The mass and spin structure of the proton

Yoshitaka Hatta Brookhaven National Laboratory

NAS report on EIC (2018/07)

An Assessment of U.S.-Based Electron-Ion Collider Science

A Consensus Study Report of

The National Academies of SCIENCES • ENGINEERING • MEDICINE

"The committee finds that the science that can be addressed by an EIC is compelling, fundamental and timely."

Finding 1: An EIC can uniquely address three profound questions about nucleonsprotons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons? Lectures by M. Sievert, A. Stasto

Outline

- Lecture 1: Proton spin decomposition
- Lecture 2: Orbital angular momentum in QCD
- Lecture 3: Proton mass and trace anomaly

Notations

 $\text{Metric} \quad \eta^{\mu\nu}, \ g^{\mu\nu} = (+1, -1, -1, -1) \qquad \mu, \nu = 0, 1, 2, 3 \qquad i, j = 1, 2 \quad \text{(transverse)}$

Light-cone coordinates

$$P^{\pm} = \frac{1}{\sqrt{2}} (P^0 \pm P^3) \qquad g^{+-} = 1 \qquad P^+ = P_-$$
$$P \cdot x = P^+ x^- + P^- x^+ - P^i_{\perp} x^i_{\perp}$$

The proton spin problem

The proton has spin ½.

The proton is not an elementary particle.

Quark helicity: definition

Proton single-particle state,

$$2\Delta\Sigma S^{\mu} = \sum_{f} \langle PS | \bar{\psi}_{f} \gamma_{5} \gamma^{\mu} \psi_{f} | PS \rangle$$

spin 4-vector

$$S^{\mu} = \frac{1}{2} \bar{u}(PS) \gamma_5 \gamma^{\mu} u(PS) \qquad \qquad S^{\mu} \approx \pm P^{\mu} \text{ as } P^+ \to \infty$$

Exercise : show that

$$\begin{aligned} P^{\mu}S_{\mu} &= 0\\ S^{2} &= -M^{2} \end{aligned} \qquad u(P,S)\bar{u}(P,S) &= (I\!\!\!P + M)\frac{1 - \frac{\gamma_{5}\mathcal{P}}{M}}{2} \end{aligned}$$

In the quark model,

$$P,+\rangle = \frac{1}{3\sqrt{2}} \left\{ |uud\rangle(2|++-\rangle - |+-+\rangle - |-++\rangle) + perm \right\}$$
$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \qquad \longrightarrow \qquad \Delta\Sigma = 1$$

With relativistic effects, $\,\Delta\Sigmapprox0.7\,$

æ

Deep inelastic scattering

Bjorken variable

$$x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{(P+q)^2 + Q^2 - m_p^2}$$
$$= \frac{Q^2}{Q^2 + m_X^2 - m_p^2}$$
$$\sim \frac{Q^2}{s} \qquad (x \ll 1)$$

Physical meaning of \mathcal{X} : momentum fraction carried by the struck parton

The g_1 structure function

Unpolarized

$$\operatorname{Im} \frac{i}{2\pi} \int d^4 y e^{iqy} \langle PS | T\{J^{\mu}(y)J^{\nu}(0)\} | PS \rangle \Big|_{sym} \\
\left(-\eta^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) F_1(x,Q^2) + \left(P^{\mu} - \frac{P \cdot q}{q^2} q^{\mu} \right) \left(P^{\nu} - \frac{P \cdot q}{q^2} q^{\nu} \right) \frac{F_2(x,Q^2)}{P \cdot q}$$

Polarized

$$\operatorname{Im} \frac{1}{2\pi} \int d^4 y e^{iqy} \langle PS | T\{J^{\mu}(y)J^{\nu}(0)\} | PS \rangle \Big|_{asym}$$
$$= \epsilon^{\mu\nu\alpha\beta} q_{\alpha} \left(\frac{S_{\beta}}{P \cdot q} (\underline{g_1(x,Q^2)} + g_2(x,Q^2)) - \frac{q \cdot SP_{\beta}}{(P \cdot q)^2} g_2(x,Q^2) \right)$$

Exercise

Forward Compton amplitude $q^0 > 0$

Show that $2 \text{Im} T^{\mu\nu}_S = W^{\mu\nu}_S$

$$2\mathrm{Im}T_A^{\mu\nu} = W_A^{\mu\nu}$$

Relation between $g_1(x)$ and polarized quark distribution function

Operator product expansion c.f., Peskin (18.125)

$$\int d^4 y e^{iqy} \bar{\psi} \gamma^{\mu} \psi(y) \bar{\psi} \gamma^{\nu} \psi(0) = \bar{\psi} i (i\partial_{\alpha} + q_{\alpha}) \gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \frac{-1}{Q^2} \sum_n \left(\frac{2iq \cdot \partial}{Q^2} \right)^n \psi(0) + (\mu \to \nu, q \to -q) + \cdots$$

Pick up the antisymmetric part

$$\gamma^{\mu}\gamma^{\alpha}\gamma^{\nu} = g^{\mu\alpha}\gamma^{\nu} - g^{\mu\nu}\gamma^{\alpha} + g^{\alpha\nu}\gamma^{\mu} + i\epsilon^{\mu\alpha\nu\rho}\gamma_{5}\gamma_{\rho}$$

$$\int d^4 y e^{iqy} \bar{\psi} \gamma^{\mu} \psi(y) \bar{\psi} \gamma^{\nu} \psi(0)$$

= $2 \epsilon^{\mu\nu\lambda\alpha} q_{\alpha} \sum_{n}^{even} \frac{2q_{\mu_1} \cdots 2q_{\mu_n}}{Q^{2(n+1)}} \bar{\psi} \gamma_5 \gamma_{\lambda} i \partial^{\mu_1} \cdots i \partial^{\mu_n} \psi(0) + \cdots$

When $Q^2 \to \infty$, naively, the most important operators are those with smallest dimensions (smallest n)

Twist expansion

However, in the proton matrix element, $i\partial^{\mu} \to P^{\mu}$, and $\frac{2P \cdot q}{Q^2} = \frac{1}{x}$ is not small in the Bjorken limit $Q^2 \to \infty$, x = const.

The most important operators are those with lowest twist

(twist) = (dimension) – (spin)

Twist-2 polarized quark operators (symmetrized in all Lorentz indices and trace subtracted)

$$\bar{\psi}\gamma_5\gamma^{(\lambda}iD^{\mu_1}iD^{\mu_2}\cdots iD^{\mu_n)}\psi$$
 –(traces)

$$g_{1}(x) = \frac{1}{2\pi S^{+}} \operatorname{Im} \sum_{n=0}^{even} \frac{1}{(P^{+})^{n} x^{n+1}} \langle PS | \bar{\psi} \gamma_{5} \gamma^{+} (iD^{+})^{n} \psi | PS \rangle + \cdots$$

$$= \frac{1}{2\pi S^{+}} \operatorname{Im} \sum_{n=0}^{even} \frac{1}{x^{n+1}} \int \frac{dk^{+}}{2\pi} \left(\frac{k^{+}}{P^{+}}\right)^{n} \int dx^{-} e^{ik^{+}x^{-}} \langle PS | \bar{\psi}(0) \gamma_{5} \gamma^{+} W[0, x^{-}] \psi(x^{-}) | PS \rangle$$

$$= \frac{P^{+}}{4\pi S^{+}} \operatorname{Im} \int \frac{dk^{+}}{2\pi} \left(\frac{1}{xP^{+} + k^{+}} + \frac{1}{xP^{+} - k^{+}}\right) \int dx^{-} e^{ik^{+}x^{-}} \langle PS | \bar{\psi}(0) \gamma_{5} \gamma^{+} W[0, x^{-}] \psi(x^{-}) | PS \rangle$$

$$= \frac{\operatorname{Analytic continuation from}}{|x| > 1 \text{ to } 1 > x > 0} \qquad \mathbf{x} \to \mathbf{x} - \mathbf{i}\epsilon$$

$$= \frac{P^+}{8\pi S^+} \int dx^- e^{ixP^+x^-} \langle PS|\bar{\psi}(0)\gamma_5\gamma^+ W[0,x^-]\psi(x^-)|PS\rangle + (x \to -x) + \cdots$$

$$= \frac{1}{2} (\Delta q(x) + \Delta \bar{q}(x)) + \cdots$$

Polarized quark and antiquark distributions

Digression: $g_2(x)$ structure function

Return to OPE (page 10)

$$\int d^4x e^{iqx} \bar{\psi} \gamma^{\mu} \psi(x) \bar{\psi} \gamma^{\nu} \psi(0) = \frac{2}{Q^2} \epsilon^{\mu\nu\lambda\alpha} q_{\alpha} \sum_{n}^{even} \bar{\psi} \gamma_5 \gamma_\lambda \frac{i\partial_{\mu_1} \cdots i\partial_{\mu_n} 2q^{\mu_1} \cdots 2q^{\mu_n}}{Q^{2n}} \psi(0) + \cdots$$

Anti-symmetrize in λ and μ_1, μ_2, \dots \rightarrow One twist higher (twist-3)

 $g_2(x)$ is a mixture of twist-2 and twist-3 contributions

$$g_2(x) = -g_1(x) + \int_x^1 \frac{dz}{x} g_1(z) + \bar{g}_2(x)$$

Wandzura-Wilczek part

`Genuine twist-3' part (quark-gluon correlation)

$$\int_{0}^{1} dx x^2 \bar{g}_2(x) = \frac{d_2}{6}$$

$$\langle PS|\bar{\psi}\gamma^+gF^{+i}\psi|PS\rangle = 2d_2(P^+)^2\epsilon^{ij}S_j$$

Shuryak, Vainshtein (1982)

$\Delta\Sigma$ from polarized DIS

Longitudinal double spin asymmetry in polarized DIS

$$\int_0^1 dx g_1(x, Q^2) = \frac{1}{2} \sum_f e_f^2 \int_0^1 dx (\Delta q_f(x, Q^2) + \Delta \bar{q}_f(x, Q^2)) + \cdots$$

Flavor SU(3) decomposition

$$\sum_{f} e_{f}^{2} = \begin{pmatrix} \frac{4}{9} & & \\ & \frac{1}{9} & \\ & & \frac{1}{9} \end{pmatrix} = \frac{2}{9} + \frac{1}{6} \begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix} + \frac{1}{18} \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$$

$\Delta\Sigma$

$$\begin{split} \int_{0}^{1} dx g_{1}(x) &= \frac{1}{9} (\Delta u + \Delta d + \Delta s) \\ &+ \frac{1}{12} (\Delta u - \Delta d) \\ &+ \frac{1}{36} (\Delta u + \Delta d - 2\Delta s) + \mathcal{O}(\alpha_{s}) \\ \text{isovector axial charge} \\ _{N} \langle P | \bar{\psi} \gamma_{5} \gamma^{\mu} t^{3} \psi | P \rangle_{N} &= g_{A} \bar{u}_{N}(P) \gamma_{5} \gamma^{\mu} t^{3} u_{N}(P) \\ & & & \text{octet axial charge } g_{A}^{(8)} \\ \text{nucleon doublet} & & \text{Related by flavor SU(3) symmetry to} \\ \Delta u - \Delta d &= g_{A} \approx 1.2 \\ & \Xi^{-} \rightarrow \Lambda e^{-\nu} \end{split}$$

`Spin crisis'

In 1987, EMC (European Muon Collaboration) announced a very small value of the quark helicity contribution

$\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$!?

Recent value from NLO QCD global analysis

$$\Delta \Sigma = 0.25 \sim 0.3$$

Gluon polarization ΔG

$$\Delta G = \int_0^1 dx \Delta G(x)$$

Polarized gluon distribution

$$\int_0^1 dx \Delta G(x) = -\frac{1}{2S^+} \int dy^- \theta(y^-) \langle PS | F^{+\alpha}(0) \tilde{F}^+_{\alpha}(y^-) | PS \rangle$$

Need to specify the prescription of the pole 1/xNon-local, even after taking a moment.

Determination of ΔG

0

0

5

$$A_{LL} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$$

$$\propto \sum_{a,b} \Delta f_a \otimes \Delta f_b(x) \otimes \Delta \sigma_{ab}$$
central $\pi^0 \quad \sqrt{s} = 200 \text{GeV}$

10

 $qq + q\overline{q} + ...$

Evidence of nonzero ΔG

DeFlorian, Sassot, Stratmann, Vogelsang (2014)

Result from the NLO global analysis after the RHIC 200 GeV pp data

$$\int_{0.05}^{1} dx \Delta G(x, Q^2) \approx 0.2 \pm_{0.07}^{0.06}$$
$$(Q^2 = 10 \text{GeV}^2)$$

HUGE uncertainty from the small-x region

→ RHIC 510GeV, Electron-Ion Collider

QCD angular momentum tensor

QCD Lagrangian \rightarrow Lorentz invariant

$$x^{\mu}
ightarrow x^{\mu} + \omega^{\mu
u} x_{
u}$$

 $\delta\psi = -\omega^{\mu
u} \left(rac{1}{2} (x_{
u}\partial_{\mu} - x_{\mu}\partial_{
u})\psi - rac{1}{8} [\gamma_{\mu}, \gamma_{
u}]\psi
ight)$

20

 \rightarrow Noether current $\partial_{\mu}M^{\mu\nu\lambda}_{can} = 0$

QCD angular momentum tensor

(Exercise: derive this)

canonical energy momentum tensor

$$T_{can}^{\mu\nu} = \bar{\psi}i\gamma^{\mu}\overleftrightarrow{\partial}^{\nu}\psi - F^{\mu\alpha}\partial^{\nu}A^{\alpha} - g^{\mu\nu}\mathcal{L}$$

$$\rightarrow \text{Quark OAM} \qquad \rightarrow \text{Gluon OAM}$$

Jaffe-Manohar decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{can}^q + L_{can}^g$$

Based on the canonical angular momentum tensor $M_{can}^{\mu\nu\lambda}$

take $\mu\nu\lambda = +12$

Operators **NOT** gauge invariant.

$$\Delta G \sim \epsilon^{ij} F^{+i} A^j$$
$$L^q_{can} \sim \bar{\psi} x \times i \partial \psi$$
$$L^g_{can} \sim F x \times \partial A$$

Default gauge: light-cone gauge $A^+ = 0$

Improved (Belinfante) energy momentum tensor

Write
$$M_{can}^{\mu\nu\lambda} = x^{\nu}T_{can}^{\mu\lambda} - x^{\lambda}T_{can}^{\mu\nu} + H^{\mu\nu\lambda}$$

$$\tilde{T}^{\mu\nu} = T^{\mu\nu}_{can} + \partial_{\rho}G^{\rho\mu\nu} \quad \epsilon o$$

- One can add a total derivative.

where
$$G^{\rho\mu\nu} = \frac{1}{2} (H^{\rho\mu\nu} - H^{\mu\rho\nu} - H^{\nu\rho\mu})$$

Exercise: Show that $\tilde{T}^{\mu\nu}$ is symmetric and conserved.

Exercise: Show that in QCD,

$$\begin{split} \tilde{T}^{\mu\nu} &= \bar{\psi} i \gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \psi - F^{\mu\rho} F^{\nu}_{\ \rho} - g^{\mu\nu} \mathcal{L} \\ &= \tilde{T}^{\mu\nu}_q + \tilde{T}^{\mu\nu}_g \end{split}$$

$$\tilde{M}^{\mu\nu\lambda} = x^{\nu}\tilde{T}^{\mu\lambda} - x^{\lambda}\tilde{T}^{\mu\nu}$$
²²

Hint: A useful identity

$$\begin{split} \overleftrightarrow{D}^{\mu} &= \frac{D^{\mu} - \overleftarrow{D}^{\mu}}{2} \\ \text{From the Dirac equation} \quad (\not\!\!D + iM)\psi &= \bar{\psi}(\overleftarrow{\not\!\!D} - iM) = 0 \text{,} \\ &\overleftarrow{D}^{\mu} &= \overleftarrow{\partial}^{\mu} - igA^{\mu} \end{split}$$

$$0 = \bar{\psi}\gamma^{\mu}\gamma^{\nu}(\not{D} + iM)\psi - \bar{\psi}(\overleftarrow{\not{D}} - iM)\gamma^{\nu}\gamma^{\mu}\psi$$

$$= \bar{\psi}(g^{\mu\nu}\gamma^{\rho} + g^{\nu\rho}\gamma^{\mu} - g^{\mu\rho}\gamma^{\nu} + i\epsilon^{\mu\nu\rho\sigma}\gamma_{5}\gamma_{\sigma})D_{\rho}\psi$$

$$-\bar{\psi}\overleftarrow{D}_{\rho}(g^{\rho\nu}\gamma^{\mu} + g^{\nu\mu}\gamma^{\rho} - g^{\rho\mu}\gamma^{\nu} + i\epsilon^{\rho\nu\mu\sigma}\gamma_{5}\gamma_{\sigma})\psi + 2iMg^{\mu\nu}\bar{\psi}\psi$$

$$= 2\bar{\psi}(\gamma^{\mu}\overleftarrow{D}^{\nu} - \gamma^{\nu}\overleftarrow{D}^{\mu})\psi + i\epsilon^{\rho\mu\nu\sigma}\partial_{\rho}(\bar{\psi}\gamma_{5}\gamma_{\sigma}\psi)$$

Ji decomposition (1997)

$$\begin{split} \langle P|J_{q,g}^{z}|P\rangle &= \frac{1}{V} \langle P|\epsilon^{ij} \int d^{3}x x^{i} T_{q,g}^{0j}(x)|P\rangle \\ &= \frac{1}{V} \lim_{P' \to P} \langle P'|\epsilon^{ij} \int d^{3}x x^{i} T_{q,g}^{0j}(x)|P\rangle \qquad \hat{O}(x) = e^{i\hat{P}x} \hat{O}(0)e^{-i\hat{P}x} \\ &= -i \lim_{\Delta \to 0} \epsilon^{ij} \frac{\partial}{\partial \Delta^{i}} \langle P'|T_{q,g}^{0j}(0)|P\rangle \qquad \Delta = P' - P \end{split}$$

Gravitational form factors

$$\langle P'S|T_{q,g}^{\mu\nu}|PS\rangle = \bar{u}(P'S) \begin{bmatrix} A_{q,g}\gamma^{(\mu}\bar{P}^{\nu)} + B_{q,g}\frac{\bar{P}^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}}{2M} + \frac{D_{q,g}}{4}\frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{M} + \bar{C}_{q,g}Mg^{\mu\nu} \end{bmatrix} u(PS)$$

$$A_{q} = \int_{0}^{1} dxx(q(x) + \bar{q}(x))$$

$$A_{g} = \int_{0}^{1} dxxg(x)$$

$$anomalous \\ gravitomagnetic \\ moment'$$

$$The D-term \\ pressure' inside \\ the proton$$

$$Related to the \\ trace anomaly \\ (\rightarrow Lecture 3)$$

Momentum fraction of quarks and gluons $\,\Delta=0\,$

$$\frac{1}{2} = \sum_{q} J_{q} + J_{g} \qquad J_{q,g} = \frac{1}{2} (A_{q,g} + B_{q,g})$$

Further decomposition in the quark part possible (but not in the gluon part)

$$\bar{\psi}i\gamma^{(\mu}\overleftrightarrow{D}^{\nu)}\psi = \bar{\psi}i\gamma^{\mu}\overleftrightarrow{D}^{\nu}\psi - \frac{1}{4}\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}(\bar{\psi}\gamma_{5}\gamma_{\sigma}\psi)$$
 (Exercise: show this

$$J_q = \frac{1}{2}\Delta\Sigma + L_{\rm Ji}^q$$

s)

All the operators involved are local, gauge invariant

 \rightarrow calculable on a lattice

Relation to Generalized Parton Distribution (GPD)

GPD definition

non-forward matrix element

$$P^{+} \int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \langle P'S' | \bar{\psi}(0) \gamma^{\mu} \psi(y^{-}) | PS \rangle$$
$$= H_{q}(x, \Delta) \bar{u}(P'S') \gamma^{\mu} u(PS) + E_{q}(x, \Delta) \bar{u}(P'S') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2m} u(PS)$$

Multiply by x and integrate over x.

$$\int dx \int \frac{dy^{-}}{2\pi} x e^{ixP^{+}y^{-}} \langle \bar{\psi}(0)\gamma^{+}\psi(y^{-})\rangle = \langle \bar{\psi}\gamma^{+}iD^{+}\psi\rangle = \langle T_{q}^{++}\rangle$$

Ji sum rule

$$J^{q} = \frac{1}{2} \int dx x (H_{q}(x) + E_{q}(x)) \qquad J^{g} = \frac{1}{4} \int dx (H_{g}(x) + E_{q}(x))$$

H, E measurable in Deeply Virtual Compton Scattering (DVCS)

Deeply Virtual Compton Scattering (DVCS)

$$\begin{split} i \int d^4 y e^{iqy} \langle P' | T\{J^{\mu}(y) J^{\nu}(0)\} | P \rangle \\ &= -(g^{\mu +} g^{\nu -} + g^{\nu +} g^{\mu -} - g^{\mu \nu}) \int \frac{dx}{2} \left(\frac{1}{x + \xi - i\epsilon} + \frac{1}{x - \xi + i\epsilon} \right) H_q(x, \eta, \Delta) \bar{u}(P') \gamma^+ u(P) + \cdots \\ &\quad \xi = \frac{Q^2}{2P \cdot q} \end{split}$$

r

Fourier transform $\Delta_{\perp} \leftrightarrow b_{\perp}$ Distribution of partons in impact parameter space

Digression: D-term—the last global unknown

$$\langle P'|T^{ij}|P\rangle \sim (\Delta^i \Delta^k - \delta^{ik} \Delta^2)D(t)$$

 $D(t=0)\,$ is a conserved charge of the nucleon, just like mass and spin!

Fourier transform $\vec{\Delta} \rightarrow \vec{r}$ can be interpreted as `radial force' inside a nucleon Polyakov, Schweitzer,...

$$T^{ij}(r) = \left(\frac{r^i r^j}{r^2} - \frac{1}{3}\delta^{ij}\right)s(r) + \delta^{ij}p(r)$$

Burkert, Elouadrhiri, Girod (Nature, 2018)

First extraction at Jlab, large model dependence. Need significant lever-arm in Q^2 to disentangle various moments of GPDs

EIC

Two spin communities divided

Gauge invariant completion of JM decomposition

For the gluon helicity, we know how to make it gauge invariant.

$$\text{Compare} \quad \frac{1}{2S^+} \langle PS | \epsilon^{ij} F^{i+} A^j | PS \rangle = \Delta G = \int_0^1 dx \Delta G(x) \qquad \text{page 21}$$

with
$$\Delta G(x) = \frac{i}{xS^+} \int \frac{dy^-}{2\pi} e^{ixP^+y^-} \langle PS|F^{+\alpha}(0)\tilde{F}^+_{\alpha}(y^-)|PS\rangle \quad \text{ page 17}$$

Just replace $A^{\mu} \rightarrow A^{\mu}_{phys}$ where

$$A^{\mu}_{phys}(x) = \frac{1}{D^+} F^{+\mu} = \int_{x^-}^{\infty} dz^- W[x^-, z^-] F^{+\mu}(z^-, x_\perp)$$

Gauge invariant completion of JM decomposition

Chen, Lu, Sun, Wang, Goldman (2008) YH (2011)

$$\begin{split} \langle PS|\epsilon^{ij}F^{i+}A^{j}_{phys}|PS\rangle &= 2S^{+}\Delta G\\ \lim_{\Delta \to 0} \langle P'S|\bar{\psi}\gamma^{+}i\overleftrightarrow{D}^{i}_{pure}\psi|PS\rangle &= iS^{+}\epsilon^{ij}\Delta_{\perp j}L^{q}_{can}\\ \lim_{\Delta \to 0} \langle P'S|F^{+\alpha}\overleftrightarrow{D}^{i}_{pure}A^{phys}_{\alpha}|PS\rangle &= -i\epsilon^{ij}\Delta_{\perp j}S^{+}L^{g}_{can} \end{split}$$

where
$$A^{\mu}_{phys}(x) = \frac{1}{D^+}F^{+\mu} = \int_{x^-}^{\infty} dz^- W[x^-, z^-]F^{+\mu}(z^-, x_\perp)$$
 (my choice)

$$D^{\mu}_{pure} = D^{\mu} - iA^{\mu}_{phys}$$

Lecture 2: OAM and Wigner distribution

Wigner distribution in QM

Uncertainty principle: The position q and momentum p are not simultaneously measured.

Still one can define a `phase space distribution' in quantum mechanics

$$f_W(q,p) = \int dx e^{-ipx/\hbar} \langle \psi | q - x/2 \rangle \langle q + x/2 | \psi \rangle$$

Reduces to q and p distributions upon integration

$$\int \frac{dq}{2\pi\hbar} f_W(q,p) = |\langle \psi | p \rangle|^2 \,, \qquad \int \frac{dp}{2\pi\hbar} f_W(q,p) = |\langle \psi | q \rangle|^2 \,.$$

Not positive definite, no probabilistic interpretation

The QCD Wigner distribution

Phase space distribution of partons in QCD—the `mother distribution'

Belitsky, Ji, Yuan (2004)

xp

OAM from the Wigner distribution

Lorce, Pasquini (2011); YH (2011); Lorce, Pasquini, Xiong, Yuan (2011)

$$L^q = \int dx \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^q(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Go to the momentum space $\,b_{\perp}
ightarrow \Delta_{\perp}\,$ and look for the component

$$W^{q,g} = i \frac{S^+}{P^+} \epsilon^{ij} k^i_{\perp} \Delta^j_{\perp} f^{q,g}(x,k_{\perp}) + \cdots$$

Then

Define

$$L^{q,g} = \int dx \int d^2k_\perp k_\perp^2 f^{q,g}(x,k_\perp)$$

Nice, but which OAM is this??

Canonical OAM from the light-cone staple Wilson line YH (2011)

$$\int d^2k_{\perp}(b_{\perp} \times k_{\perp})W_{LC}(b_{\perp}, k_{\perp}) = \langle \bar{\psi}b_{\perp} \times iD_{\perp}^{pure}\psi\rangle \qquad D_{pure}^{\perp} = D^{\perp} - \frac{i}{D^+}F^{+\perp}$$

$$W_{LC}(b_{\perp},k_{\perp}) = \int d^2 \Delta_{\perp} d^2 z_{\perp} e^{-ik_{\perp}z_{\perp}} \langle P'|\bar{\psi}(b_{\perp})\gamma^+ W_{staple}\psi(b_{\perp}+z_{\perp})|P\rangle$$

p

Kinetic (Ji's) OAM from the straight Wilson line

Ji, Xiong, Yuan (2012)

$$\int d^2k_{\perp}(b_{\perp} \times k_{\perp}) W_{straight}(b_{\perp}, k_{\perp}) = \langle \bar{\psi}b_{\perp} \times iD_{\perp}\psi \rangle$$

$$x^{-} x^{+}$$

$$b + \frac{z}{2}$$

$$\psi\rangle$$

$$b - \frac{z}{2}$$

The difference: Potential OAM

$$L_{pot} \equiv L_{\rm Ji}^q - L_{can}^q = \int dx^- \langle \epsilon^{ij} b^i F^{+j} \rangle$$

torque acting on a quark Burkardt (2012)

$$\sqrt{2}F^{+y} = -E^y + B^x = -(\vec{E} + \vec{v} \times \vec{B})^y \qquad \vec{v} = (0, 0, -1)$$

Color Lorentz force

Jaffe-Manohar vs. Ji: First lattice result

Engelhardt (2017)

Parton distribution for OAM

Define the x-distribution
$$L_{can} = \int dx L_{can}(x)$$
 .

Hagler, Schafer (1998) Harindranath, Kundu (1999) YH, Yoshida (2012)

$$L^{q}_{can} = \int dx \int d^{2}b_{\perp} d^{2}k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_{z} W^{q}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

$$\Longrightarrow \quad L^{q}_{can}(x) = \int d^{2}b_{\perp} d^{2}k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_{z} W^{q}(x, \vec{b}_{\perp}, \vec{k}_{\perp}) \qquad ??$$

It's not an ordinary (twist-two) parton distribution function.

Must contain the twist-three part because the relevant operator is $\sim \bar{\psi}\gamma^+ \vec{\partial}_{\perp}\psi$ Similar to $g_2(x)$ (page 13)

Deconstructing OAM

Ji's OAM canonical OAM `potential OAM'
$$\langle \bar{\psi}\vec{b} \times \vec{D}\psi \rangle = \langle \bar{\psi}\vec{b} \times \vec{D}_{pure}\psi \rangle + \langle \bar{\psi}\vec{b} \times ig\vec{A}_{phys}\psi \rangle$$
$$A^{\mu}_{phys} = \frac{1}{D^{+}}F^{+\mu}$$

For a **3**-body operator, it is natural to define the double density.

$$\int dz^{-} dy^{-} e^{i\frac{1}{2}(x_{1}+x_{2})P^{+}y^{-}+i(x_{1}-x_{2})P^{+}z^{-}} \langle P'S'|\bar{\psi}(-y^{-}/2)WD^{i}(z^{-})W\psi(y^{-}/2)|PS\rangle$$

Ji's OAM canonical OAM `potential OAM'

$$\langle \overline{\psi} \vec{b} \times \vec{D} \psi \rangle = \langle \overline{\psi} \vec{b} \times \vec{D}_{pure} \psi \rangle + \langle \overline{\psi} \vec{b} \times ig \vec{A}_{phys} \psi \rangle$$

doubly-unintegrate
 $\Phi_D(x_1, x_2) = \delta(x_1 - x_2) L_{can}^q(x_1) + \mathcal{P} \frac{1}{x_1 - x_2} \Phi_F(x_1, x_2)$
Canonical OAM density
YH, Yoshida (2012)
It coincides with $L_{can}(x)$ defined
via the Wigner distribution (page 39)
 $W[x^-, z^-]D^i(z^-)W[z^-, y^-]$
 $= \frac{W[x^-, y^-]D^i(y^-)}{No z^- dependence,}$
 $\Rightarrow \delta(x_1 - x_2)$

Quark canonical OAM density

YH, Yoshida (2012)

Wandzura-Wilczek part

(part that is related to the twist-2 distribution)

$$L_{can}^{q}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'} (H_{q}(x') + E_{q}(x')) - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} \Delta q(x')$$
$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \Phi_{F}(x_{1}, x_{2}) \mathcal{P} \frac{3x_{1} - x_{2}}{x_{1}^{2}(x_{1} - x_{2})^{2}}$$
$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{\Phi}_{F}(x_{1}, x_{2}) \mathcal{P} \frac{1}{x_{1}^{2}(x_{1} - x_{2})}.$$

genuine twist-three part

 $\langle \bar{\psi} F^{+i} \psi \rangle$

First moment:
$$J^q = \frac{1}{2}\Delta\Sigma + L^q_{can} + L_{pot}$$

The bridge between JM and Ji

Gluon canonical OAM density

$$L_{can}^{g}(x) = \frac{x}{2} \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} (H_{g}(x') + E_{g}(x')) - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} \Delta G(x')$$

$$+ 2x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{3}} \int dX \Phi_{F}(X, x') + 2x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{M}_{F}(x_{1}, x_{2}) \mathcal{P} \frac{1}{x_{1}^{3}(x_{1} - x_{2})}$$

$$+ 2x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} M_{F}(x_{1}, x_{2}) \mathcal{P} \frac{2x_{1} - x_{2}}{x_{1}^{3}(x_{1} - x_{2})^{2}}$$
genuine twist-three

 $\langle F^{+i}F^{+j}F^+_i\rangle$

first moment:
$$J^g + L_{pot} = \Delta G + L^g_{can}$$

OAM challenges

Definition OK A lot of theory progress in recent years.

BUT

Is it numerically important? Huge uncertainty in ΔG in the small-x region, can easily accommodate the missing spin.

Is it measurable? Nothing known from experiments... People tend to avoid talking about OAM.

Spin at small-x?

Consider q \rightarrow qg splitting

unpolarized splitting function

$$P_{gq}(x) = C_F\left(\frac{1}{x} + \frac{(1-x)^2}{x}\right)$$

1/x enhancement (soft divergence)

polarized splitting function

$$\Delta P_{gq}(x) = C_F\left(\frac{1}{x} - \frac{(1-x)^2}{x}\right) = C_F(2-x)$$

No 1/x enhancement, spin effects are always suppressed by $x \sim ({\rm energy})^{-1}$

HOWEVER, they can be enhanced by double logarithms

 $(\alpha_s \ln^2 1/x)^n$

Kirshner, Lipatov (1983) Bartels, Ermolaev, Ryskin (1996), Kovchegov, Pitonyak, Sievert (2015~)

Resummation very tough, but can be done!

$$\mathrm{Tr} p \gamma^{\mu} (p - k) \gamma^{\nu} \approx 8 p^{\mu} p^{\nu}$$

 $\mathrm{Tr}\gamma_5 \$\gamma^{\mu} (\not p - \not k) \gamma^{\nu} \approx -4i \epsilon^{-\mu i \nu} S^+ k_i$

 $g^4 \frac{(p \cdot p')^2}{(k^2)^2} \sim \alpha_s^2 \frac{s^2}{k_{\perp}^4}$

Neglect k in the numerator \rightarrow Eikonal approximation

$$g^4 \frac{p \cdot p' k_\perp^2}{(k^2)^2} \sim \alpha_s^2 \frac{s}{k_\perp^2}$$

Either μ or ν is transverse (sub-eikonal) d^2k_{\perp} integral logarithmic

OAM at small-x

Suppose a quark emits a very soft gluon. Quark helicity unchanged. $\xrightarrow{\mathbf{P}} x \ll 1$

From angular momentum conservation, gluon spin and OAM have to cancel.

Significant cancellation at small-x from one-loop DGLAP YH, Yang (2018)

Double logarithmic resummation

All-loop resummation of small-x double logarithms $(\alpha_s \ln^2 1/x)^n$ via InfraRed Evolution Equation

Kirshner, Lipatov (1983) Bartels, Ermolaev, Ryskin (1996),

$$L_g(x) \approx -\frac{2}{1+\alpha} \Delta G(x) \sim \frac{1}{x^{\alpha}}$$

Boussarie, YH, Yuan (2019)

Helicity at small-x is more than canceled by OAM.

Resolution of the spin puzzle \rightarrow OAM at medium to large x

Measuring OAM at EIC

Ji, Yuan, Zhao (2016) YH, Nakagawa, Xiao, Yuan, Zhao (2016) Bhattacharya, Metz, Zhou (2017)

Exploit the connection between OAM and the Wigner distribution

$$L^{q,g} = \int dx \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Longitudinal single spin asymmetry in diffractive dijet production

Need more work, more new ideas!

Lecture 3: Proton mass and trace anomaly

Finding 1: An EIC can uniquely address three profound questions about nucleonsprotons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

Nucleon mass: What's the issue?

Lattice QCD can reproduce hadron masses very precisely.

Proton mass crisis

u,d quark masses add up to ~10MeV, only 1 % of the proton mass!

Higgs mechanism explains quark masses, but not hadron masses!

The trace anomaly

Approximate conformal symmetry of the Lagrangian explicitly broken by the quantum effects.

$$T^{\mu}_{\mu} = \frac{\beta(g)}{2g} F^2 + m(1 + \gamma_m(g))\bar{q}q$$

Collins, Duncan, Joglekar (1977) N.K. Nielsen (1977)

Beta-function

$$\gamma_m(g) = -\frac{1}{m} \frac{\partial m(\mu)}{\partial \ln \mu}$$

 $\beta(g) = \frac{\partial g(\mu)}{\partial \ln \mu}$

Mass anomalous dimension $\gamma_m > 0$

Fundamentally important in QCD. Trace anomaly is the origin of hadron masses

$$\langle P|T^{\mu\nu}|P\rangle = 2P^{\mu}P^{\nu} \\ \langle P|T^{\mu}_{\mu}|P\rangle = 2M^2$$

Proton mass decomposition

Traceless and trace parts of EMT

$$T^{\mu\nu} = \left(T^{\mu\nu} - \frac{\eta^{\mu\nu}}{d}T^{\alpha}_{\alpha}\right) + \frac{\eta^{\mu\nu}}{d}T^{\alpha}_{\alpha}$$

kinetic energy

trace anomaly

Work in the rest frame. Mass is the eigenvalue of the Hamiltonian $H = \int d^3x T^{00}$

$$M = M_q^{kin} + M_g^{kin} + M_a + M_m$$

quark/gluon kinetic energy
$$M_q^{kin} = \frac{\langle P | \bar{\psi} i \vec{\gamma} \cdot \vec{D} \psi | P \rangle}{2M}$$

$$M_a = \frac{\langle P|\frac{\beta}{8g}F^2|P\rangle}{2M}$$

gluon condensate

quark mass
$$M_m = \frac{\langle P | m(1 + \frac{\gamma_m}{4}) | P}{2M}$$

54

Ji (1995)

 ${\cal M}^{kin}_{q,g}\,$ measurable in DIS

$$M_{q,g}^{kin} = \frac{3}{4}MA_{q,g} \qquad \qquad A_{q,g}(\mu) = \langle x \rangle_{q,g} = \int_0^1 dx x f_{q,g}(x,\mu)$$

 $M^{kin}_{q,g}$, M_m calculable on a lattice, but M_a is very hard.

The EMT consists of quark and gluon parts.

$$T^{\mu\nu} = -F^{\mu\lambda}F^{\nu}_{\ \lambda} + \frac{\eta^{\mu\nu}}{4}F^2 + i\bar{q}\gamma^{(\mu}D^{\nu)}q$$
$$T^{\mu\nu}_{g} \qquad T^{\mu\nu}_{q}$$
$$T^{\mu\nu}_{q} \qquad T^{\mu\nu}_{q}$$

Exercise: Compute $(T_q)^{\mu}_{\mu}$ and $(T_g)^{\mu}_{\mu}$ separately.

Note: This is equivalent to computing the $\overline{C}_{q,g}$ gravitational form factor (cf. page 24)

$$\langle P|(T_{q,g})^{\mu}_{\mu}|P\rangle = 2M^2(A_{q,g} + 4\bar{C}_{q,g})$$

Trace anomaly in perturbation theory

First choose a regularization scheme. e.g., dimensional regularization (DR), Pauli-Villars, etc.

Trace anomaly shows up by exploiting the pathologies of the chosen scheme.

 \longrightarrow The decomposition $T^{\mu}_{\mu} = (T_g)^{\mu}_{\mu} + (T_q)^{\mu}_{\mu}$ is scheme dependent.

In the following, I consider only DR in the \overline{MS} (modified minimal subtraction) scheme.

Operator renormalization and mixing

Under renormalization, bare fields are renormalized

$$A_R^{\mu} = \sqrt{Z_A} A^{\mu}$$

 $\psi_R = \sqrt{Z_{\psi}} \psi$ etc.

Local, composite operators like $F^{\mu
u}F_{\mu
u}(x)$ gets additional renormalization

$$F_R^2 = Z_{F^2}F^2 + \cdots$$
 $Z_{F^2} \neq (\sqrt{Z_A})^2 = Z_A$
anomalous dimension $\gamma = -\frac{\partial Z_{F^2}}{\partial \ln \mu^2}$

In general, operators with the same quantum numbers and the same (or lower) dimension mix.

$$O_1^R = Z_{11}O_1 + Z_{12}O_2 + \dots$$

The anomalous dimension becomes a matrix.

Renormalization of F^2

Tarrach, Nucl. Phys. B196 (1982), 45

The bare operator F^2 is divergent

$$F^{2} = \left(1 + \beta_{0} \frac{\alpha_{s}}{4\pi\epsilon}\right) (F^{2})_{R} - \frac{2\gamma_{m}^{0}}{\epsilon} (m\bar{q}q)_{R} + \cdots$$

For the bare EMT, in DR, the anomaly entirely comes from the gluon part $T_q^{\mu
u}$

Renormalization of the trace

For the bare operators,

$$(T_q)^{\mu}_{\mu} = (m\bar{q}q)_R = m\bar{q}q$$

$$(T_g)^{\mu}_{\mu} = \frac{\beta}{2g}(F^2)_R + \gamma_m(m\bar{q}q)_m = \frac{\beta}{2g}F^2 + \gamma_m m\bar{q}q$$

What about the renormalized trace operators?

 $\begin{aligned} (T_q^R(\mu))^{\alpha}_{\alpha} \\ (T_g^R(\mu))^{\alpha}_{\alpha} \\ \langle P|(T_{q,q}^R(\mu))^{\alpha}_{\alpha}|P\rangle &= 2M^2(A_{q,q}^R(\mu) + 4\bar{C}_{q,q}^R(\mu)) \end{aligned}$

Renormalized trace: naïve look

Now consider the energy momentum tensors renormalized in DR

$$T^{\mu\nu}_{gR} = -(F^{\mu\lambda}F^{\nu}_{\ \lambda})_R + \frac{\eta^{\mu\nu}}{4}(F^2)_R$$
$$T^{\mu\nu}_{qR} = i(\bar{\psi}\gamma^{\mu}D^{\nu}\psi)_R$$

 $(F^2)_R$ is now a finite operator. $d \to 4$ limit can be safely taken

$$(T_g^R)^{\mu}_{\mu} = 0$$

$$(T_q^R)^{\mu}_{\mu} = (m\bar{\psi}\psi)_R$$
??

Renormalized trace: naïve look

Now consider the energy momentum tensors renormalized in DR

$$T^{\mu\nu}_{gR} = -(F^{\mu\lambda}F^{\nu}_{\ \lambda})_R + \frac{\eta^{\mu\nu}}{4}(F^2)_R$$
$$T^{\mu\nu}_{qR} = i(\bar{\psi}\gamma^{\mu}D^{\nu}\psi)_R$$

 $(F^2)_R$ is now a finite operator. $d \to 4$ limit can be safely taken

$$(T_g^R)^{\mu}_{\mu} = 0 (T_q^R)^{\mu}_{\mu} = (m\bar{\psi}\psi)_R$$
??

This is wrong because, in DR, trace operation and renormalization do not commute

$$\eta_{\mu\nu}(F^{\mu\lambda}F^{\nu}{}_{\lambda})_R \neq (F^{\mu\lambda}F_{\mu\lambda})_R \qquad \eta_{\mu\nu}(\bar{\psi}\gamma^{\mu}D^{\nu}\psi)_R \neq (\bar{\psi}D^{\mu}\psi)_R$$

Renormalization \rightarrow trace

$$\begin{split} \int \frac{d^d p}{(2\pi)^d} \frac{p^\mu p^\nu}{(p^2 + \Delta)^2} &= \frac{g^{\mu\nu}}{d} \int \frac{d^d p}{(2\pi)^d} \frac{p^2}{(p^2 + \Delta)^2} \\ &= \frac{g^{\mu\nu}}{2(4\pi)^2} \left(\frac{1}{\epsilon} - \gamma_E + \ln 4\pi - \ln \Delta\right) \Delta \\ &\to \frac{g^{\mu\nu}}{2(4\pi)^2} (-\ln \Delta) \Delta \qquad \overline{\text{MS}} \\ &\to \frac{4}{2(4\pi)^2} (-\ln \Delta) \Delta \qquad \text{trace} \end{split}$$

Trace \rightarrow Renormalization

$$\int \frac{d^d p}{(2\pi)^d} \frac{p^2}{(p^2 + \Delta)^2} = \frac{d}{2(4\pi)^2} \left(\frac{1}{\epsilon} - \gamma_E + \ln 4\pi - \ln \Delta \right) \Delta \qquad \text{trace}$$
$$= \frac{4}{2(4\pi)^2} \left(\frac{1}{\epsilon} - \frac{1}{2} - \gamma_E + \ln 4\pi - \ln \Delta \right) \Delta$$
$$\rightarrow \frac{4}{2(4\pi)^2} \left(-\frac{1}{2} - \ln \Delta \right) \Delta \qquad \overline{\text{MS}}$$

63

Renormalized trace $(T_{q,g}^R)^{\alpha}_{\alpha}$: calculation

Choose the basis of operators

$$O_{1} = -F^{\mu\lambda}F^{\nu}_{\ \lambda},$$

$$O_{2} = \eta^{\mu\nu}F^{2},$$

$$O_{3} = i\bar{\psi}\gamma^{(\mu}\overleftarrow{D}^{\nu)}\psi,$$

$$O_{4} = \eta^{\mu\nu}m\bar{\psi}\psi.$$

$$T^{\mu\nu} = O_1 + \frac{O_2}{4} + O_3.$$

Mixing under renormalization

$$O_1^R = Z_T O_1 + Z_M O_2 + Z_L O_3 + Z_S O_4,$$

$$O_2^R = Z_F O_2 + Z_C O_4,$$

$$O_3^R = Z_\psi O_3 + Z_K O_4 + Z_Q O_1 + Z_B O_2,$$

$$O_4^R = O_4.$$

Impose two conditions. First condition is simply $T^{\mu\nu} = T^{\mu\nu}_R$

Second condition:

Make the operators twist-2 by subtracting the trace

$$A_q^R = O_3^R - (\text{trace})$$
$$A_g^R = O_1^R - (\text{trace})$$

э.

They satisfy the usual RG (DGLAP) equation for the twist-2, spin-2 operators.

$$\frac{\partial}{\partial \ln \mu} \begin{pmatrix} A_q^R \\ A_g^R \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} -\frac{16}{3}C_F & \frac{4n_f}{3} \\ \frac{16}{3}C_F & -\frac{4n_f}{3} \end{pmatrix} \begin{pmatrix} A_q^R \\ A_g^R \end{pmatrix}$$

cf. Peskin's Eq.(18.186)

Be careful when subtracting the trace.

Renormalization and trace operation do not commute.

$$\eta_{\mu\nu}(F^{\mu\lambda}F^{\nu}{}_{\lambda})_R = x(F^2)_R + y(m\bar{\psi}\psi)_R$$

Introduce more unknown constants $x = 1 + \mathcal{O}(\alpha_s)$ $y = \mathcal{O}(\alpha_s)$

Result in \overline{MS} at one-loop

YH, Rajan, Tanaka, JHEP 1812 (2018) 008

$$\eta_{\mu\nu}T_{gR}^{\mu\nu} = \frac{\alpha_s}{4\pi} \left(-\frac{11C_A}{6} (F^2)_R + \frac{14C_F}{3} (m\bar{\psi}\psi)_R \right), \\\eta_{\mu\nu}T_{qR}^{\mu\nu} = (m\bar{\psi}\psi)_R + \frac{\alpha_s}{4\pi} \left(\frac{n_f}{3} (F^2)_R + \frac{4C_F}{3} (m\bar{\psi}\psi)_R \right)$$

 n_f term in the 1-loop beta function

$$\lim_{\mu \to \infty} (T_q^R(\mu))^{\alpha}_{\alpha} \neq (T_q)^{\alpha}_{\alpha}$$
$$\lim_{\mu \to \infty} (T_g^R(\mu))^{\alpha}_{\alpha} \neq (T_g)^{\alpha}_{\alpha}$$

Finite renormalization

Result in $\overline{\mathrm{MS}}$ at two-loops

YH, Rajan, Tanaka, JHEP 1812 (2018) 008

$$\eta_{\mu\nu} \left(T_{q}^{\mu\nu}\right)_{R} = \left(m\bar{\psi}\psi\right)_{R} + \frac{\alpha_{s}}{4\pi} \left(\frac{4}{3}C_{F} \left(m\bar{\psi}\psi\right)_{R} + \frac{1}{3}n_{f} \left(F^{2}\right)_{R}\right) + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \\ \times \left[\left(C_{F} \left(\frac{61C_{A}}{27} - \frac{68n_{f}}{27}\right) - \frac{4C_{F}^{2}}{27}\right) \left(m\bar{\psi}\psi\right)_{R} + \left(\frac{17C_{A}n_{f}}{27} + \frac{49C_{F}n_{f}}{54}\right) \left(F^{2}\right)_{R}\right]$$

Result in \overline{MS} at three-loops

$$\begin{aligned} & \eta_{\mu\nu} \left(T_{g}^{\mu\nu} \right)_{R} = \frac{\alpha_{s}}{4\pi} \left(\frac{14}{3} C_{F} \left(m\bar{\psi}\psi \right)_{R} - \frac{11}{6} C_{A} \left(F^{2} \right)_{R} \right) + \left(\frac{\alpha_{s}}{4\pi} \right)^{2} \\ & \times \left[\left(C_{F} \left(\frac{812C_{A}}{27} - \frac{22n_{f}}{27} \right) + \frac{85C_{F}^{2}}{27} \right) \left(m\bar{\psi}\psi \right)_{R} + \left(\frac{28C_{A}n_{f}}{27} - \frac{17C_{A}^{2}}{3} + \frac{5C_{F}n_{f}}{54} \right) \left(F^{2} \right)_{R} \right] \\ & + \left(\frac{\alpha_{s}}{4\pi} \right)^{3} \left[\left\{ n_{f} \left(\left(\frac{368\zeta(3)}{9} - \frac{25229}{729} \right) C_{F}^{2} - \frac{2}{243} (4968\zeta(3) + 1423)C_{A}C_{F} \right) \right. \\ & + \left(\frac{32\zeta(3)}{3} - \frac{91753}{1458} \right) C_{A}C_{F}^{2} + \left(\frac{294929}{1458} - \frac{32\zeta(3)}{9} \right) C_{A}^{2}C_{F} - \frac{554}{243}C_{F}n_{f}^{2} \\ & + \left(\frac{95041}{729} - \frac{64\zeta(3)}{9} \right) C_{F}^{3} \right\} \left(m\bar{\psi}\psi \right)_{R} \\ & + \left\{ n_{f} \left(\left(\frac{1123}{162} - \frac{52\zeta(3)}{9} \right) C_{A}C_{F} + \left(4\zeta(3) + \frac{293}{36} \right) C_{A}^{2} + \frac{16}{729} (81\zeta(3) - 98)C_{F}^{2} \right) + n_{f}^{2} \left(\frac{655C_{A}}{2916} - \frac{361C_{F}}{729} \right) - \frac{2857C_{A}^{3}}{168} \right\} (F^{2})_{R} \right] \end{aligned}$$

$$\begin{split} \eta_{\mu\nu} \left(T_q^{\mu\nu}\right)_R &= \left(m\bar{\psi}\psi\right)_R + \frac{\alpha_s}{4\pi} \left(\frac{4}{3}C_F \left(m\bar{\psi}\psi\right)_R + \frac{1}{3}n_f \left(F^2\right)_R\right) + \left(\frac{\alpha_s}{4\pi}\right)^2 \\ &\times \left[\left(C_F \left(\frac{61C_A}{27} - \frac{68n_f}{27}\right) - \frac{4C_F^2}{27}\right) \left(m\bar{\psi}\psi\right)_R + \left(\frac{17C_An_f}{27} + \frac{49C_Fn_f}{54}\right) \left(F^2\right)_R \right] \\ &+ \left(\frac{\alpha_s}{4\pi}\right)^3 \left[\left\{ n_f \left(\left(\frac{64\zeta(3)}{9} - \frac{8305}{729}\right) C_F^2 - \frac{2}{243} (864\zeta(3) + 1079) C_A C_F \right) \right. \\ &\left. - \frac{8}{729} (972\zeta(3) + 143) C_A C_F^2 + \left(\frac{32\zeta(3)}{9} + \frac{6611}{729}\right) C_A^2 C_F - \frac{76}{243} C_F n_f^2 \right. \\ &+ \frac{8}{729} (648\zeta(3) - 125) C_F^3 \right\} \left(m\bar{\psi}\psi \right)_R \\ &+ \left\{ n_f \left(\left(\frac{52\zeta(3)}{9} - \frac{401}{324}\right) C_A C_F + \left(\frac{134}{27} - 4\zeta(3)\right) C_A^2 + \left(\frac{2407}{1458} - \frac{16\zeta(3)}{9}\right) C_F^2 \right) \\ &+ n_f^2 \left(-\frac{697C_A}{729} - \frac{169C_F}{1458} \right) \right\} \left(F^2\right)_R \right] \,, \end{split}$$

Scale dependence of $\bar{C}_{q,g}(\Delta = 0)$

$$\begin{split} \bar{C}_{q}^{R}(\mu) &= -\frac{1}{4} \left(\frac{n_{f}}{4C_{F} + n_{f}} + \frac{2n_{f}}{3\beta_{0}} \right) + \frac{1}{4} \left(\frac{2n_{f}}{3\beta_{0}} + 1 \right) \frac{\langle P| \left(m\bar{\psi}\psi \right)_{R} | P \rangle}{2M^{2}} \\ &- \frac{4C_{F}A_{q}^{R}\left(\mu_{0}\right) + n_{f}\left(A_{q}^{R}\left(\mu_{0}\right) - 1\right)}{4(4C_{F} + n_{f})} \left(\frac{\alpha_{s}\left(\mu\right)}{\alpha_{s}(\mu_{0})} \right)^{\frac{8C_{F} + 2n_{f}}{3\beta_{0}}} \\ &+ \frac{\alpha_{s}(\mu)}{4\pi} \left[\frac{n_{f}\left(-\frac{34C_{A}}{27} - \frac{49C_{F}}{27} \right)}{4\beta_{0}} + \frac{\beta_{1}n_{f}}{6\beta_{0}^{2}} \\ &+ \frac{1}{4} \left(\frac{n_{f}\left(\frac{34C_{A}}{27} + \frac{157C_{F}}{27} \right)}{\beta_{0}} + \frac{4C_{F}}{3} - \frac{2\beta_{1}n_{f}}{3\beta_{0}^{2}} \right) \frac{\langle P| \left(m\bar{\psi}\psi \right)_{R} | P \rangle}{2M^{2}} \right] + \cdots, \\ &\simeq -0.146 - 0.25 \left(A_{q}^{R}\left(\mu_{0}\right) - 0.36 \right) \left(\frac{\alpha_{s}\left(\mu\right)}{\alpha_{s}(\mu_{0})} \right)^{\frac{80}{81}} - 0.01\alpha_{s}(\mu) \\ &+ \left(0.306 + 0.08\alpha_{s}(\mu) \right) \frac{\langle P| \left(m\bar{\psi}\psi \right)_{R} | P \rangle}{2M^{2}}, \end{split}$$

Asymptotic value in the chiral limit $(n_f = 3)$

Force inside the proton from quark and gluon subsystems

Fourier transform of the D-term \rightarrow radial force inside a nucleon (page 28)

One can decompose it into quark and gluon contributions Polyakov, Schweitzer (2018)

$$p_{q,g}(r) = \frac{1}{6Mr^2} \frac{d}{dr} r^2 \frac{d}{dr} D_{q,g}(r) - M\bar{C}_{q,g}(r)$$
$$\bar{C}_q(\Delta = 0) = -\bar{C}_g(\Delta = 0) < 0$$

Toward measuring the gluon condensate $\langle P|F^2|P\rangle$ in experiment Photo-production of J/ψ near threshold

Sensitive to the non-forward matrix element $\langle P'|F^{\mu\nu}F_{\mu\nu}|P\rangle$

Straightforward to measure. Ongoing experiments at Jlab.

Difficult to compute from first principles (need nonperturbative approaches)

Kharzeev, Satz, Syamtomov, Zinovjev (1998) Brodsky, Chudakov, Hoyer, Laget (2000)

Holographic approach

YH, Yang (2018)

Data from GlueX collaboration 1905.10811

Red: with gluon condensate. Blue: without