, perhaps in an even more dramatic way than how the understanding of the atomic and molecular structure of matter led to new frontiers, new sciences and new technologies.



The EIC

Frontier accelerator facility in the U.S.

World's first collider of

- polarized electrons and polarized protons/light ions (d, ³He)
- electrons and nuclei

Versatile range of

- beam energies: √s_{ep} range ~20 to ~100 GeV upgradable to ~140 GeV
- beam polarizations for electrons, protons and light ions (longitudinal, transverse, tensor), at least ~70% polarization
- ion beam species: D to heaviest stable nuclei

High luminosity

100 to 1000 times HERA luminosity

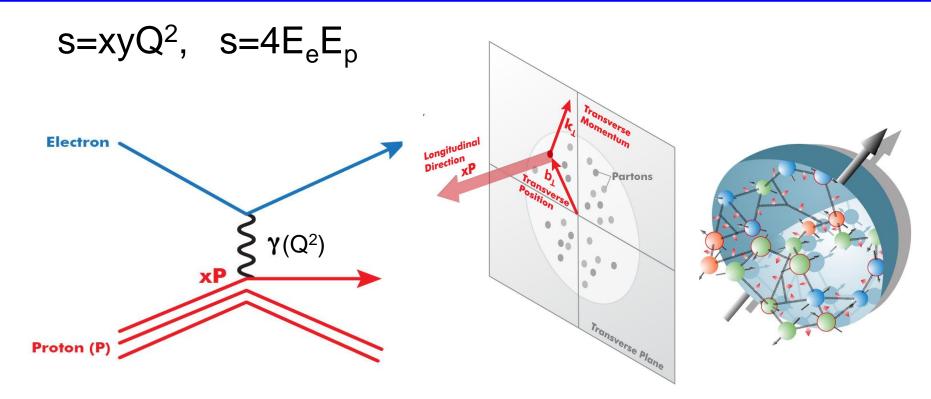
EIC Requirements

Requirements from Physics:

- □ High Luminosity: 10³³⁻³⁴ cm⁻²s⁻¹ and higher
- □ Flexible center of mass energy
- Electrons (0.8) and protons/light nuclei (0.7) highly polarized
 - \rightarrow study of spin structure

 \rightarrow nucleon/nuclei imaging

 \rightarrow wide kinematic reach

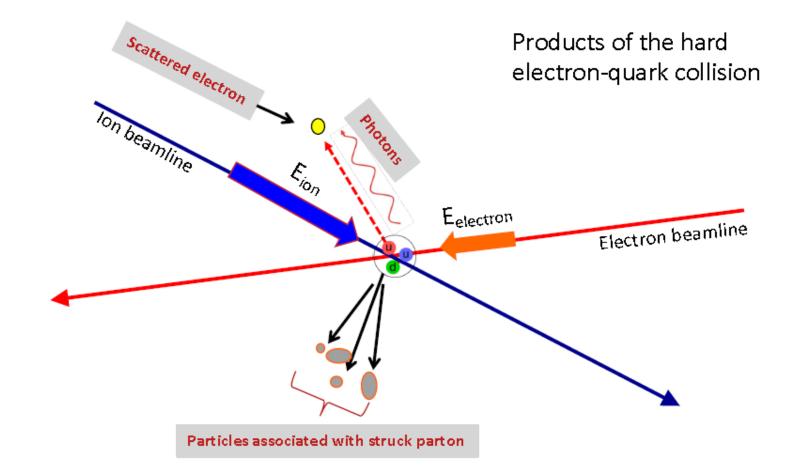

- □ Wide range of nuclear beams (D to Pb/U) → high gluon densities □ Room for a wide acceptance detector with good PID (e/h & π , K, p) → flavor dependence
- □ Full (or large) acceptance for tagging, exclusivity, protons from elastic reactions, neutrons from nuclear breakup → target/nuclear fragments

The "sweet spot" for the EIC parameters is a balance of

- > High enough energies to reach high Q^2 (up to ~1000 GeV²)
- Low enough proton energy to measure transverse scale of ~100 MeV well.
- High enough energy to explore collective effects towards saturation.
- High enough luminosity for the nucleon/nuclei imaging.
- IR and Detector with acceptance and performance to fully measure the relevance processes

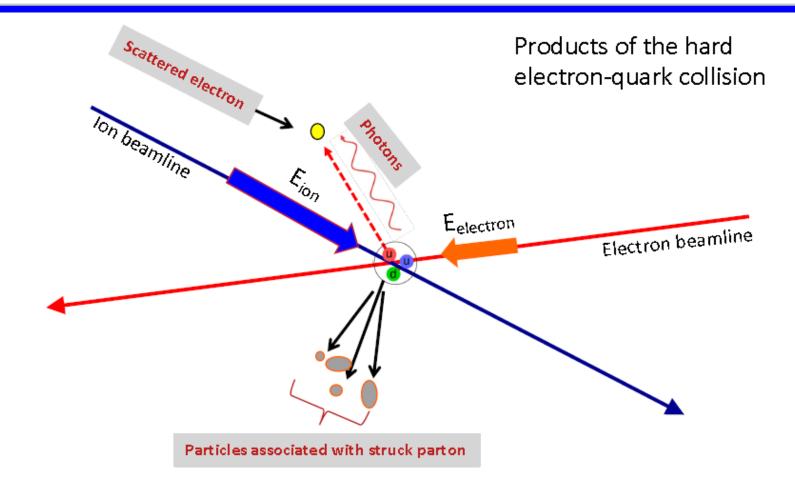
Detector Design

Mapping position and motion of quarks and gluons

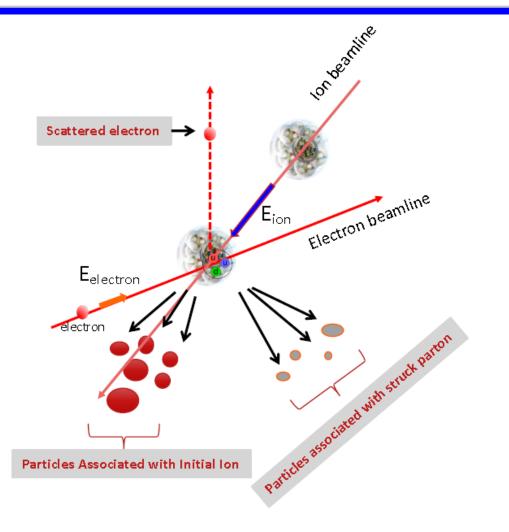


On one hand: need high beam energies to resolve partons in nucleons. Q^2 needs to be up to ~1000 GeV²

On the other hand: need to resolve quantities (k_t, b_t) of order a few hundred MeV in the proton. Limits the proton beam energy & High Lumi needed.


Electron-Ion Collider: Cannot be HERA or LHeC: proton energy too high

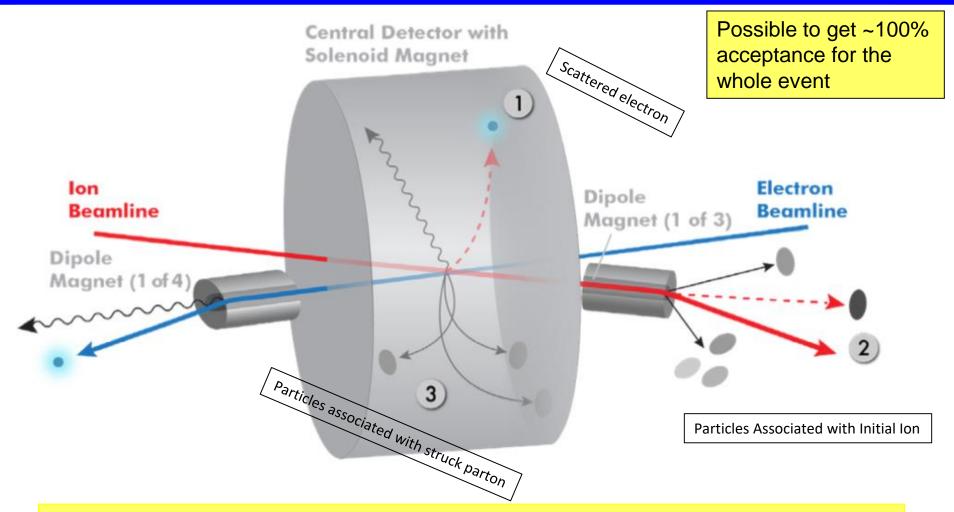
Particle Identification


Transverse and flavor structure measurement of the nucleon and nuclei: The particles associated with struck parton must have its species identified and measured. Particle ID much more important than at HERA colliders.

Final-state particles in central rapidity

Asymmetric collision energies will boost the final state particles in the ion beam direction: **Detector requirements change as a function of rapidity.**

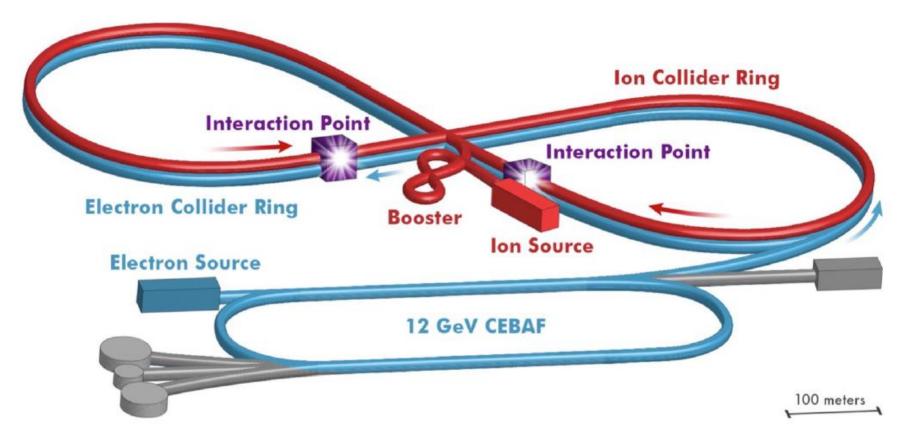
Final-state particles


The aim is to get **~100% acceptance** for all final state particles, and measure them with good resolution.

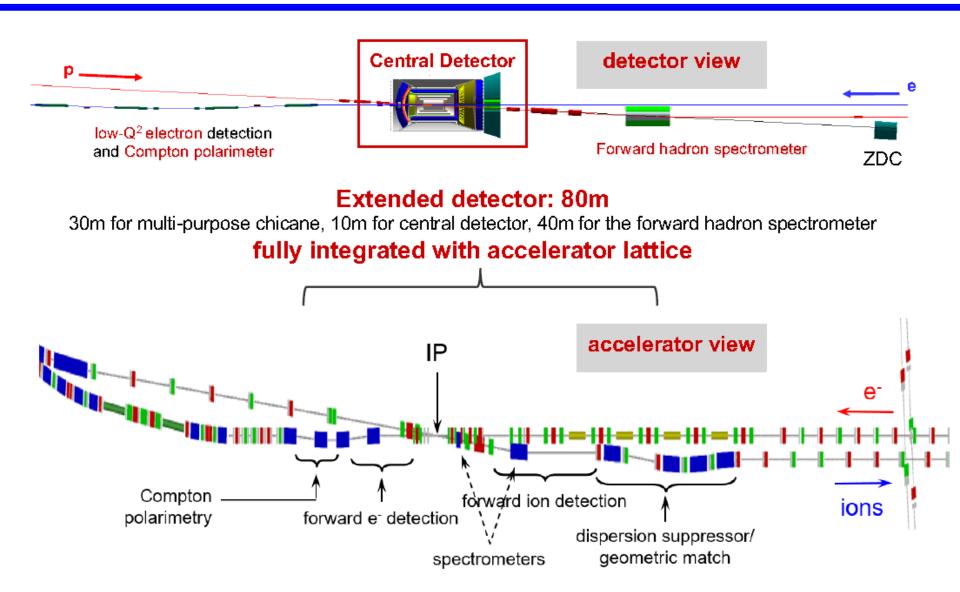
Experimental challenges:

- beam elements limit forward acceptance
- central Solenoid not effective for forward

Interaction Region Concept

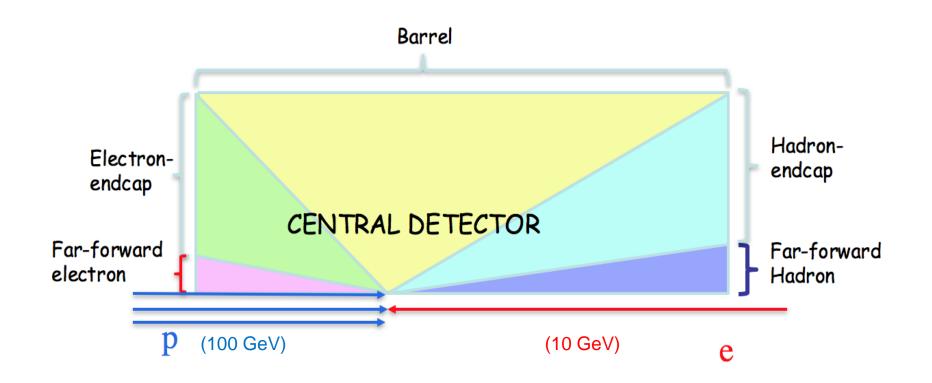


Relatively large crossing angle (50 mr) combined with large aperture final focus magnets, and forward dipoles are keys to this design - this crossing angle creates room for forward dipoles and gives a space for detectors in the forward regions

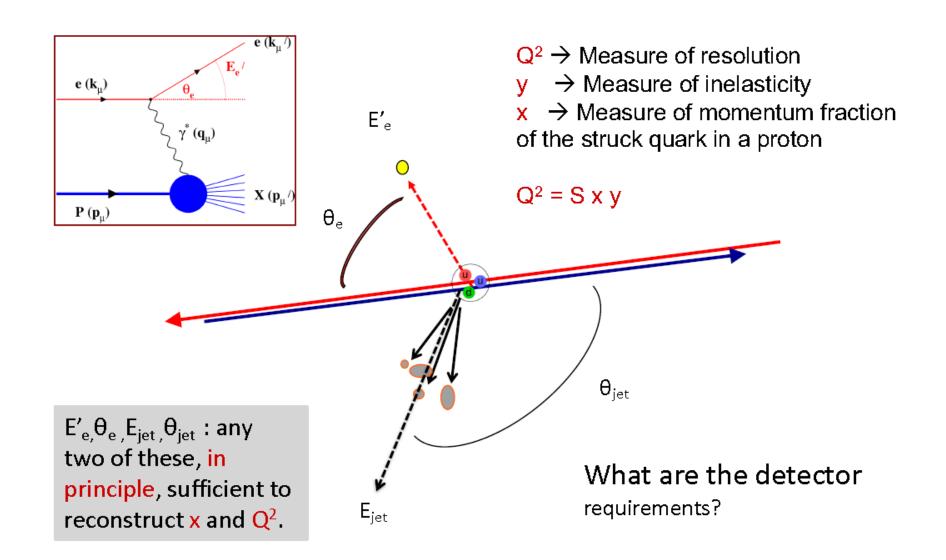

Interaction Region Design: Interaction Points

Background reduction

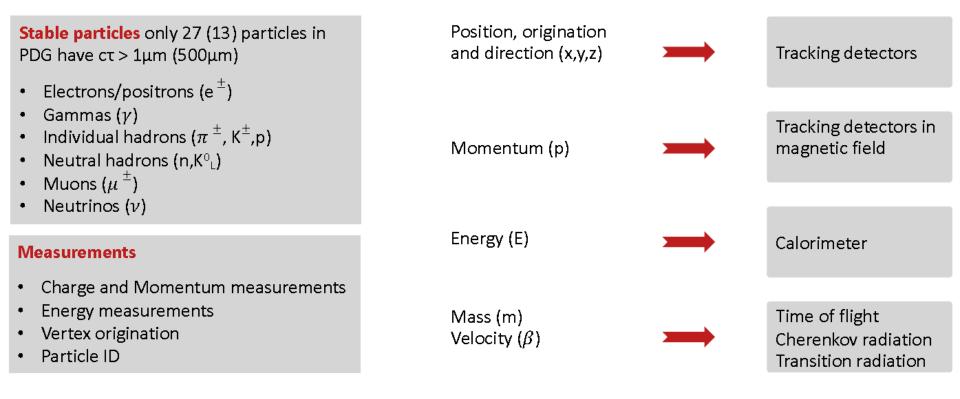
- far from electron bending magnets (synchrotron radiation)
- close to proton/ion bending (hadron background)



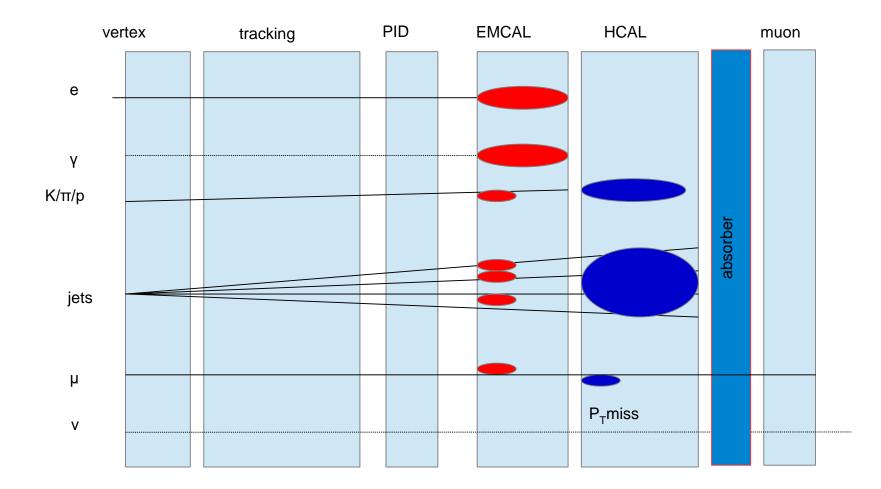
Detector and Interaction Region



Central Detector


Detector Coverage

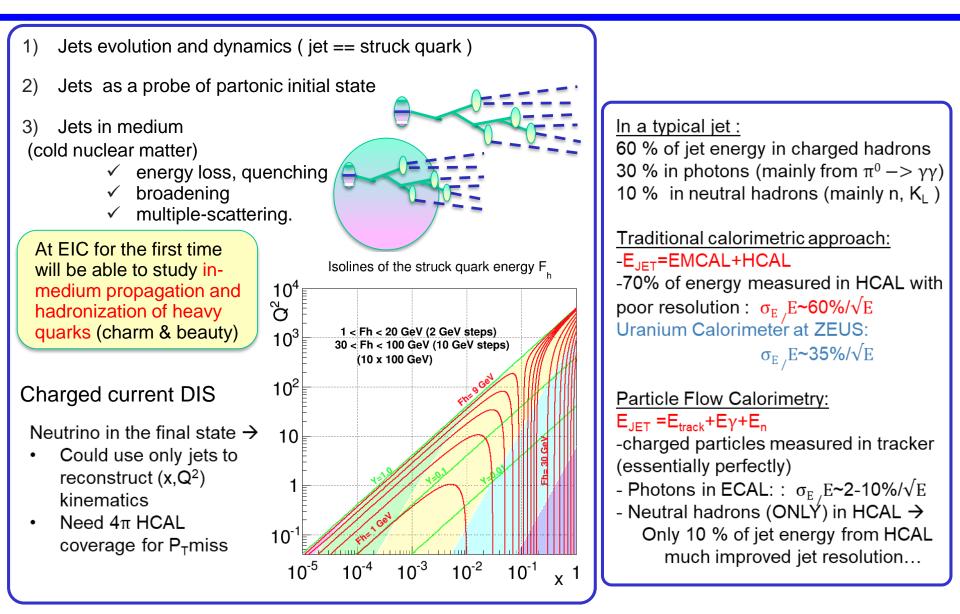
Basic Kinematic Reconstruction



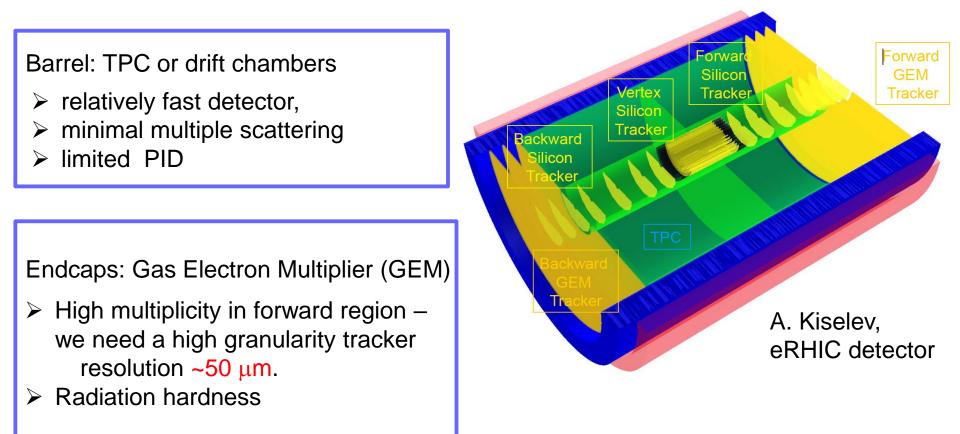
Particle Detection and Identification



General Structure of Detectors


Stable particles (e,μ,π,K,p, jets(q,g), gamma, v - Pt^{miss}): Momentum/Energy, Type(ID), Direction, vertex

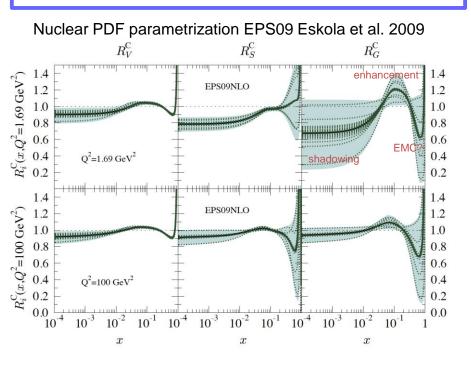
Electromagnetic Calorimetry

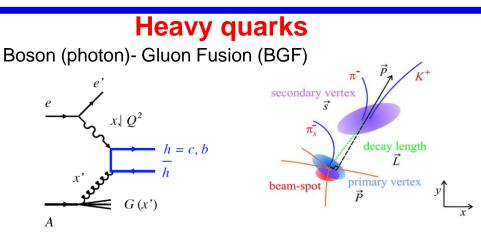

Jets at EIC and Hadronic Calorimetry

Tracking

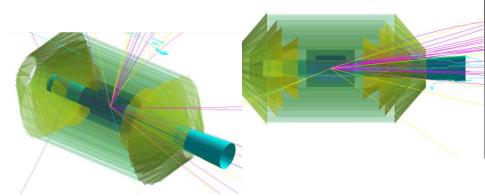
Main purpose of tracking:

- reconstruct charged tracks and measure their momenta precisely (~few %)
- dE/dx (PID) for low momentum tracks.


Vertex Detector


Main purpose of vertex detector:

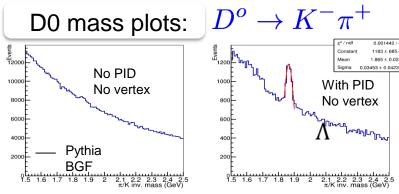
- Reconstruction of a primary vertex
- Reconstruct secondary vertex:


Tagging of c and b quarks (decay length ~100-500 µm)

- improve momentum resolution of outer tracker
- provide stand-alone measurements of low-Pt particles
- dE/dx measurements for Particle IDentification

Charm high-Q² event in the vertex detector

- Vertex detector is detector closest to IP, and background increases occupancy.
- High granularity detector is needed (pixels)
- Beam related background can also cause radiation damage.

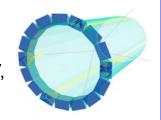

Hadron Identification

<u>Semi-inclusive DIS:</u> involves measurements of one or more finalstate hadrons in addition to the detection of the scattered lepton.

Rapidity range of interest to EIC science

Exclusive processes:

Time of Flight: MRPC


Multi-gap Resistive Plate Chamber (MRPC) R&D: achieved ~18 ps resolution with 36-105 μ m gap glass MRPC $\pi/K < 3.5$ GeV

Electron end-cap: Modular RICH

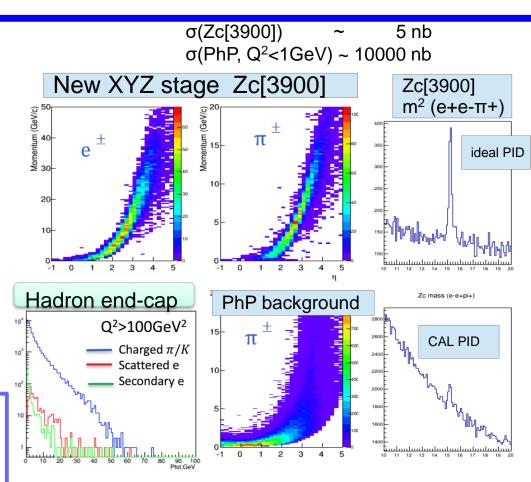
- Modular aerogel RICH (eRD14 detector R&D)
- π/K separation up to ~10 GeV

Barrel: DIRC

- radially compact (2 cm)
- Particle identification (3 σ) p/K < 10 GeV, $\pi/K < 6 \text{ GeV}, e/\pi < 1.8 \text{ GeV}$

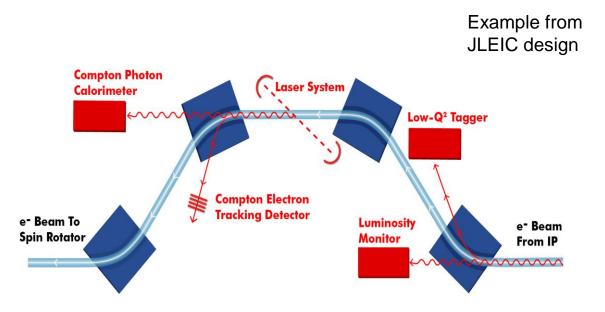
Hadron end-cap: dual-radiator RICH

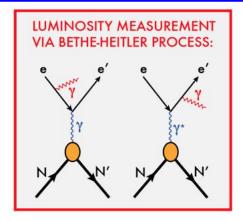
- JLEIC design geometry constraint: ~160 cm length
- Aerogel in front, followed by CF4
- -covers energy for π/K up to 50GeV
- Sensitive to magnetic field → Envisioned 3T solenoid with minimized field in RICH region


Electron Identification

Physics:

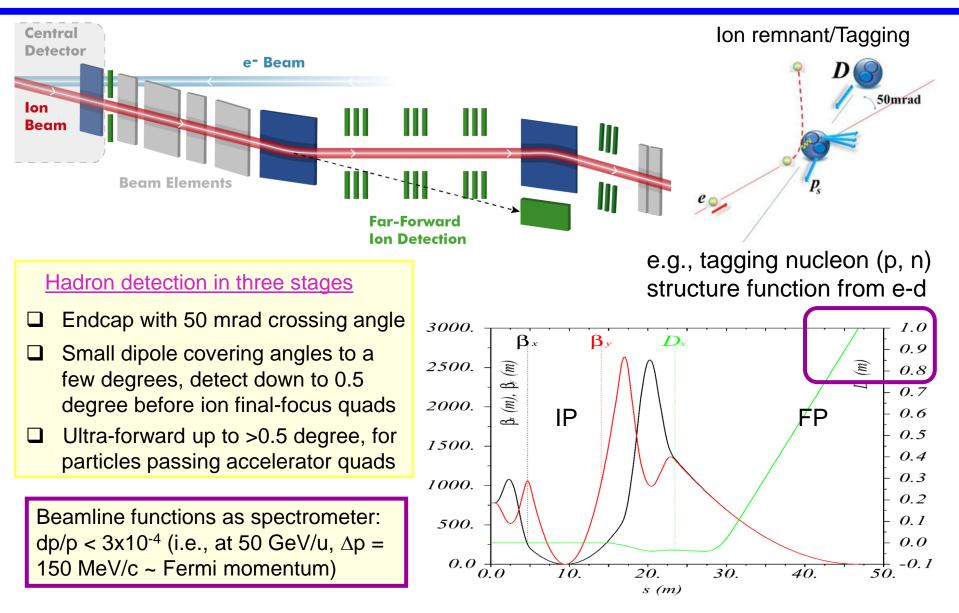
- ✓ For rare physics, based on electron identification
- ✓ Charmonium, light vector mesons (ρ, ω, ϕ)
- Tetraquarks and Pentaquarks (and other XYZ states)
- ✓ Open Charm and Beauty physics
- ✓ Di-lepton production
- ✓ Scattered electron identification at Large-x, large-Q2


Transition radiation detector (TRD) under consideration for enhanced electron/hadron rejection: GEM/TRD


- combined high granularity tracker and PID.
- cover energy range 1-100 GeV.
- provide additional e/hadron rejection factor 10-100.

Excellent e/π PID in the hadron endcap region is needed for electrons with energy 1-100GeV

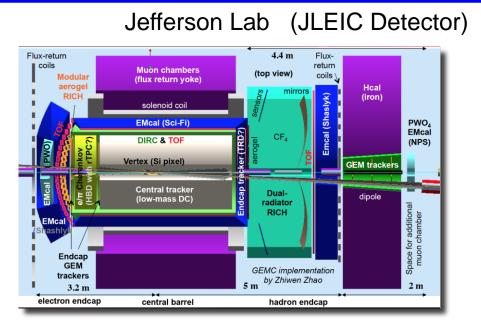
Chicane for Forward Electron Detection



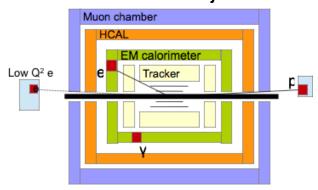
- ❑ Low Q² tagger
 ✓ For low Q² electrons
- ❑ Luminosity monitor:
- Luminosity measurements via Bethe-Heitler process
- ✓ First dipole bends electrons
- ✓ Photons from IP collinear to e-beam

- Polarization measurements
- First two Dipoles compensate each other
- ✓ The same polarization as at IP
- Minimum background and a lot of space.
- Measurements of both Compton photons and electrons

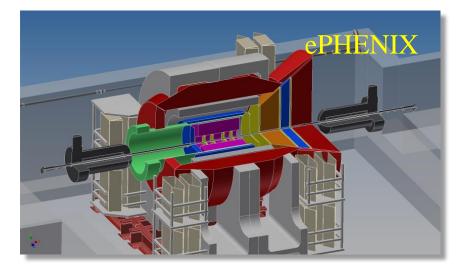
Far-Forward Ion Detection

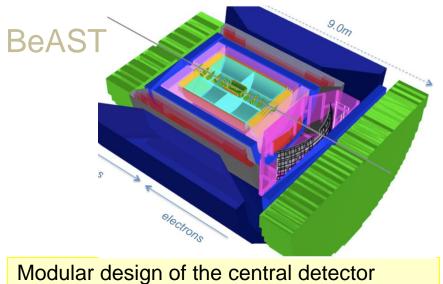

Full Acceptance for Forward Physics!

Example: acceptance for p' in $e + p \rightarrow e' + p' + X$



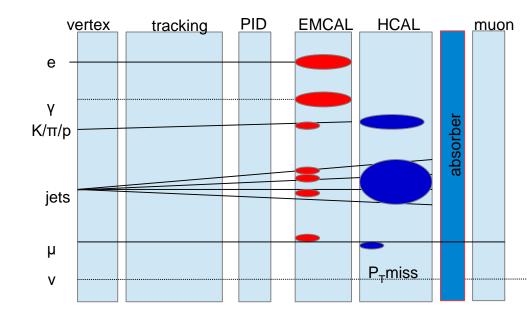
Huge gain in acceptance for diffractive physics and forward tagging to measure F₂ⁿ!!!


Detector Concepts



2nd IP for jets

Brookhaven



Detector Example: Calorimeter

Calorimetry in Nuclear Physics

Energy measurements of charged and neutral particles

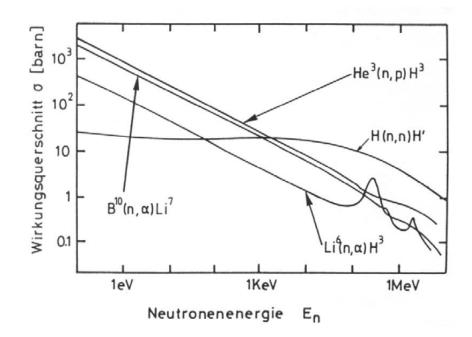
- Electromagnetic: Electrons and photons
- Charged and neutral hadrons
- Group of collimated particles moving in the same direction (jets)
- The process of energy measurements is destructive: must completely stop the particle to measure its full energy
 - Unlike, e.g., tracking detectors, the particles are no longer available for detection after they pass through a calorimeter

Calorimeters are the outermost detectors

Note that muons and neutrinos pass through calorimeters with nearly no interaction

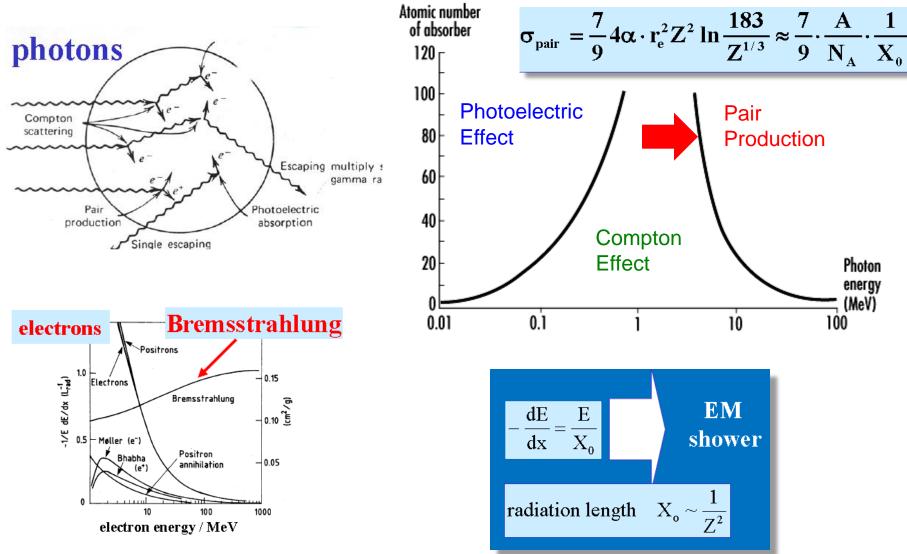
Detection and Identification of Charged Hadrons

Fermi plateau dE/dx □ Energy 1.6 relativistic rise 1.5 Complete stopping \geq 1.4 \geq Energy loss – Minimum Ionizing 1.3 minimum ionizing dE $\mathbf{m} \cdot \mathbf{z}^2$ 1.2 Position dx 1.1 \geq Limited by size of individual detector 1.0 100 1000 10000 1 10 modules β*γ Velocity


- Time-of-flight for low-energy particles
- □ Particle IDentification (PID)
 - Intrinsic sensitivity (pulse shape)
 - ≻ ∆E-E method

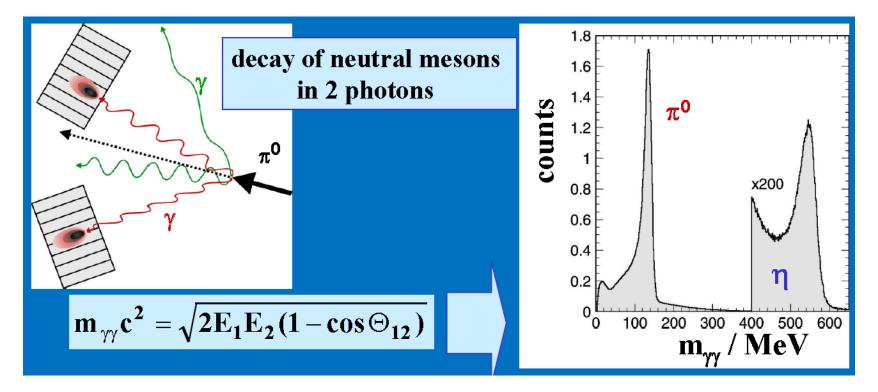
Limited due to large hadronic interaction length $\lambda \gg X_0$

Detection and Identification of Neutral Hadrons


□ Energy < 20 MeV: (n,γ) capture $n + {}^{6}Li \rightarrow \alpha + {}^{3}H$ $n + {}^{10}B \rightarrow \alpha + {}^{7}Li$ $n + {}^{3}He \rightarrow p + {}^{3}H$

 \Box Energy > 20 MeV: (n, p)

□ Energy > 1 GeV: hadronic shower


Electromagnetic Probes

Requirements on EM Calorimetry

□ Energy and position measurement for electrons, positrons, and photons

Invariant mass reconstruction

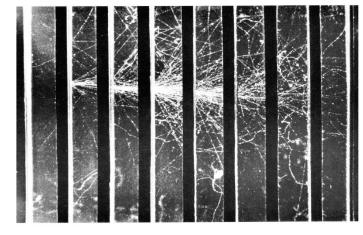
Electromagnetic Cascade (Shower)

When an electron or photon with energy > 1GeV enters a thick absorber it produces a cascade of secondary electrons and photons

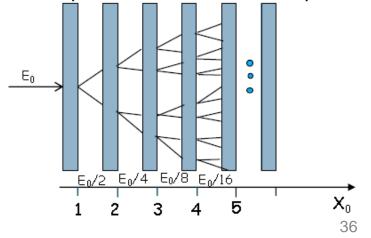
- For energies >1 GeV, the main processes are bremsstrahlung and pair production
- As the depth increases, the number of secondary particles increases as well, but their mean energy decreases

When the energies fall below the critical energy the multiplication process stops

Electromagnetic Shower


 \Box Radiation length, X₀, is the distance over which, on average:

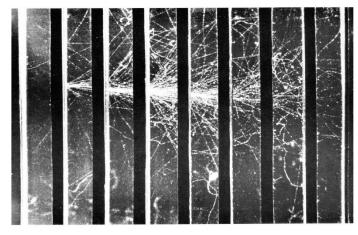
- An electron loses all but 1/e of its energy (1-1/e)=63%
- Photon has a pair conversion probability of 7/9
- □ Shower characteristics
 - > Secondaries after $n[X_0]$, each with energy $E_0/2^n$
 - Stops if E < critical energy E_c
 - Number of particles N=E/E_c
 - > Maximum at $n_{max} \sim \ln(E_0/E)$


□ Important for design and material selection:

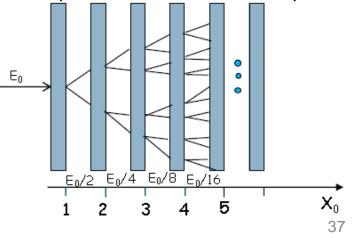
- Longitudinal shower development
- Transverse shower development
- Location of shower maximum and number of particles

Lead absorbers in a cloud chamber

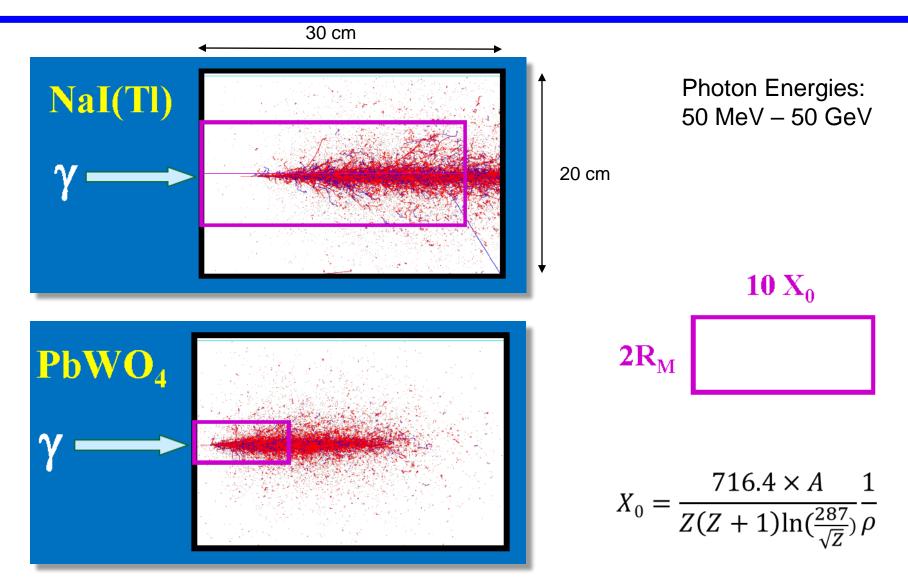
Simple sketch of a shower development


Electromagnetic Shower

- \Box Examples for E_c=10 MeV
 - E₀=1 GeV
 - > N_{max} =In(100)=4.5 and N=2^{nmax}=100
 - \circ E₀=100 GeV
 - > N_{max} =In(10000)=9.2 and N=2^{nmax}=10000


	Fe	Pb	Nal(TI)	PbWO ₄	
X ₀ (cm)	1.76	0.56	2.6	0.89	

For 100 Gev electrons: 16cm Fe or 5cm Pb

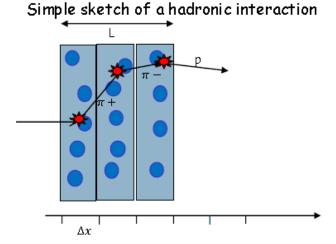

Lead absorbers in a cloud chamber

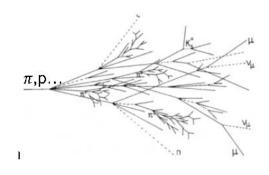
Simple sketch of a shower development

EM calorimeter material selection-stopping power

Small Moliere radius good to contain shower

Disadvantage: more sensitive to mismatches of tracking


Hadronic Cascade (shower)

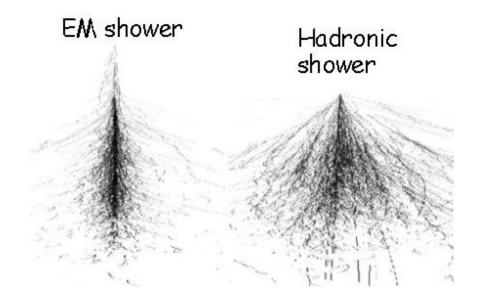

- Similar to EM shower development, but more complex due to different processes involved
 - Includes electromagnetic shower
 - And hadronic shower (strong interaction with materials)
 - o Generation of pions, kaons, etc.
 - o Breakup of nuclei
 - $\circ~$ Creation on non-detectable particles (neutrons, neutrinos, soft photons) large uncertainties in $\rm E_{sum}$
 - o Fluctuations

Different scale: hadronic interaction length determines depth of the shower

Average distance between interactions

$$\lambda \sim \frac{L}{N_{int}} \sim 1/(\rho \sigma_{el})$$

EM vs Hadronic Cascade


Material dependence

- \succ EM: X₀ ~ A/Z²
- $\succ \text{ HAD: } \lambda_{\text{int}} \sim A^{1/3}$

 $\Lambda_{int} >> X_0$

- □ Typical size of hadronic shower (95%):
 - > Longitudinal: (6-9) λ_{int}
 - > Transverse: 1 λ_{int}

	Fe	Pb	Nal(TI)	PbWO ₄	
X ₀ (cm)	1.76	0.56	2.6	0.89	
l _{int} (cm)	16.8	17.6	42.3	20.3	

Energy Resolution

□ Ideal case: $E \sim N$, $\sigma(E) \sim sqrt(N) \sim sqrt(E)$

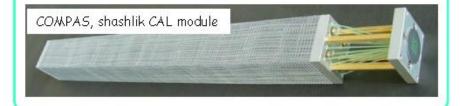
□ In real life:

$$\sigma(\mathsf{E}) \sim \mathsf{a} \sqrt{\mathsf{E}} \oplus \mathsf{b} \cdot \mathsf{E} \oplus \mathsf{c} \qquad \mathsf{or} \qquad \frac{\sigma(\mathsf{E})}{\mathsf{E}} \sim \frac{\mathsf{a}}{\sqrt{\mathsf{E}}} \oplus \mathsf{b} \oplus \frac{\mathsf{c}}{\mathsf{E}}$$

a - stochastic term: intrinsic statistical shower fluctuations, sampling fluctuations


b - noise term: readout electronics noise

c – **constant term:** inhomogeneities, imperfections in construction (e.g. dimensional variations), nonlinearity of readout electronics, energy loss, etc.


Calorimeter types

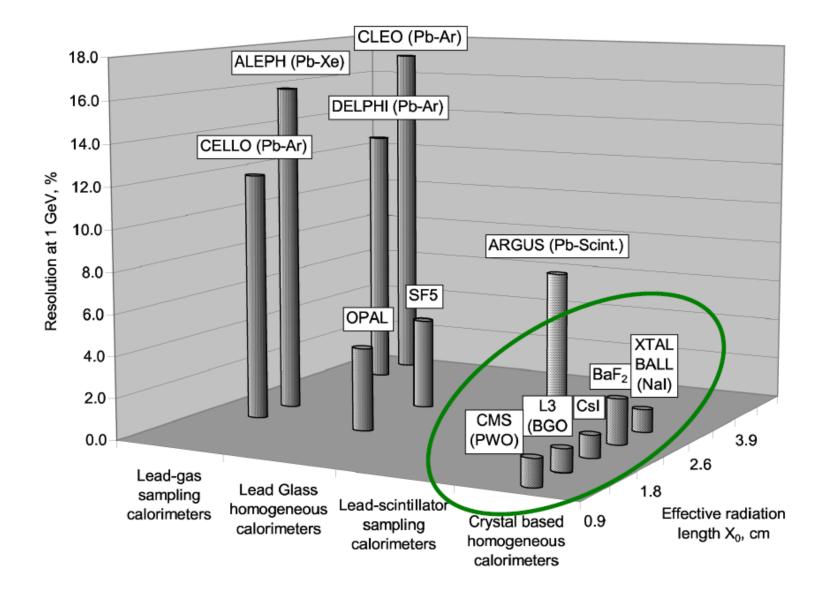
Sampling calorimeter:

Layers of absorber alternate with active(sensitive) detector volume (sandwich, shashlik, accordion structures)

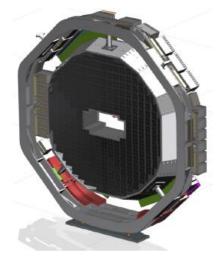


Absorber: Pb, etc Sensitive (solid or liquid): Si, scintillator, LiAr

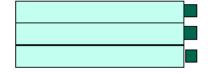
Homogeneous calorimeter


Monolithic material , serves as both absorber and detector material

Liquid: Xe, Kr Dense crystals: glass, crystals PbWO₄

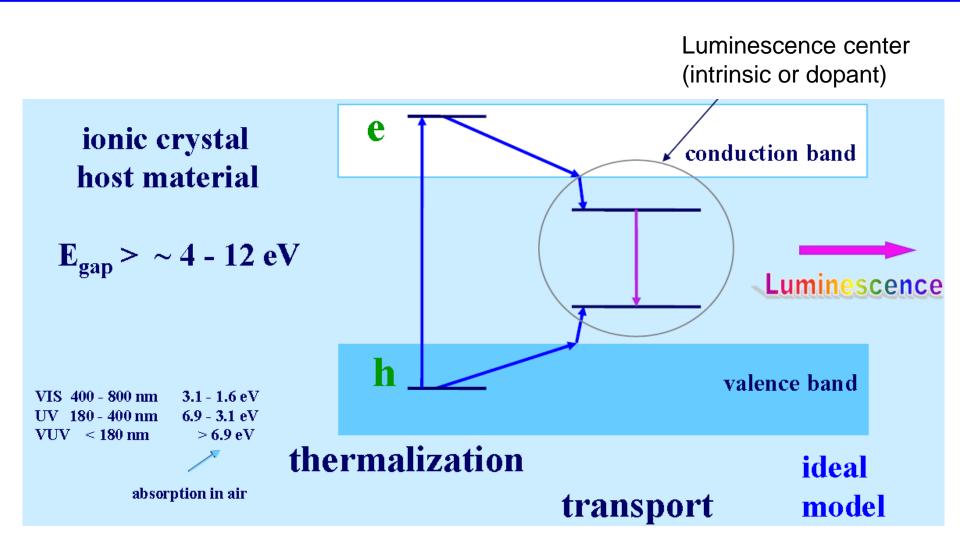


Advantage of homogeneous calorimeters

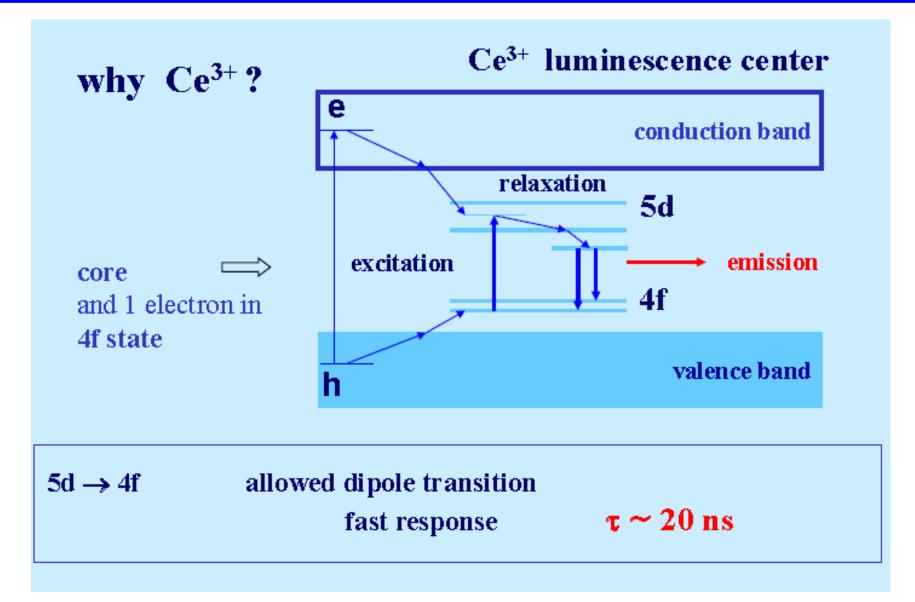


PbWO₄ homogeneous EM Calorimeters

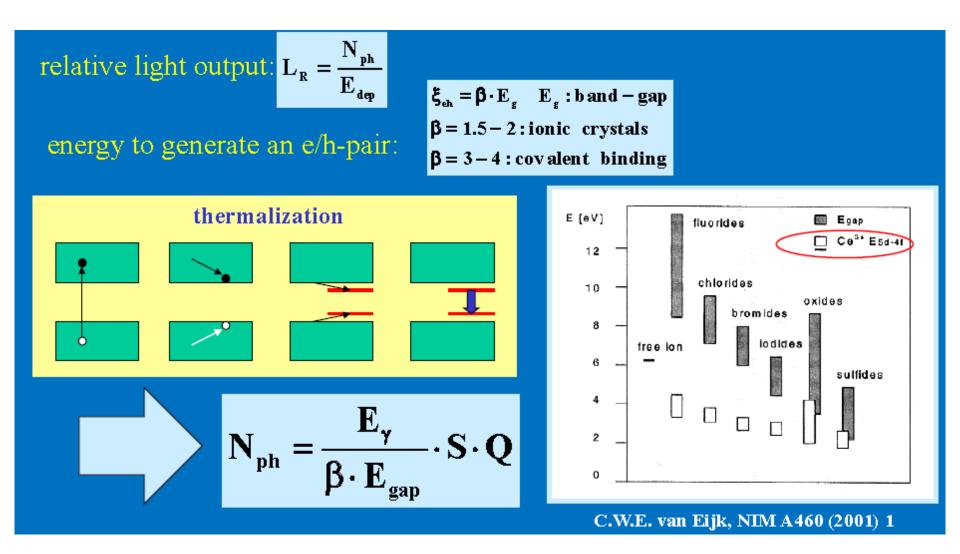
- \square Lead tungstate (PbWO₄) used at CMS and PANDA
 - Excellent energy resolution
 - Compact
 - > Time resolution < 2ns
 - Cluster threshold: 10 MeV
- Produced at two vendors (China, Russia)
- □ CMS EMCAL facts:
 - Contains nearly 80,000 crystals
 - Each crystal weighs 1.5 kg
 - It took 10 years to grow all the crystals!!



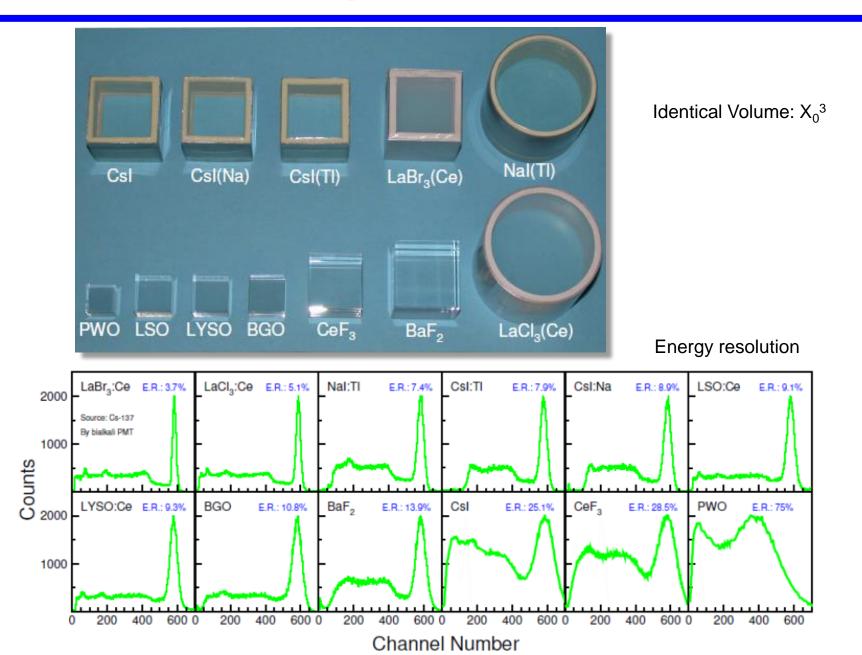
Other calorimeter technologies

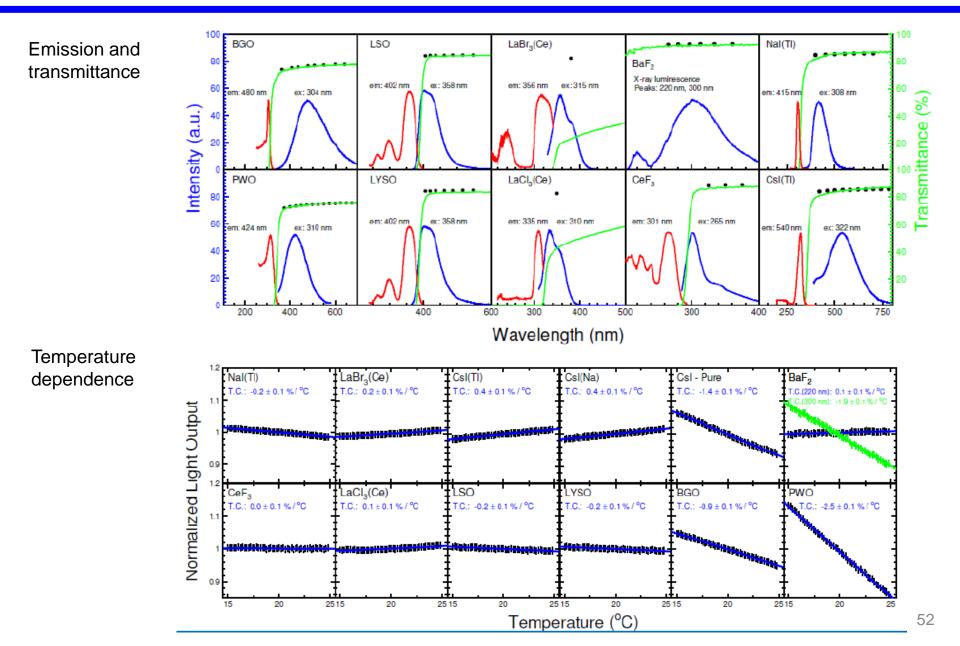

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
$\operatorname{Bi}_4\operatorname{Ge}_3\operatorname{O}_{12}(\operatorname{BGO})(\operatorname{L3})$	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5~{ m GeV}$	1998
$PbWO_4 (PWO) (CMS)$	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	$20 - 30X_0$	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_{0}$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E}\oplus 0.5\%\oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/depl. U (D \emptyset)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_{0}$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996

Inorganic Scintillator Basics


Fundamental processes in inorganic scintillators

Advantage of Ce³⁺ luminescence

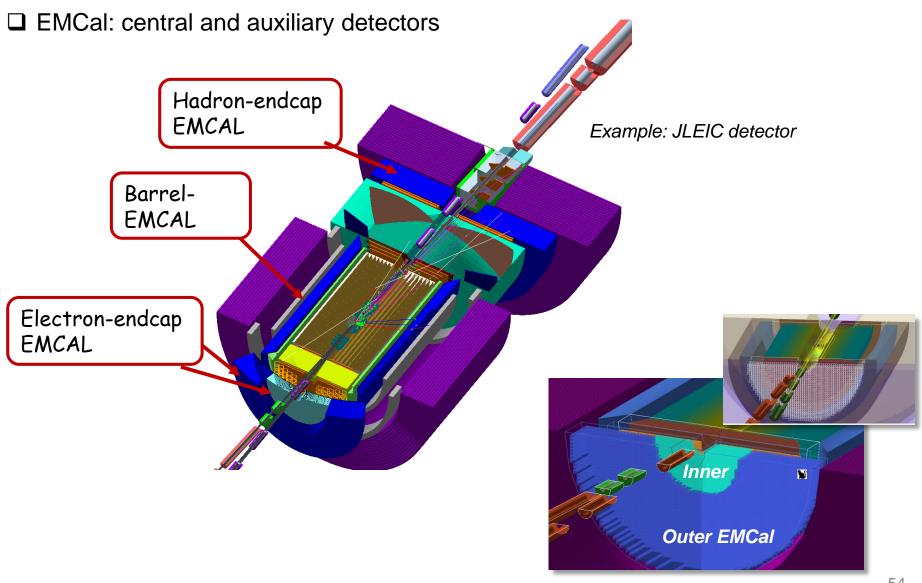

Scintillator Basics – photons from scintillation


Selection of Inorganic Scintillators

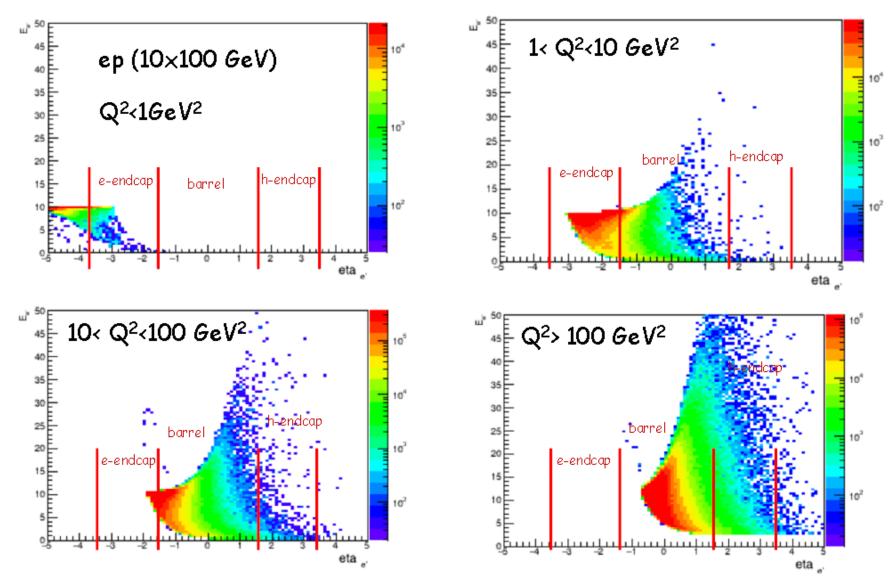
Material/ Parameter	Density (g/cm³)	Melt. Point (°C)	Rad. Length (cm)	Moliere Radius (cm)	Refr. Index	Emission peak	Decay time (ns)	Light Yield (γ/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
BaF₂	4.89	1280	2.03 2.06	3.10 3.40	1.50	300 220	650 0.9	16000 2000	>50	Scint.	52.7
CeF ₃	6.16	1460	1.70 1.68	2.41 2.60	1.62 1.68	340 300	5 30	2800	>100	Scint.	50.8
(BGO)Bi ₄ Ge ₃ O ₁₂	7.13	1050	1.12	2.23 2.30	2.15	480	300	8000 4000	>1000	.98 scint, .02 Č	83
(PWO)PbWO ₄	8.30	1123	0.89 0.92	2.00	2.20	560 420	50 10	40 240	>1000	.90 scint. .10 Č	75.6
PbF ₂	7.77	824	0.93	2.21	1.82	280 310	<30	2-6	50	Pure Č	77
(BSO):CeBi ₄ Si ₃ O ₁	6.80	1030	1.85	≈5	2.06	470 505	≈100	1000 4000	>10	Scint.	75
(LSO):CeLu ₂ SiO ₅	7.40	2050	1.14	2.07	1.82	420	40	30000	>1000	.98 sint 02 Č	64.8
(LYSO):Ce[LuY] ₂ SiO ₅	7.40	2050	1.14	2.07	1.82	420	40	30000	>1000	.98 scint. .02 Č	64.8

Properties of Inorganic Scintillators

Properties of Inorganic Scintillators


New Materials for EIC Calorimeters

V. Berdnikov, T. Horn, I.L. Pegg


and the EIC Homogeneous Calorimetry eRD1 Consortium

EIC EM Calorimetry

Scattered electron kinematics

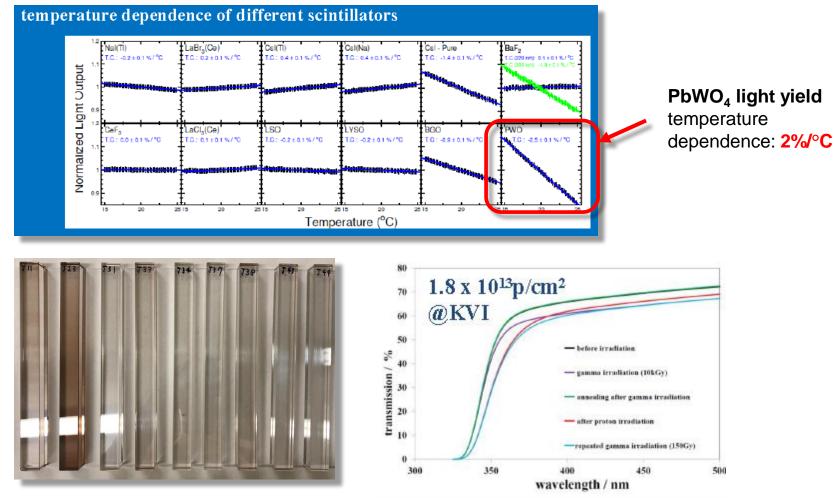
Regions and Physics Goals	Calorimeter Design
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy Ability to withstand radiation down to at least 2-3 degree with respect to the beam line. Outer EM Cal for -2 < η < 1: Energy resolution to 7%/√E Compact readout without degrading energy resolution Readout segmentation depending on angle
 Barrel/mid: EM Cal Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%) 	 Barrel, EM calorimetry Compact design as space is limited Energy resolution of order 8%/√E +1.5%, and likely better
 Ion/Forward: Hadron Cal Driven by need for x-resolution in high-x measurements Need Δx resolution better than 0.05 For diffractive with ~50 GeV hadron energy, this means 40%/√E 	 Hadron endcap: ➢ Hadron energy resolution to order 40%/√E, ➢ EM energy resolution to < (2%/√E + 1%) ➢ Jet energy resolution < (50%/√E + 3%)

Requirements on calorimeter materials

□ Light Yield – Conversion of energy into visible light

- □ Attenuation Coefficient Radiation length
- □ Scintillation Response emission intensity
- Emission spectrum matching between scintillator and photo detector emission peak
- □ Chemical stability and radiation resistance
- □ Linearity of light response with incident photon energy
- □ Moliere radius for lateral shower containment

□ Temperature stability


Regions and Physics Goals	Calorimeter Design
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% 	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy
 Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Ability to withstand radiation down to at least 2-3 degree with respect to the beam line.

Backward/lepton Inner EM Cal – most demanding for high resolution

44m Flue-

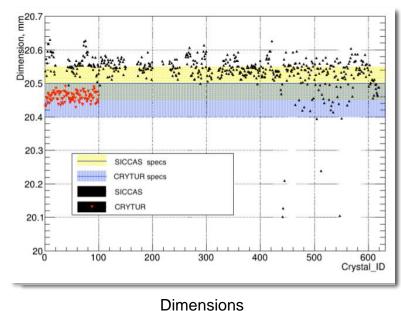
Crystals in EMCal: PbWO₄

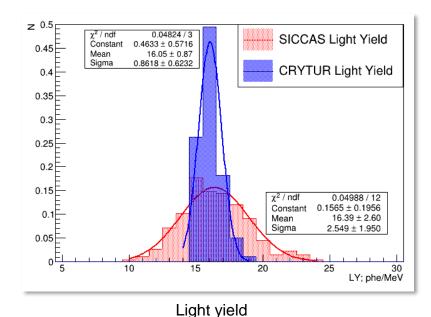
PbWO₄ optimal for EMCal, e.g. CMS, PANDA detectors – stopping power, fast response, etc., but also limitations, e.g. hadron radiation damage, low Light Yield

PbWO₄ radiation damage

Crystals in EMCal: PbWO₄

Expensive (\$15-25/cm³) – barrel EMCal not affordable


□ Another consideration: manufacturing uncertainty


- SICCAS: failure rate ~35% for crystals received 2017-19 due to major mechanical defects – an additional 15% are questionable
- CRYTUR: Strict quality control procedures so far 100% of crystals accepted, but limited raw material

Quality analysis:

60

	Calorimeter Design									
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% 	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy Ability to withstand radiation down to at least 									
 Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Ability to withstand radiation down to at least 2-3 degree with respect to the beam line. Outer EM Cal for -2 < η < 1: Energy resolution to 7%/√E Compact readout without degrading energy resolution Readout segmentation depending on angle 									
Barrel/mid: EM Cal Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV 	 Barrel, EM calorimetry Compact design as space is limited Energy resolution of order 8%/√E +1.5%, and likely better 									
 To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%) Backward/lepton <u>Outer</u> EM Cal and barrel region – more relaxed on resolution requirements 										

An alternative active calorimeter material that is more cost effective and easier to manufacture than, e.g. crystals

Material/ Parameter	Density (g/cm ³)	Rad. Length (cm)	Moliere Radius (cm)	Interact Length (cm)	Refr. Index	Emission peak	Decay time (ns)	Light Yield (pe/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
(PWO)PbWO₄	8.30	0.89 0.92	2.00	20.7 18.0	2.20	450, 540	10 20-200 ~500	17-22	10	.90 scint. .10 Č	75.6
(BaO*2SiO ₂):Ce glass	3.7	3.6	2-3	~20		440, 460	22 72 450	>100	>2000 (no tests >2Mrad yet)	Scint.	51
(BaO*2SiO ₂):Ce glass w/ Gd	4.7-5.4	2.2		~20		440, 460	50 86-120 330-400	>100	>2000 (no tests >2Mrad yet)	Scint.	58

Also: (BaO*2SiO₂):Ce shows no temperature dependence

Shortcomings of earlier work:

- Macro defects, which can become increasingly acute on scale-up
- Sensitivity to electromagnetic probes



The Vitreous State Laboratory – unique expertise

Premier materials science facility with unique capabilities and expertise in glass R&D

Current R&D program includes

- Nuclear and hazardous waste stabilization
- Glass and ceramic materials development
 - Formulation optimization
 - Characterization
 - Property-composition models
- Materials corrosion and characterization
- Off-gas treatment
- Water treatment, ion exchange
- Cements, flyash
- Geopolymers
- Biophysics
- Nano-materials
- Thermoelectrics
- > Spintronics
- Scintillation detectors

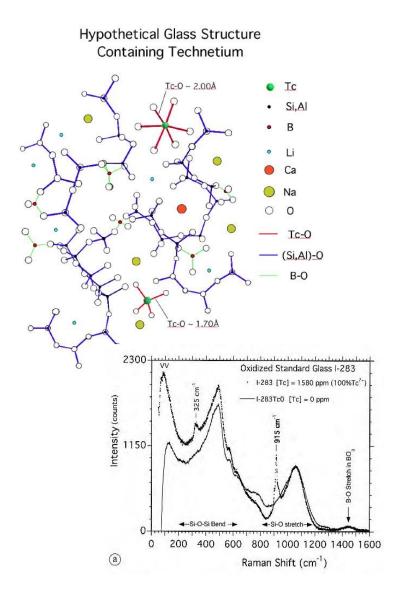
The Vitreous State Laboratory – unique facility

Designing, constructing and testing large glass production systems

- VSL Joule Heated Ceramic Melter (JHCM) Systems:
 - The largest array of JHCM test systems in the US
 - The largest JHCM test platform in the US

PILOT SYSTEM SCALE-UP

DM10 and DM100 JHCM Systems at VSL



VSL DM1200 HLW Pilot Melter System

About 400,000 kg glass made from about 1 million kg feed

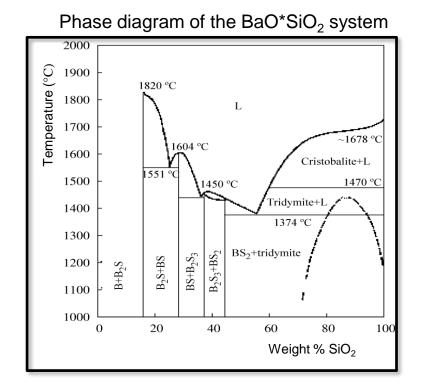
XAS Studies on Silicate Glasses

- Na: Na⁺O₃₋₇ : Na-O = 2.30 -2.60 Å
- Mn: Mn²⁺O₄₋₅ : Mn-O = 2.07 Å, Mn-Mn = 3.48 Å
- Cu: Cu²⁺O₄ : Cu-O = 1.96 Å, Cu-Cu = 2.98 Å
- Sr: Sr²⁺O₄₋₅ : Sr-O = 2.53 Å
- Zr: Zr⁴⁺O₆₋₇ : Zr-O = 2.08 Å
- Mo: Mo⁶⁺O₄: Mo-O = 1.75 Å
- Ag: Ag⁺O₂: Ag-O = 2.10 2.20 Å
- I: I⁻(Na,I)₄: I-Li = 2.80 Å, I-Na = 3.04 Å
- Re: Re⁷⁺O₄ : Re-O = 1.74 Å
- Bi: Bi³⁺O₃ : Bi-O = 2.13 Å
- S: S⁶⁺O₄ surrounded by network modifiers; S²⁻; S-S
- CI: CI-O = 2.70 Å; CI-CI = 2.44 Å; CI-Na; CI-Ca
- V: V⁵⁺O₄; minor V⁴⁺O₅ under reducing conditions
- Cr: redox sensitive: $Cr^{6+}O_4 Cr-O = 1.64 \text{ Å}$; $Cr^{3+}O_6 Cr-O = 2.00 \text{ Å}$; $Cr^{2+}O_4 Cr-O \sim 2.02 \text{ Å}$
- Tc: redox sensitive, $Tc^{4+}O_6$ Tc-O = 2.00Å; $Tc^{7+}O_4$ Tc-O = 1.75 Å; evidence of Tc-Tc = 2.56 Å in hydrated, altered glass
- Sn: $Sn^{4+}O_6$ (minor $Sn^{2+}O_4$) Sn-O = 2.03 Å; Sn-Sn = 3.50 Å
- AI: Al³⁺O₄ : AI-O: 1.77 Å
- Si: Si⁴⁺O₄: various polymerizations
 - Zn: Zn²⁺O₄: Zr-O: 1.96 Å, Zn-Si 2nd nearest-neighbor evidence

An alternative active calorimeter material that is more cost effective and easier to manufacture than, e.g. crystals

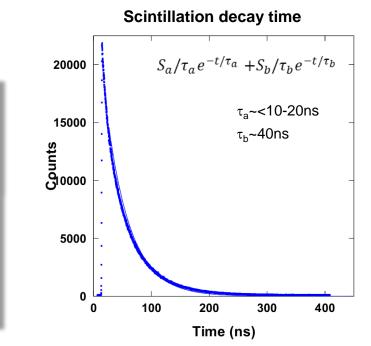
Material/ Parameter	Density (g/cm ³)	Rad. Length (cm)	Moliere Radius (cm)	Interact Length (cm)	Refr. Index	Emission peak	Decay time (ns)	Light Yield (pe/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
(PWO)PbWO₄	8.30	0.89 0.92	2.00	20.7 18.0	2.20	450, 540	10 20-200 ~500	17-22	10	.90 scint. .10 Č	75.6
(BaO*2SiO ₂):Ce glass	3.7	3.6	2-3	~20		440, 460	22 72 450	>100	>2000 (no tests >2Mrad yet)	Scint.	51
(BaO*2SiO ₂):Ce glass w/ Gd	4.7-5.4	2.2		~20		440, 460	50 86-120 330-400	>100	>2000 (no tests >2Mrad yet)	Scint.	58

Also: (BaO*2SiO₂):Ce shows no temperature dependence


Shortcomings of earlier work:

- Macro defects, which can become increasingly acute on scale-up
- Sensitivity to electromagnetic probes

Material Overview


Technology: Glass production combined with successive thermal annealing (800 – 900°C)

Ba-Si system allows to incorporate trivalent ions: Lu, Dy, Gd, Tb, Yb, Ce

New Glass Scintillator Material

Glass scintillators being developed at VSL/CUA/Scintilex

Progress with new method to eliminate defects

Standard DSB:Ce

Optical properties comparable or better than PbWO₄

500 um

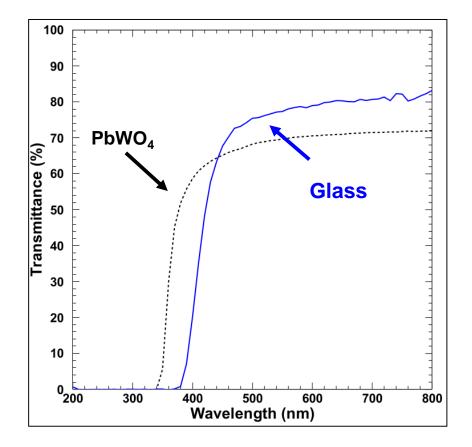
our new method

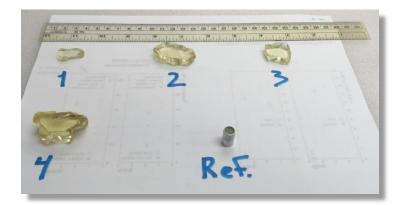
Decay time measured with single photon counting

Light Yield

Material/ Parameter	PbWO ₄	Sample 1	Sample 2	Sample 3	Sample 4
Luminescence (nm)	420	440	440	440	440
Relative light output (compared to PbWO ₄)	1	35	16	23	11

Scintilex formulation

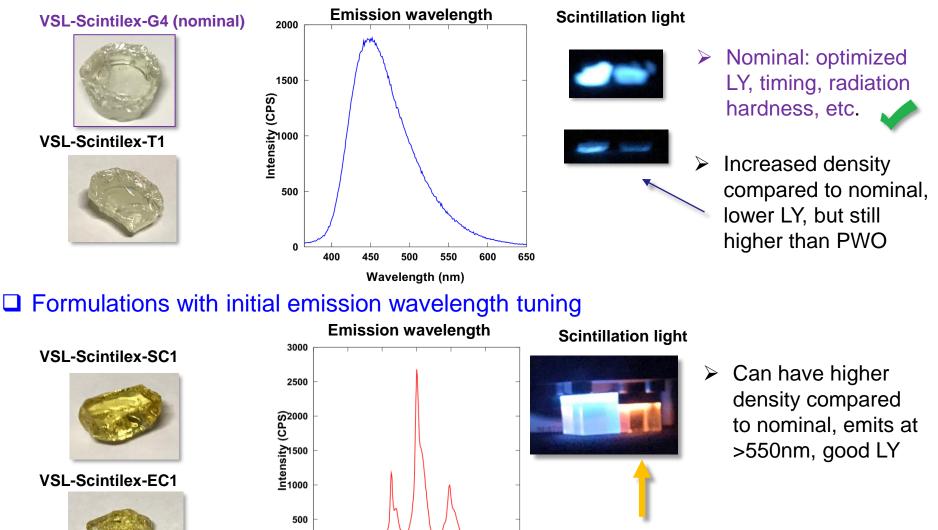

Samples made at CUA/VSL/Scintilex with


Scintilex formulation

500 um

New Glass Scintillator Material

 Transmittance of small samples comparable and sometime better than PbWO4



Glass Scintillator – formulation optimization

Wavelength (nm)

Two glass formulations for calorimeter application

Glass Scintillator – Radiation Hardness

High dose radiation tests – progress with new method at CUA/VSL/Scintilex

VSL-Scintilex-S1



VSL-Scintilex-G4 (nominal)

Before irradiation

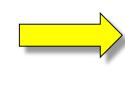
SCINTILEX

After 2min 160KeV Xray at >3k Gy/min

After curing

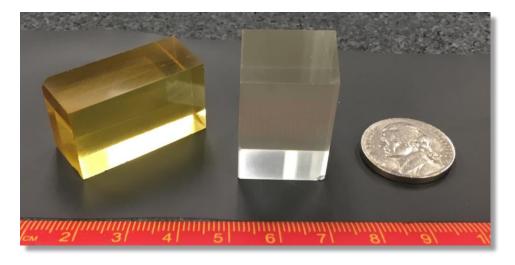
T, SC, EC series are EM radiation hard with new method too

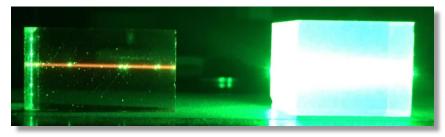
Hadron irradiation test planned


Glass Scintillator – Initial Scale-Up

Progress with scale-up – medium-size samples produced, issues associated with further scale-up identified, solutions are being implemented and tested

Example: G4 (nominal), SC1 glass


1cm x 1cm x 0.5cm (test size)



2cm x 2cm x ~3cm (medium size)

SCINTILEX

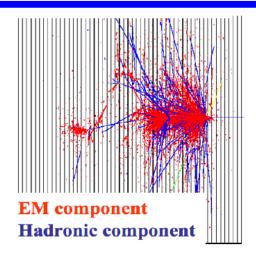
- PbWO₄ crystals are ideal for precision EMCal, but also have limitations and are expensive – large volume detectors are unaffordable
- Glass-based scintillators are cost-effective alternative to crystals, in particular EMCal regions with relaxed resolution requirements
 - Small samples produced at CUA/VSL/Scintilex have a factor of ten or higher light yield compared to PbWO₄
 - Initial scale-up successful medium-size samples produced without defects
 - Ongoing optimization
 - Beam test program expected to start this fall

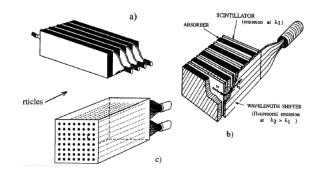
Hadronic Calorimeters

Hadronic Calorimeters

Usually sampling calorimeters

□ Showers have two components: EM and hadronic

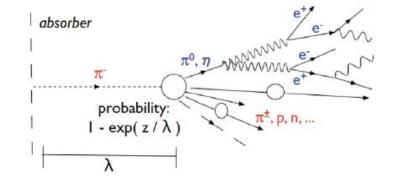

□ Active medium made of similar material as EMCal


 Scintillator (light), gas (ionization/wire chambers), silicone (SSD)

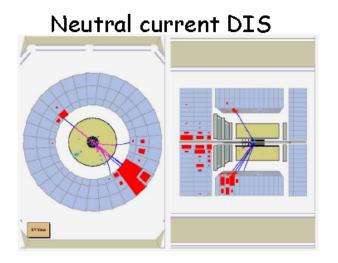
Passive medium is a material with longer interaction length

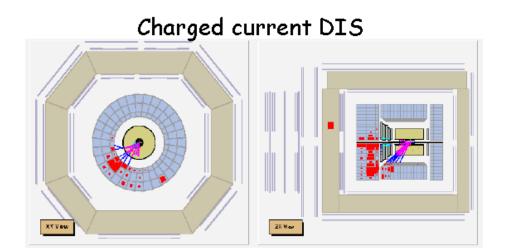
➢ Iron, uranium, …

Resolution is worse than in EMCals, e.g. ZEUS Uranium calorimeter: 35%/sqrt E

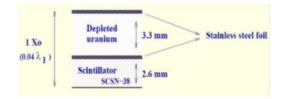


EM fraction in hadronic shower

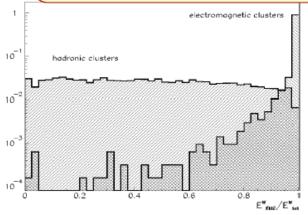

 \Box π^0 , eta production: all energy deposited through EM processes


□ f_{EM}=fraction of hadron energy deposited via EM processes

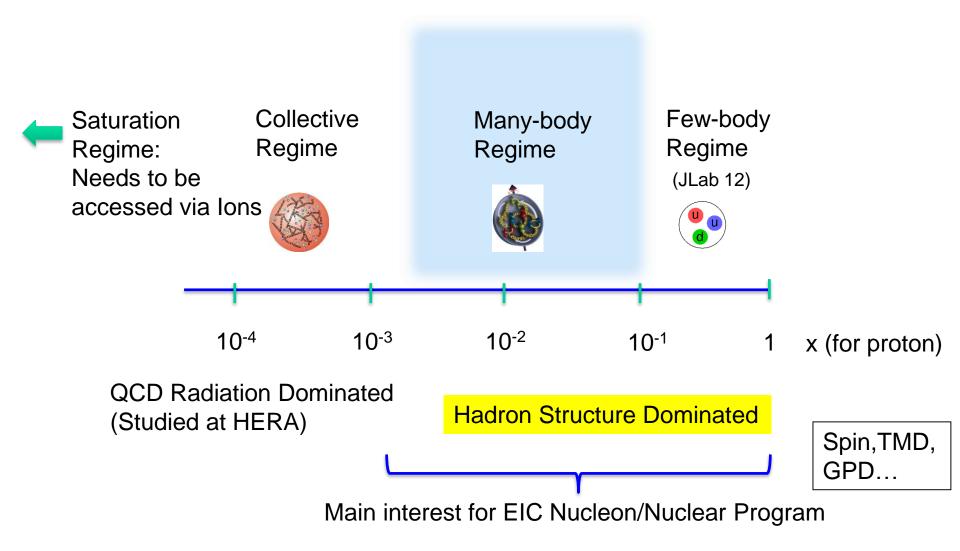
- > In general f_{EM} increases with energy
- \Box f_{had} = the strong interaction force
- Smaller calorimeter response to non-EM components of hadron showers than to EM components
- Need to compensate for the invisible energy (lost nuclear binding energy, neutrino, slow neutrons)



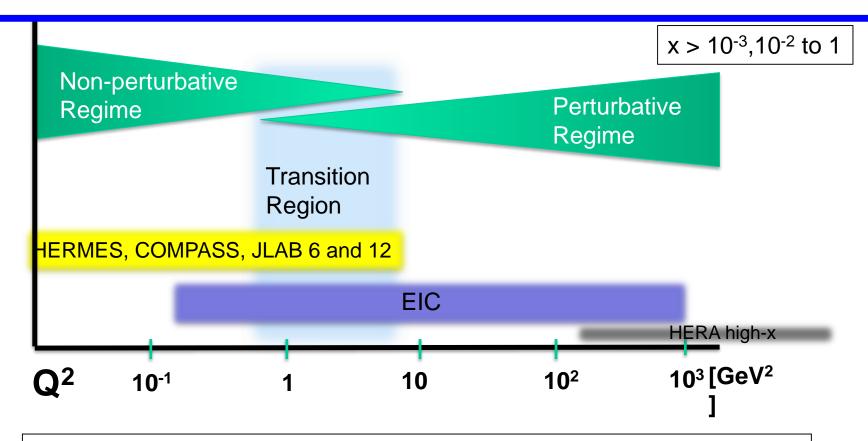
ZEUS calorimeter



Sampling structure of the towers Depleted Uranium alloy(98.1% U₂₃₈,1.7% Nb, 0.2% U₂₃₅) Longitudinal length of EMC is $1\lambda_{int} = 25X_0$. (Almost complete containment of EM showers) Longitudinal length of FCAL 6- $7\lambda_{int}$ (Full containment of hadronic showers)



electrons: $\frac{\sigma}{E} = \frac{18\%}{\sqrt{E}} \oplus 2\%$ hadrons: $\frac{\sigma}{E} = \frac{35\%}{\sqrt{E}} \oplus 2\%$


Neural network based electron identification

Where EIC Needs to be in x (nucleon)

Where EIC needs to be in Q²

- Include non-perturbative, perturbative and transition regimes
- > Provide long evolution length and up to Q^2 of ~1000 GeV² (~.005 fm)
- Overlap with existing measurements

Disentangle Perturbative/Non-perturbative, Leading Twist/Higher Twist