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QCD is a SU(3) Yang-Mills theory augmented with several flavors of massive quarks:

8

and its normalization is chosen such that, upon replacing the SU(3) transformations with

an Abelian U(1) transformation, the QED Lagrangian is recovered.2 The CP odd term,

L(CP/ )
gauge = ⌥̄

g2Nf

32�2
⇧µ⌦�⇥Tr(G

µ⌦G�⇥), (1.7)

is irrelevant for most of QCD phenomenology as the experimental value of its corresponding

strength, characterized by the parameter ⌥̄, is unexpectedly close to zero, ⌥̄ ⇥ 10�9.3 Nf

denotes the number of quark flavors (up, down, strange, etc.), and ⇧µ⌦�⇥ is the fully anti-

symmetric Levi-Civita tensor.

The Lagrange density of QCD, neglecting the CP-odd contribution and taking into

account di⌥erent quark flavor sectors, can be written in the explicit form,

LQCD =

Nf(

f=1

⇤
q̄f (i⇤

µ⇢µ �mf )qf � gAi
µq̄f⇤

µT iqf
⌅

�1

4
F i
µ⌦F

iµ⌦ +
g

2
fijkF

i
µ⌦A

iµAj⌦ � g2

4
fijkfklmAj

µA
k
⌦A

lµAm⌦ , (1.8)

where F i
µ⌦  ⇢µA

i
⌦ � ⇢⌦A

i
µ. The striking feature of this Lagrange density is the self inter-

actions among gluons which makes the vacuum of the theory nontrivial compared to QED.

This is not a surprise as in any non-Abelian gauge theory, the gauge field Ai
µ carries a char-

acteristic charge (color in the case of QCD) corresponding to the internal space of the gauge

group, and must be able to interact with other charged members of the gauge multiplet.

The other feature of the QCD Lagrange density is that the coupling of gauge fields to the

quark fields cannot be arbitrary and is constrained by the Lie algebra of the group to be the

same among quarks with di⌥erent colors and from di⌥erent families, and should match that

of self-gluon couplings. This is again in contrast with QED where, although the interaction

Lagrangian has a universal form, di⌥erent matter fields can couple to the EM field with

di⌥erent strengths, characterized by their distinct electric charges.

The two important properties of QCD, asymptotic freedom and color confinement, can

be deduced from an analytical approach based on perturbation theory. The former, as is a

2
This also justifies the factor of

1
ig in the definition of Gµ⌥ as it would result in the usual normalization

of the kinetic term of gluons.

3
The convention used for the normalization of this term ensures that, in the absence of massive quarks,

the contribution from such term vanishes upon setting ⌃̄ = 2�, where � is the parameter of the U(1)A

transformation, q � ei�⇤5 , whose current, Jµ
5 ⌅ q̄⇤µ⇤5q, is anomalous.
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Observe that:

i) There are only                input parameters plus QCD coupling. Fix them by a few 
quantities and all strongly-interacting aspects of nuclear physics is predicted (in 
principle)!

ii) QCD is asymptotically free such that:

1 +Nf

Positive constant for Nf  16
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1.1. To parametrize the characteristic scale at which the theory becomes strong, we can

define the scale ⇤QCD such that b0�s(µ) log
µ2

⇤2
QCD

= 1, then one can rewrite Eq. (1.11) as

following

�s(µ
 ) =

1

2b0 log
µ⇧

⇤QCD

. (1.12)

As can be seen, perturbation theory is only valid if µ ✏ ⇤QCD. Experimentally ⇤QCD �

200 MeV which is of the order of the inverse size of the light hadrons. This is consistent

with our realization of hadrons being composed of strongly interacting constituents when

low-energy probes are used. In fact at low energies, these hadrons are the e⌥ective degrees

of freedom of QCD, and the details of their properties and interactions, although sensitive

to the short distance theory of QCD, can be studied in a systematic low-energy expansion.

This requires understanding QCD symmetries and the mechanism for the breaking of some

of these symmetries. We discuss this topic in the next section, Sec. 1.1.2.

1.1.2 QCD at low energies

Although quarks and gluons do not show up as explicit degrees of freedom in the spectrum

at energies of the order of ⇤QCD, the imprint of their interactions can be found in the

spectrum of hadrons. For example, the low-lying spectrum of (negative parity) mesons and

(positive parity) baryons, as illustrated in Fig. 1.2, exhibits several interesting patterns

whose origin can be understood via the fundamental theory of QCD. As is seen, pions are

noticeably lighter than the rest of hadrons and come in an almost degenerate triplet. The

next multiplet of mesons, while remain low in mass compared to baryons, are not as light as

pions. On the other hand, the ⌃ meson that has the same quark content as that of ⌃ in the

quark model is surprisingly heavier than ⌃. Baryons have masses at the order of >� 1 GeV

and like mesons come in various nearly degenerate multiplets. Moreover, the parity partners

of mesons and baryons have been observed to have di⌥erent masses, e.g., the di⌥erence in

the mass of the nucleons � 940 MeV and their negative parity counterpart N(1535) is as

large as 600 MeV.

To understand these features all together, it su⌦ces to study the underlying symmetries

of the QCD Lagrangian. In the limit of zero quark masses (chiral limit), the left-handed and
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wavefunction renormalization factors. Then a two-loop calculation shows that

⇥(�s) = �(b0�
2
s + b1�

3
s) +O(�4

s), (1.10)

with b0 = 1
12↵ (33� 2Nf ) and b1 = 1

24↵2 (153� 19Nf ) [58]. For the current discussion let us

ignore the NLO correction to the ⇥-function and solve Eq. (1.10). Explicitly, we want to

know given the coupling constant at scale µ, what the value of the coupling would be at

scale µ . It easily follows that

�s(µ
 ) =

�s(µ)

1 + b0�s(µ) log
µ⇧2

µ2

. (1.11)

Given the positive sign of b1 for QCD with Nf = 6, it is evident that �s(µ ) decreases
9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006
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Figure 9.4: Summary of measurements of �s as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of �s is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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Figure 1.1: The coupling of QCD as a function of a characteristic energy scale µ = Q, obtained

from matching the QCD perturbative calculation to a given order (as given in brackets) to the

experimental measurements of several quantities. There is also one point which is obtained by

matching to a lattice QCD calculation [58]. Figure is reproduced with the permission of Michael

Barnett on behalf of the Particle Data Group.

as µ increases, indicating the theory tends to become free at asymptotically high energies.

Experimental determinations of �s for a range of energies have resulted in values that lie

on the predicted scale-dependence curve to an extremely well precision, as is shown in Fig.
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Let’s enumerate the steps toward numerically simulating this theory nonperturbatively…

Step I: Discretize the QCD action in both space and time. Wick rotate to imaginary 
times. Consider a finite hypercubic lattice.

Step II: Generate a large sample of thermalized decorrelated vacuum configurations.

Step III: Form the correlation functions by contracting the quarks. Need to specify 
the interpolating operators for the state under study.

Step IV: Extract energies and matrix elements from correlation functions.

Step V: Make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

See e.g., ZD, arXiv:1409.1966 [hep-lat]
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times. Consider a finite hypercubic lattice.
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Figure 1.8: A 2 + 1 dimensional cubic lattice is shown in the left panel. The (trace of) plaquette

and the product of quark, the link variable and the antiquark (right panel) are two examples of

gauge-invariant constituents of the lattice gauge theories in their compact formalism.

where Z =
R DAµDqDq̄ eiS

QCD denotes the QCD partition function, SQCD =
R

d4x LQCD

is the action and LQCD is given in Eq. (1.8). Evaluating this path integral in practice

requires several steps to be followed:

1) A discrete action: The path integral in Eq. (1.49) is only defined rigorously if the

degrees of freedom of the theory are discrete. Numerical evaluations become plausible in

practice, firstly, with a measure that is nonoscillatory. This can be achieved by a Wick

rotation of the coordinates to Euclidean spacetime, t ! i⌧ so that iSQCD ! �S(E)
QCD where

S(E)
(QCD) is purely real. Secondly, the number of degrees of freedom of the integration must

be finite, requiring the spacetime to be truncated to a finite region in both spatial and

temporal directions and to be discretized. Lattices with geometry of a hypercube are the

most convenient choices in LQCD calculations, see Fig. 1.8, although the anisotropic cubic

lattices with lattice spacing in the temporal direction being finer than that of the spatial

direction are being also used. The spacing between two adjacent lattice sites, a, must be

small compared with the hadronic scale, a ⌧ ⇤�1
QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L � m�1
⇡ , see Sec. 1.3.

Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

Link
Two conditions:
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S
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QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L ✏ m�1
↵ , see Sec. 1.3.

Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

T, L � m�1
⇡

31

plotted in Fig. 1.8, is through the Wilson link variables,

Uµ(n)  eigAµ(n). (1.50)

These are the elements of the SU(3) Lie group and transform under a local gauge transfor-

mation as

Uµ(n)⇣ Uµ(n)
 = V (n)Uµ(n)V

†(n+ µ̂), (1.51)

where V is an element of the Lie group. The use of link variables, which is called the compact

formulation of lattice gauge theories, is a convenient choice as it makes the implementation of

gauge invariance on the lattice straightforward. In fact, the only gauge invariant quantities

are the gauge links starting and ending at the quark fields, and the trace of any closed loop

formed by the gauge links, Fig. 1.8. With these gauge invariant blocks, we can write down

a Lagrangian for QCD interactions on the lattice that recovers the Lagrangian in Eq. (1.8)

once the continuum limit is taken. A common choice of action is the Wilson action [361]

which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
µ(n + ↵̂)U †

⌦ (n),

see Fig. 1.8, for gluons and the Wilson fermions formulation for the quarks,

S
(E)
Wilson =

⇥

Nc

(

n

(

µ<⌦

⇠Tr[ � Pµ⌦;n]

�
(

n

q̄n[m
(0) + 4]qn +

(

n

(

µ

�
q̄n

r � ⇤µ
2

Uµ(n)qn+µ̂ + q̄n
r + ⇤µ

2
U †
µ(n� µ̂)qn�µ̂

✏
,

(1.52)

where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a�3/2qn and the

continuum bare mass of the quarks m(0) is replaced by a�1m(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum

Plaquette



Step I: Discretize the QCD action in both space and time. Wick rotate to imaginary 
times. Consider a finite hypercubic lattice.

30

U�(n + µ̂)
L

T

Uµ(n)

q̄n+aµ̂

qn

aUµ(n)

L

Figure 1.8: A 2 + 1 dimensional cubic lattice is shown in the left panel. The (trace of) plaquette

and the product of quark, the link variable and the antiquark (right panel) are two examples of

gauge-invariant constituents of the lattice gauge theories in their compact formalism.

where Z =
R DAµDqDq̄ eiS

QCD denotes the QCD partition function, SQCD =
R

d4x LQCD

is the action and LQCD is given in Eq. (1.8). Evaluating this path integral in practice

requires several steps to be followed:

1) A discrete action: The path integral in Eq. (1.49) is only defined rigorously if the

degrees of freedom of the theory are discrete. Numerical evaluations become plausible in

practice, firstly, with a measure that is nonoscillatory. This can be achieved by a Wick

rotation of the coordinates to Euclidean spacetime, t ! i⌧ so that iSQCD ! �S(E)
QCD where

S(E)
(QCD) is purely real. Secondly, the number of degrees of freedom of the integration must

be finite, requiring the spacetime to be truncated to a finite region in both spatial and

temporal directions and to be discretized. Lattices with geometry of a hypercube are the

most convenient choices in LQCD calculations, see Fig. 1.8, although the anisotropic cubic

lattices with lattice spacing in the temporal direction being finer than that of the spatial

direction are being also used. The spacing between two adjacent lattice sites, a, must be

small compared with the hadronic scale, a ⌧ ⇤�1
QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L � m�1
⇡ , see Sec. 1.3.

Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

Link
Two conditions:

30

U�(n+ µ̂)
L

T

Uµ(n)

q̄n+aµ̂

qn

aUµ(n)

L

Figure 1.8: A 2 + 1 dimensional cubic lattice is shown in the left panel. The (trace of) plaquette

and the product of quark, the link variable and the antiquark (right panel) are two examples of

gauge-invariant constituents of the lattice gauge theories in their compact formalism.

where Z =
'
DAµDqDq̄ eiSQCD denotes the QCD partition function, SQCD =

'
d4x LQCD

is the action and LQCD is given in Eq. (1.8). Evaluating this path integral in practice

requires several steps to be followed:

1) A discrete action: The path integral in Eq. (1.49) is only defined rigorously if the

degrees of freedom of the theory are discrete. Numerical evaluations become plausible in

practice, firstly, with a measure that is nonoscillatory. This can be achieved by a Wick

rotation of the coordinates to Euclidean spacetime, t ⇣ i⇣ so that iSQCD ⇣ �S
(E)
QCD where

S
(E)
(QCD) is purely real. Secondly, the number of degrees of freedom of the integration must

be finite, requiring the spacetime to be truncated to a finite region in both spatial and

temporal directions and to be discretized. Lattices with geometry of a hypercube are the

most convenient choices in LQCD calculations, see Fig. 1.8, although the anisotropic cubic

lattices with lattice spacing in the temporal direction being finer than that of the spatial

direction are being also used. The spacing between two adjacent lattice sites, a, must be

small compared with the hadronic scale, a � ⇤�1
QCD, while the spatial extent of the volume,

L, must be large compared with the Compton wavelength of the pions which sets the range

of hadronic interactions, L ✏ m�1
↵ , see Sec. 1.3.

Quark fields are placed on the lattice sites, and a choice for defining the gauge fields, as

T, L � m�1
⇡

31

plotted in Fig. 1.8, is through the Wilson link variables,

Uµ(n)  eigAµ(n). (1.50)

These are the elements of the SU(3) Lie group and transform under a local gauge transfor-

mation as

Uµ(n)⇣ Uµ(n)
 = V (n)Uµ(n)V

†(n+ µ̂), (1.51)

where V is an element of the Lie group. The use of link variables, which is called the compact

formulation of lattice gauge theories, is a convenient choice as it makes the implementation of

gauge invariance on the lattice straightforward. In fact, the only gauge invariant quantities

are the gauge links starting and ending at the quark fields, and the trace of any closed loop

formed by the gauge links, Fig. 1.8. With these gauge invariant blocks, we can write down

a Lagrangian for QCD interactions on the lattice that recovers the Lagrangian in Eq. (1.8)

once the continuum limit is taken. A common choice of action is the Wilson action [361]

which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
µ(n + ↵̂)U †

⌦ (n),

see Fig. 1.8, for gluons and the Wilson fermions formulation for the quarks,
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where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a�3/2qn and the

continuum bare mass of the quarks m(0) is replaced by a�1m(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum
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plotted in Fig. 1.8, is through the Wilson link variables,

Uµ(n)  eigAµ(n). (1.50)
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are the gauge links starting and ending at the quark fields, and the trace of any closed loop

formed by the gauge links, Fig. 1.8. With these gauge invariant blocks, we can write down

a Lagrangian for QCD interactions on the lattice that recovers the Lagrangian in Eq. (1.8)

once the continuum limit is taken. A common choice of action is the Wilson action [361]

which uses the elementary plaquette, defined as Pµ⌦;n  Uµ(n)U⌦(n + µ̂)U †
µ(n + ↵̂)U †

⌦ (n),
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where n runs over all the N3
s ⇤Nt lattice points and ⇥  2Nc

g2 is the lattice coupling constant

with Nc = 3 for QCD. Note that the action is written in terms of dimensionless fields and

parameters. Explicitly, the continuum field q at point na is replaced by a�3/2qn and the

continuum bare mass of the quarks m(0) is replaced by a�1m(0). r is the Wilson parameter

whose value is commonly set to 1 in the calculations. The sum over quark flavors is left

implicit.

The gluonic part of the action clearly recovers the continuum action in Eq. (1.6) up

to corrections that scale as a2, and leads to the following lattice propagator in momentum

An example of a discretized action by K. Wilson:

Wilson parameter. Gives the naive action if set 
to zero and has doublers problem.

Plaquette

= 2/g2

For discussions of actions consistent with chiral symmetry of continuum see: 
Kaplan, arXiv:0912.2560 [hep-lat].
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z
Z

DUµDqDq̄ e�S
(G)
lattice[U ]�S

(F )
lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z
Z

DUµ e�S
(G)
lattice[U ]ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.

Quark part of expectation values
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z
Z

DUµDqDq̄ e�S
(G)
lattice[U ]�S

(F )
lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z
Z

DUµ e�S
(G)
lattice[U ]ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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where the path integral over gauge links U are separated from that of the fermionic path

integrals with

,Ô-F =
1

ZF

*
DqDq̄ e�S

(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

*
DqDq̄ e�S

(F )
lattice[U,q,q̄] =

)

f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e�S

(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(

i

,Ô-F [U (i)], (1.61)

18
As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.

Define:

Quark part of expectation values
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DqDq̄ e�S
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lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is
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the fermionic partition function can be written as
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where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e�S

(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(
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,Ô-F [U (i)], (1.61)

18
As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z
Z

DUµDqDq̄ e�S
(G)
lattice[U ]�S

(F )
lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z
Z

DUµ e�S
(G)
lattice[U ]ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.
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and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
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%
n,m q̄nDn,mqm, where Dn,m is
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the fermionic partition function can be written as
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where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
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that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average
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As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p �= 0,

2) be proportional to ⇤µpµ in the continuum limit, and 3) anticommute with ⇤5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with ⇤5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, ⇤5} = aD⇤5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

,Ô- = 1

Z

*
DUµDqDq̄ e�S

(G)
lattice[U ]�S

(F )
lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

,Ô- = 1

Z

*
DUµ e�S

(G)
lattice[U ]ZF [U ] ,Ô-F , (1.58)

16
Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the

domain-walls separation is infinite.

17
Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark

propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap

operator, see Refs. [218,231,234] for more details.
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where the path integral over gauge links U are separated from that of the fermionic path

integrals with
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lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as
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DqDq̄ e�S

(F )
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f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e�S

(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(

i

,Ô-F [U (i)], (1.61)

18
As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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cannot simultaneously 1) be a periodic function of momentum and analytic except at p 6= 0,

2) be proportional to �µpµ in the continuum limit, and 3) anticommute with �5. It is clear

that the naive Dirac operator satisfies both 2 and 3 but fails to meet the first condition

given the presence of doublers. The Wilson Dirac operator on the other hand satisfies 1

and 2 but it does not anticommute with �5 signifying its chiral symmetry breaking feature.

Solutions to the lattice fermions’ puzzle include the domain-wall fermions [227] and overlap

fermions [293, 294] that both belong to the category of the Ginsberg-Wilson fermions.16

Ginsberg and Wilson relation [176] redefines the chiral symmetry on the lattice,

{D, �5} = aD�5D, (1.56)

with D being a dimensionful Dirac operator, and therefore breaks the last condition in the

Nielsen-Ninomiya theorem. It however ensures that the chiral features of the continuum

fermions, including the chiral anomaly, are exactly reproduced as long as the operator D

satisfies this relation. Unfortunately, numerical simulations of both domain-wall and overlap

fermions comes with additional cost compared with Wilson fermions.17 Nonetheless, the

use of the chiral lattice fermions in LQCD calculations has become more common as the

computational resources improve. A nice review of fermions and chiral symmetry on the

lattice can be found in Ref. [231].

2) Generate gauge-filed configurations: Now that we have a discrete action with the

desired continuum limit, let us go back to the path intergarl we aim to evaluate,

hÔi =
1

Z
Z

DUµDqDq̄ e�S
(G)
lattice[U ]�S

(F )
lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have

left the superscripts E for the Euclidean action implicit. This expectation value can be

written as

hÔi =
1

Z
Z

DUµ e�S
(G)
lattice[U ]ZF [U ] hÔiF , (1.58)

16Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the
domain-walls separation is infinite.

17Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark
propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap
operator, see Refs. [218,231,234] for more details.

34

where the path integral over gauge links U are separated from that of the fermionic path

integrals with

hÔiF =
1

ZF

Z
DqDq̄ e�S

(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

P
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

Z
DqDq̄ e�S

(F )
lattice[U,q,q̄] =

Y

f

det Df , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value hÔiF is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e�S

(G)
lattice[U ] Q

f det Df . An im-

portant property of the lattice Dirac operators, the �5-hermiticity D† = �5D�5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇥ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

hÔi =
1

N

NX

i

hÔiF [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion
determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-
nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely
heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-
abled abandoning this approximation and has made the use of dynamical configurations viable in most
calculations.
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that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration
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,Ô- = 1

N

N(

i
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heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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lattice[U,q,q̄] Ô[U, q, q̄], (1.57)

where we have split the action to the purely gauge part and the fermionic part, and have
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Domain-wall fermions only satisfy the Ginsberg-Wilson relation in a particular limit, i.e. when the

domain-walls separation is infinite.

17
Simulating domain-wall fermions includes adding an extra dimension to the calculation of the quark

propagators while simulating overlap fermions requires inversion of an extra operator beside the overlap

operator, see Refs. [218,231,234] for more details.
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fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇥ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average
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1
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hÔiF [U (i)], (1.61)

18As a result, early LQCD calculations were limited to the quenched approximation where the fermion
determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-
nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely
heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-
abled abandoning this approximation and has made the use of dynamical configurations viable in most
calculations.
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u ūd

d̄ ūu
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Figure 1.10: The Wick contractions in the evaluation of the �0 two-point correlation functions.

For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �0

correlator with Ô = 1
2
(u⇤5u� d⇤5d), we have

,Ô↵0
(n)Ô↵0†(0)-F = �1

2
Tr

⇤
⇤5D�1

u (n, 0)⇤5D�1
u (0, n)

⌅

+
1

2
Tr

⇤
⇤5D�1

u (n, n)
⌅
Tr

⇤
⇤5D�1

u (0, 0)
⌅

�1

2
Tr

⇤
⇤5D�1

u (n, n)
⌅
Tr

⇤
⇤5D�1

d (0, 0)
⌅
+ {u ⌘ d}, (1.63)

eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20
Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].

Ô = u�5de.g.,
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dd̄

u ūd
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u ūd

d̄ uū
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ū
dd̄

u ūd
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u ūd

d̄ u
ū
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For flavor-singlet quantities, such as ⇡0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the ⇡0

correlator with Ô = 1p
2
(u�5u � d�5d), we have

hÔ⇡0
(n)Ô⇡0†(0)iF = �1

2
Tr

⇥
�5D�1

u (n, 0)�5D�1
u (0, n)

⇤

+
1

2
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⇥
�5D�1

u (n, n)
⇤
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⇥
�5D�1

u (0, 0)
⇤

�1

2
Tr

⇥
�5D�1

u (n, n)
⇤
Tr

⇥
�5D�1

d (0, 0)
⇤
+ {u $ d}, (1.63)

eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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u ūd

d̄ uū
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dd̄

u ūd
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u ūd

d̄ ud

d̄

d̄
u ū
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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d
ū
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For flavor-singlet quantities, such as ⇡0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the ⇡0

correlator with Ô = 1p
2
(u�5u � d�5d), we have
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
Refs. [2, 7, 8, 19, 115,138,352].
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.
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u ūd

d̄ uū
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ū
dd̄

u ūd
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d
ū
dd̄

u ūd
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ūd

d̄ u
ū
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eigenvalues of the Dirac operator causes di�culties in numerical evaluations of the inverse matrix given the
limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community
in approaching the physical point.

20Some LQCD collaborations have started including the disconnected diagrams in their calculations, see
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where the path integral over gauge links U are separated from that of the fermionic path

integrals with

,Ô-F =
1

ZF

*
DqDq̄ e�S

(F )
lattice[U,q,q̄]O[q, q̄, U ], (1.59)

and ZF is the partition function of the fermions which will still depend on the value of the

gauge link. By expressing the fermionic action as S(F )
lattice =

%
n,m q̄nDn,mqm, where Dn,m is

the matrix element of one of the chosen lattice operators discussed above in position space,

the fermionic partition function can be written as

ZF =

*
DqDq̄ e�S

(F )
lattice[U,q,q̄] =

)

f

detDf , (1.60)

where the product of the determinant of Dirac operator matrix, Df , corresponding to each

dynamical flavor is explicit. Now from Eq. (1.58) it is clear that once the fermionic expec-

tation value ,Ô-F is computed, the full expectation value can be computed using a Monte

Carlo sampling integration with the probability measure 1
Z e�S

(G)
lattice[U ]&

f detDf . An im-

portant property of the lattice Dirac operators, the ⇤5-hermiticity D† = ⇤5D⇤5, ensures

that the determinant of the Dirac operator is real, providing a well-defined sampling weight

in the numerical evaluation of the expectation values. LQCD calculations with dynamical

fermions require computing the gauge-field configuration with a distribution that depends

on the fermion determinant – the determinant of the Dirac operator which is a large ma-

trix with dimensionality (12N3
s ⇤ Nt)2 (on each spacetime point on the lattice there are 3

color and 4 spinor degrees of freedom for each flavor of quarks). After each configuration

generation both the gauge part and the determinant part must be updated simultaneously

to generate the next configuration.18

When a large number of almost statistically uncorrelated gauge field configurations, N ,

are generated, the statistical average

,Ô- = 1

N

N(

i

,Ô-F [U (i)], (1.61)

18
As a result, early LQCD calculations were limited to the quenched approximation where the fermion

determinant is set to one to reduce the computational cost of the gauge-field configurations. Unfortu-

nately quenching is an uncontrolled approximation and only describes QCD if the quarks were infinitely

heavy. Nowadays, the growth in the computational resources available to LQCD calculations has en-

abled abandoning this approximation and has made the use of dynamical configurations viable in most

calculations.
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dd̄

u ūd
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uū
dd̄

u ūd
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uū
dd̄

u ūd
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For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �0

correlator with Ô = 1
2
(u⇤5u� d⇤5d), we have
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+ {u ⌘ d}, (1.63)

eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20
Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].

Ô = u�5de.g.,

Quark disconnected diagrams. Require expensive all-to-all propagators.



Show that for the correlation function of the charged pion:

EXERCISE 1
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is an estimator of the the expectation value in Eq. (1.58), where U (i) is the ith generated

configuration.

3) Form the correlation functions: The next step of the calculation is observable depen-

dent and requires both analytical and numerical evaluation to determine ,Ô-F . Here we are

interested in the n-point correlation functions of (multi) hadrons from which one can extract

masses and the low-lying energies. Let Ô† denote the interpolating operator that creates a

(multi-)hadron states from the vacuum of QCD and Ô be an interpolator that annihilates

the state. With the notation used in Eq. (1.57), Ô  ÔÔ†. In order for an interpolating

operator to have overlap with a desired state, it must share the same quantum numbers, e.g.

the particle number, flavor, spin, parity, charge conjugation, etc., as that of the state. For

example the �+ state can be created by a bilinear quark operator O↵+† = u⇤5d. In order

to calculate the correlation function, we need to perform the fermionic path integral that

appears in the expectation value ,Ô-F which is a usual Grassmann integration. This part

is called the quark Wick contractions and for the case of �+ two-point correlation function

can be performed as following

,Ô↵+
(n)Ô↵+†(0)-F = ,da,�(n)⇤5�⇥ua⇥(n) ub,�⇧(0)⇤5�⇧⇥⇧db⇥⇧(0)-F

= �⇤5�⇥⇤5�⇧⇥⇧ ,db⇥⇧(0)da,�(n)-d ,ua⇥(n)ub,�⇧(0)-u

= �⇤5�⇥⇤5�⇧⇥⇧ (D�1
d )ba,⇥⇧�(0, n)(D

�1
u )ab,⇥�⇧(n, 0)

= �Tr
⇤
⇤5D�1

u (n, 0)⇤5D�1
d (0, n)

⌅

= �Tr
⇤
D�1

u (n, 0)D�1
d (n, 0)

⌅
, (1.62)

where we have chosen to create the pion at the origin and annihilate it at coordinate n.

The trace is taken over spin and color degrees of freedom and the negative sign has been

resulted from anti-commutation of the Dirac fields in the second line. In the last line the

⇤5-hermiticity of the Dirac operator has been used. The resulting correlation function has

been pictorially shown in Fig. 1.9. The value of the inverse Dirac operator depends on

the value of the link variable, therefore for each gauge-field configuration generated in the

previous step, the inverse of the Dirac operator must be evaluated.19

19
When the value of the light-quark masses that are used are close to their physical values, the small
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the state. With the notation used in Eq. (1.57), Ô  ÔÔ†. In order for an interpolating
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where         and          denote the the inverse Dirac matrix (the quark propagator) for the u 
and d quarks, respectively. Trace is over spin and color degrees of freedom.

35

is an estimator of the the expectation value in Eq. (1.58), where U (i) is the ith generated

configuration.

3) Form the correlation functions: The next step of the calculation is observable depen-

dent and requires both analytical and numerical evaluation to determine ,Ô-F . Here we are
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masses and the low-lying energies. Let Ô† denote the interpolating operator that creates a

(multi-)hadron states from the vacuum of QCD and Ô be an interpolator that annihilates
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BONUS EXERCISE 1

Show that for the correlation function of the neutral pion:
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d
ū
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u ūd

d̄ ud

d̄

Figure 1.10: The Wick contractions in the evaluation of the �0 two-point correlation functions.

For flavor-singlet quantities, such as �0, there are additional contributions to the corre-

lation functions, namely the disconnected contributions, that put limitations on the calcu-

lation of such quantities with the current computational resources.20 Explicitly for the �0

correlator with Ô = 1
2
(u⇤5u� d⇤5d), we have

,Ô↵0
(n)Ô↵0†(0)-F = �1

2
Tr

⇤
⇤5D�1

u (n, 0)⇤5D�1
u (0, n)

⌅

+
1

2
Tr

⇤
⇤5D�1

u (n, n)
⌅
Tr

⇤
⇤5D�1

u (0, 0)
⌅

�1

2
Tr

⇤
⇤5D�1

u (n, n)
⌅
Tr

⇤
⇤5D�1

d (0, 0)
⌅
+ {u ⌘ d}, (1.63)

eigenvalues of the Dirac operator causes di⇧culties in numerical evaluations of the inverse matrix given the

limited statistics. This is among the reasons for the numerical limitations faced by the LQCD community

in approaching the physical point.

20
Some LQCD collaborations have started including the disconnected diagrams in their calculations, see

Refs. [2, 7, 8, 19, 115,138,352].
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Step IV: Extract energies and matrix elements from correlation functions

10

L

3 ⇥ T � bmq b [fm] L [fm] T [fm] m⇡L m⇡T Ncfg Nsrc

24

3 ⇥ 48 6.1 -0.2450 0.1453(16) 3.4 6.7 14.3 28.5 3822 96

32

3 ⇥ 48 6.1 -0.2450 0.1453(16) 4.5 6.7 19.0 28.5 3050 72

48

3 ⇥ 64 6.1 -0.2450 0.1453(16) 6.7 9 28.5 38.0 1905 54

1

TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

CÔ,Ô0(⌧ ;d) =

X

x

e

2⇡id·x/Lh0| ˆO0
(x, ⌧)

ˆO†
(0, 0)|0i = Z 0

0Z†
0e

�E(0)⌧
+ Z 0

1Z†
1e

�E(1)⌧
+ . . . , (15)

Ground state and a tower of excited 
states are, in principle, accessible!
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TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

CÔ,Ô0(⌧ ;d) =

X

x

e

2⇡id·x/Lh0| ˆO0
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Ground state and a tower of excited 
states are, in principle, accessible!
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Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.
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Step V: Make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc. Still not fully developed and presents challenge in multi-hadron 
systems.
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Let’s discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

i) Finite-volume effects in the single-hadron sector
ii) Finite-volume formalism for two-hadron elastic scattering
iii) Finite-volume formalism for coupled-channel two-hadron elastic scattering 
and resonances

v) Finite-volume formalism for three-hadron scattering and resonances

iv) Finite-volume formalism for transition amplitudes and resonance form factors

vi) Finite-volume effects in lattice QED+QCD studies of hadrons

See e.g., ZD, arXiv:1409.1966 [hep-lat] and
Briceno, Dudek and Young, RevModPhys.90.025001.
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Figure 1.12: a) The 1PI self-energy diagrams contributing to the fully dressed nucleon propagator

to all orders. The thick solid line denotes the full nucleon propagator. b) The leading contributions

(the upper panel) to the 1PI self-energy diagram in HB✓PT comes from an insertion of the quark

mass matrix (the diamond) according to Eq. (1.35). The NLO contributions (the lower panel) arise

from the pion loops where the possibility of the production of a delta resonance in the loop is taken

into account. The black dots denote axial couplings. The solid line, solid-double line and dashed

line denote bare nucleon, ⇥ resonance and pion propagators, respectively.

as

MN = M
(0)
N + ⇧(1PI)|

v·l=MN�M
(0)
N ; l2=(MN�M

(0)
N )2

. (1.68)

At LO in HB✓PT, O( p2

⇤2
↵
), there is one contribution to the self-energy diagram, as shown

in the upper panel of Fig. 1.12(b). It comes from an insertion of the light-quark mass matrix,

arising from Lagrangian in Eq. (1.35). This contribution reads

⇧(1PI)
LO = �4c1m

2
↵, (1.69)
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confinement, these are not the massless gluons that go around the volume, and they will

not give rise to any significant volume e⌥ects. Instead the volume e⌥ects are dominantly

due to the presence of the pGBs of the spontaneous breaking of the chiral symmetry (pions

for the case of SU(2) symmetry). Roughly speaking, by constraining a hadron to a finite

volume, the pion could surrounding it is squeezed and the hadron mass is shifted. Here we

discuss these corrections to the mass of hadrons through the example of nucleons’ mass, to

which we come back later in chapter 5, where we apply di⌥erent boundary conditions than

periodic to explore its consequences. The discussion of the volume e⌥ects to the masses due

to QED interactions will be delayed until chapter 6.

As rigorously proved by Martin Lüscher in 1985 [268] for a massive scalar field theory, the

volume corrections to the mass of particles have a universal form, and fall o⌥ exponentially

with volume with a rate that is set by the mass of the lightest particle that is exchanged

in the theory. Since volume corrections are due to the IR manipulation of the system,

these corrections, as described by Lüscher, are of kinematic nature and the details of the

interactions are not needed in obtaining these results – a situation that continues to be

the case for the two-body problem, see Sec. 1.3.2. So we will consider the nucleon in the

HB✓PT and calculate the corrections to its mass due to enclosing it in a finite cubic volume

with the PBCs.

In the heavy-baryon formalism (see Sec. 1.1.2), the mass of the nucleon with momentum

Pµ = M
(0)
N vµ + lµ is obtained from the pole of the following fully dressed propagator

DNl =
i

P · v �M
(0)
N + i⇧

⇡

�1� i⇧(1PI) i

P · v �M
(0)
N + i⇧

+

⌘
�i⇧(1PI) i

P · v �M
(0)
N

✓2

+ . . .

⇢

⌧

=
i

P · v �M
(0)
N � ⇧(1PI) + i⇧

 iZN

P · v �MN + i⇧
, (1.67)

as depicted in Fig. 1.12(a). M
(0)
N is the nucleon bare mass and ⇧(1PI) denotes the one-

particle irreducible self energy of the nucleon. ⇧(1PI) can be seen to depend on two scalar

variables v · l and l2, so by rewriting lµ as lµ = (MN �M
(0)
N )vµ +(Pµ�MNvµ), it is easy to

see that by requiring the on-shell condition P.v = MN , the nucleon mass can be identified

Bare mass

True mass
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propagator

Bare 
propagator
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Velocity
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Lagrangian:

Pion decay constant

Nucleon axial charge
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with projection operators P±
v = 1±⇤µvµ

2 . Then it is straightforward to see that in the heavy

field limit, when v = (1, 0, 0, 0), P+
v projects out the upper components of the nucleon

spinor with energy E �MN while P+
v project the lower components of the nucleon spinor

with energy E �MN . With this decomposition, the only dynamical field that survives as

MN ⇣  is Nl whose corresponding Lagrangian can be written as [220]

L̂(1)
N,pGB = N l(iD0 � gA⇥ ·A)Nl, (1.38)

at LO in 1/MN expansion where ⇥ are Pauli matrices of SU(2) in the spin space. Note

that the mass term in Eq. (1.38) is now canceled via such non-relativistic (NR) reduction.

This formalism, that is known in literature as heavy-baryon ✓PT (HB✓PT), makes the

EFT calculations involving baryons considerably easy specially at higher orders. For future

use, let us make explicit the interactions among nucleons and pions in this Lagrangian by

expanding the � field in Eq. (1.38) in powers of pion fields. After neglecting terms with

more than two pion fields, one arrives at

L̂(1)
↵N = N l

�
i⇢0 �

1

4f2
↵
⇤ · (� ⇤ ⇢0�)�

gA
2f↵

⇤ · (⇥ · ⇧)�
✏
Nl, (1.39)

where ⇤ are the Pauli matrices of SU(2) in the isospin space. Several interesting processes

can be studied with this Lagrangian including the pion-nucleon scattering and the quark-

mass dependence of nucleon mass. We will use this Lagrangian in the next section to

evaluate the FV corrections to the mass of nucleons, and later in chapter 5 to improve such

volume corrections by modifying the quark-field boundary conditions in a finite volume.

The interactions of pGBs and baryons with external fields such as EM field can be also

included in the EFT. For the case of electromagnetism, for example, a minimal coupling of

hadrons to the photon field Aµ will account for such interactions at LO. It is notable that

the quark electric charge matrix Q,

Q =

⌫

!!!�

2
3 0 0

0 �1
3 0

0 0 �1
3

⇠

""" 
, (1.40)

breaks chiral symmetry explicitly just as the quark mass matrix and its inclusion in the

chiral Lagrangian follows in a similar fashion. We will not discuss this extension of EFT

Example: The mass of the nucleon
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to all orders. The thick solid line denotes the full nucleon propagator. b) The leading contributions

(the upper panel) to the 1PI self-energy diagram in HB✓PT comes from an insertion of the quark

mass matrix (the diamond) according to Eq. (1.35). The NLO contributions (the lower panel) arise

from the pion loops where the possibility of the production of a delta resonance in the loop is taken

into account. The black dots denote axial couplings. The solid line, solid-double line and dashed

line denote bare nucleon, ⇥ resonance and pion propagators, respectively.
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MN = M
(0)
N + ⇧(1PI)|

v·l=MN�M
(0)
N ; l2=(MN�M

(0)
N )2

. (1.68)

At LO in HB✓PT, O( p2

⇤2
↵
), there is one contribution to the self-energy diagram, as shown

in the upper panel of Fig. 1.12(b). It comes from an insertion of the light-quark mass matrix,

arising from Lagrangian in Eq. (1.35). This contribution reads

⇧(1PI)
LO = �4c1m

2
↵, (1.69)
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with c1 = �0.93 ± 0.10 GeV�1 [63]. At NLO in the chiral expansion, O( p3

⇤3
↵
), there are

contributions from chiral loops as shown in the lower panel of Fig. 1.12(b). Due to the small

mass di⌥erence between the nucleon and the ⇥ resonance, ⇥ � 292 MeV, the contribution

from this resonance to the self-energy of the nucleon must be taken into account at this

order. We did not discusse the coupling of the baryon decuplets to the pGBs and to the

baryon octets in Sec. 1.1.2, but it is straightforward to show that the only required vertex

for this calculation comes from the following chirally invariant Lagrangian

L⇥N = g⇥N⇥
abc,⌦Ad

a,⌦Nb⇧cd, (1.70)

where the axial vector current A⌦ is defined in Eq. (1.31). Then from this Lagrangian and

that in Eq. (1.40) for the axial coupling of nucleons, it is easy to see that for the loop

corrections, we have

⇧(1PI)
NLO = �i

9g2A
2f2

↵
I(, 0)� i

4g2⇥N

f2
↵

I(,⇥), (1.71)

where

I(,⇥) = �1

3

*
d4k

(2�)4
k2

(k0 �⇥+ i⇧)(k02 � k2 �m2
↵ + i⇧)

. (1.72)

The integral is clearly UV divergent and must be renormalized. However, since we are

interested in the FV corrections to the nucleon mass, we do not need to carry out this

integration any further. The only observation to be made before moving on to the FV

scenario is to note that the (renormalized) mass at this order is proportional to m3
↵ � m

3/2
q

(for ⇥ = 0 term) and is therefore non-analytic in the light-quark masses. The contribution

from the ⇥-resonance introduces further nontrivial non-analytic corrections to the mass of

the nucleon, see Refs. [43, 62, 202,220] for the discussion of baryon masses from (HB)✓PT.

In a finite volume, the momentum modes are all discretized due to the PBCs, k =

2↵
L n, n � 3. As a result the only di⌥erence between the FV and infinite-volume calculation

arises from the loops where the integrals over momenta are replaced with sums [10,27,36],

I(L,⇥) = �1

3

1

L3

(

k

*
dk0

(2�)4
k2

(k0 �⇥+ i⇧)(k02 � k2 �m2
↵ + i⇧)

. (1.73)

Note that we keep the temporal extent of the volume infinite for the discussion of FV

e⌥ects. Since in practice LQCD calculations have a finite extent in the (imaginary) time

Leading corrections to 
nucleon self energy:
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perturbation theory 
Lagrangian:

Pion decay constant

Nucleon axial charge
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with projection operators P±
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2 . Then it is straightforward to see that in the heavy

field limit, when v = (1, 0, 0, 0), P+
v projects out the upper components of the nucleon

spinor with energy E �MN while P+
v project the lower components of the nucleon spinor

with energy E �MN . With this decomposition, the only dynamical field that survives as

MN ⇣  is Nl whose corresponding Lagrangian can be written as [220]

L̂(1)
N,pGB = N l(iD0 � gA⇥ ·A)Nl, (1.38)

at LO in 1/MN expansion where ⇥ are Pauli matrices of SU(2) in the spin space. Note

that the mass term in Eq. (1.38) is now canceled via such non-relativistic (NR) reduction.

This formalism, that is known in literature as heavy-baryon ✓PT (HB✓PT), makes the

EFT calculations involving baryons considerably easy specially at higher orders. For future

use, let us make explicit the interactions among nucleons and pions in this Lagrangian by

expanding the � field in Eq. (1.38) in powers of pion fields. After neglecting terms with

more than two pion fields, one arrives at
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where ⇤ are the Pauli matrices of SU(2) in the isospin space. Several interesting processes

can be studied with this Lagrangian including the pion-nucleon scattering and the quark-

mass dependence of nucleon mass. We will use this Lagrangian in the next section to

evaluate the FV corrections to the mass of nucleons, and later in chapter 5 to improve such

volume corrections by modifying the quark-field boundary conditions in a finite volume.

The interactions of pGBs and baryons with external fields such as EM field can be also

included in the EFT. For the case of electromagnetism, for example, a minimal coupling of

hadrons to the photon field Aµ will account for such interactions at LO. It is notable that

the quark electric charge matrix Q,

Q =

⌫

!!!�

2
3 0 0

0 �1
3 0

0 0 �1
3

⇠

""" 
, (1.40)

breaks chiral symmetry explicitly just as the quark mass matrix and its inclusion in the

chiral Lagrangian follows in a similar fashion. We will not discuss this extension of EFT

Example: The mass of the nucleon
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direction, there will be contaminations to the extracted energies from the backward prop-

agating states. Such thermal e⌥ects must be dealt with separately but their e⌥ects can

be shown numerically to be smaller that the (spatial) volume e⌥ects. Using the Poisson

re-summation formula,

1

L3

(

k

f(k) =

*
d3k

(2�)3
f(k) +

(

m �=0

*
d3k

(2�)3
f(k)eik.mL, (1.74)

where m is another triplet of integers, one can isolate the infinite-volume contribution to

I(L,⇥) in Eq. (1.72), which will be canceled out when taking the di⌥erence of the infinite-

volume and FV masses. With the help of a useful identity,

1

(k2 +M2)r
=

1

�(r)

* ⌦

0
dssr�1e�s(k2+M2), (1.75)

it then takes a few lines of algebra to show that [27],

⌅LMN  MN (L)�MN () =
3g2A
8�2f2

↵
K(0) +

g2⇥N

3�2f2
↵
K(⇥), (1.76)

where

K(0) =
�

2
m2

↵

(

n �=0

e�|n|m�L

|n|L , (1.77)

and

K(⇥) =

* ⌦

0
d ⇥⇥

(

n �=0

�
⇥⇥K0(⇥⇥|n|L) �

1

|n|LK1(⇥⇥|n|L)
✏
. (1.78)

Kn(z) is the modified Bessel function of the second kind, and ⇥⇥ =  2 + 2 ⇥ + m2
↵.
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When expanded in the limit of large L, Eq. (1.79) scales as e�m�L/L at LO. Explicitly one

obtains [27]
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+
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1

L
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As we already discussed, the exponential corrections of these types are general features of

interacting theories with finite-range interactions. The reader can consult Refs. [36,86,111–

113,171] for the FV corrections to the masses of mesons and baryons.
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Note that we have chosen to define the K(�) function with a negative sign compared to Ref. [27].
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direction, there will be contaminations to the extracted energies from the backward prop-

agating states. Such thermal e⌥ects must be dealt with separately but their e⌥ects can

be shown numerically to be smaller that the (spatial) volume e⌥ects. Using the Poisson

re-summation formula,
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f(k)eik.mL, (1.74)

where m is another triplet of integers, one can isolate the infinite-volume contribution to

I(L,⇥) in Eq. (1.72), which will be canceled out when taking the di⌥erence of the infinite-

volume and FV masses. With the help of a useful identity,

1

(k2 +M2)r
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* ⌦

0
dssr�1e�s(k2+M2), (1.75)

it then takes a few lines of algebra to show that [27],
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When expanded in the limit of large L, Eq. (1.79) scales as e�m�L/L at LO. Explicitly one
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�i�(1PI)= + + �i�(1PI) �i�(1PI) + . . .
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�i�(1PI) =
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Figure 1.12: a) The 1PI self-energy diagrams contributing to the fully dressed nucleon propagator

to all orders. The thick solid line denotes the full nucleon propagator. b) The leading contributions

(the upper panel) to the 1PI self-energy diagram in HB✓PT comes from an insertion of the quark

mass matrix (the diamond) according to Eq. (1.35). The NLO contributions (the lower panel) arise

from the pion loops where the possibility of the production of a delta resonance in the loop is taken

into account. The black dots denote axial couplings. The solid line, solid-double line and dashed

line denote bare nucleon, ⇥ resonance and pion propagators, respectively.

as

MN = M
(0)
N + ⇧(1PI)|

v·l=MN�M
(0)
N ; l2=(MN�M

(0)
N )2

. (1.68)

At LO in HB✓PT, O( p2

⇤2
↵
), there is one contribution to the self-energy diagram, as shown

in the upper panel of Fig. 1.12(b). It comes from an insertion of the light-quark mass matrix,

arising from Lagrangian in Eq. (1.35). This contribution reads

⇧(1PI)
LO = �4c1m

2
↵, (1.69)
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with c1 = �0.93 ± 0.10 GeV�1 [63]. At NLO in the chiral expansion, O( p3

⇤3
↵
), there are

contributions from chiral loops as shown in the lower panel of Fig. 1.12(b). Due to the small

mass di⌥erence between the nucleon and the ⇥ resonance, ⇥ � 292 MeV, the contribution

from this resonance to the self-energy of the nucleon must be taken into account at this

order. We did not discusse the coupling of the baryon decuplets to the pGBs and to the

baryon octets in Sec. 1.1.2, but it is straightforward to show that the only required vertex

for this calculation comes from the following chirally invariant Lagrangian

L⇥N = g⇥N⇥
abc,⌦Ad

a,⌦Nb⇧cd, (1.70)

where the axial vector current A⌦ is defined in Eq. (1.31). Then from this Lagrangian and

that in Eq. (1.40) for the axial coupling of nucleons, it is easy to see that for the loop

corrections, we have

⇧(1PI)
NLO = �i

9g2A
2f2

↵
I(, 0)� i

4g2⇥N

f2
↵

I(,⇥), (1.71)

where

I(,⇥) = �1

3

*
d4k

(2�)4
k2

(k0 �⇥+ i⇧)(k02 � k2 �m2
↵ + i⇧)

. (1.72)

The integral is clearly UV divergent and must be renormalized. However, since we are

interested in the FV corrections to the nucleon mass, we do not need to carry out this

integration any further. The only observation to be made before moving on to the FV

scenario is to note that the (renormalized) mass at this order is proportional to m3
↵ � m

3/2
q

(for ⇥ = 0 term) and is therefore non-analytic in the light-quark masses. The contribution

from the ⇥-resonance introduces further nontrivial non-analytic corrections to the mass of

the nucleon, see Refs. [43, 62, 202,220] for the discussion of baryon masses from (HB)✓PT.

In a finite volume, the momentum modes are all discretized due to the PBCs, k =

2↵
L n, n � 3. As a result the only di⌥erence between the FV and infinite-volume calculation

arises from the loops where the integrals over momenta are replaced with sums [10,27,36],

I(L,⇥) = �1

3

1

L3

(

k

*
dk0

(2�)4
k2

(k0 �⇥+ i⇧)(k02 � k2 �m2
↵ + i⇧)

. (1.73)

Note that we keep the temporal extent of the volume infinite for the discussion of FV

e⌥ects. Since in practice LQCD calculations have a finite extent in the (imaginary) time

Leading corrections to 
nucleon self energy:

Leading heavy baryon 
perturbation theory 
Lagrangian:

Pion decay constant

Nucleon axial charge
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with projection operators P±
v = 1±⇤µvµ

2 . Then it is straightforward to see that in the heavy

field limit, when v = (1, 0, 0, 0), P+
v projects out the upper components of the nucleon

spinor with energy E �MN while P+
v project the lower components of the nucleon spinor

with energy E �MN . With this decomposition, the only dynamical field that survives as

MN ⇣  is Nl whose corresponding Lagrangian can be written as [220]

L̂(1)
N,pGB = N l(iD0 � gA⇥ ·A)Nl, (1.38)

at LO in 1/MN expansion where ⇥ are Pauli matrices of SU(2) in the spin space. Note

that the mass term in Eq. (1.38) is now canceled via such non-relativistic (NR) reduction.

This formalism, that is known in literature as heavy-baryon ✓PT (HB✓PT), makes the

EFT calculations involving baryons considerably easy specially at higher orders. For future

use, let us make explicit the interactions among nucleons and pions in this Lagrangian by

expanding the � field in Eq. (1.38) in powers of pion fields. After neglecting terms with

more than two pion fields, one arrives at

L̂(1)
↵N = N l

�
i⇢0 �

1

4f2
↵
⇤ · (� ⇤ ⇢0�)�

gA
2f↵

⇤ · (⇥ · ⇧)�
✏
Nl, (1.39)

where ⇤ are the Pauli matrices of SU(2) in the isospin space. Several interesting processes

can be studied with this Lagrangian including the pion-nucleon scattering and the quark-

mass dependence of nucleon mass. We will use this Lagrangian in the next section to

evaluate the FV corrections to the mass of nucleons, and later in chapter 5 to improve such

volume corrections by modifying the quark-field boundary conditions in a finite volume.

The interactions of pGBs and baryons with external fields such as EM field can be also

included in the EFT. For the case of electromagnetism, for example, a minimal coupling of

hadrons to the photon field Aµ will account for such interactions at LO. It is notable that

the quark electric charge matrix Q,

Q =

⌫

!!!�

2
3 0 0

0 �1
3 0

0 0 �1
3

⇠

""" 
, (1.40)

breaks chiral symmetry explicitly just as the quark mass matrix and its inclusion in the

chiral Lagrangian follows in a similar fashion. We will not discuss this extension of EFT

T ! 1, a ! 0

Example: The mass of the nucleon

Which gives rise to:

Beane, Phys.Rev.D70: 034507 (2004).



EXERCISE 2

Plot the first few terms in the expression for the corrections to the nucleon mass as a 
function of the spatial extent of the volume. How large the volume must be such that 
correction to the mass of the nucleon are sub-percent?

BONUS EXERCISE 2

Drive the expression for the volume corrections to the mass of the nucleon at leading order 
in heavy-baryon chiral perturbation theory. The first step is to realize that the volume 
corrections arise from the loop integral where the integration over a continuous 
momentum is replaced by a summation over discretized momenta in a periodic cubic 
volume:

Z
dk0
2⇡

d3k

(2⇡)3
!

Z
dk0
2⇡

1

L3

X

k=2⇡n/L

with n 2 Z

The second step is to make use of Poisson resumption formula:
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direction, there will be contaminations to the extracted energies from the backward prop-

agating states. Such thermal e⌥ects must be dealt with separately but their e⌥ects can

be shown numerically to be smaller that the (spatial) volume e⌥ects. Using the Poisson

re-summation formula,

1

L3

(

k

f(k) =

*
d3k

(2�)3
f(k) +

(

m �=0

*
d3k

(2�)3
f(k)eik.mL, (1.74)

where m is another triplet of integers, one can isolate the infinite-volume contribution to

I(L,⇥) in Eq. (1.72), which will be canceled out when taking the di⌥erence of the infinite-

volume and FV masses. With the help of a useful identity,

1

(k2 +M2)r
=

1

�(r)

* ⌦

0
dssr�1e�s(k2+M2), (1.75)

it then takes a few lines of algebra to show that [27],

⌅LMN  MN (L)�MN () =
3g2A
8�2f2

↵
K(0) +

g2⇥N

3�2f2
↵
K(⇥), (1.76)

where

K(0) =
�

2
m2

↵

(

n �=0

e�|n|m�L

|n|L , (1.77)

and

K(⇥) =

* ⌦

0
d ⇥⇥

(

n �=0

�
⇥⇥K0(⇥⇥|n|L) �

1
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✏
. (1.78)

Kn(z) is the modified Bessel function of the second kind, and ⇥⇥ =  2 + 2 ⇥ + m2
↵.
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When expanded in the limit of large L, Eq. (1.79) scales as e�m�L/L at LO. Explicitly one

obtains [27]
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As we already discussed, the exponential corrections of these types are general features of

interacting theories with finite-range interactions. The reader can consult Refs. [36,86,111–

113,171] for the FV corrections to the masses of mesons and baryons.
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Note that we have chosen to define the K(�) function with a negative sign compared to Ref. [27].

where       is another integer three-vector.m



Let’s discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

i) Finite-volume effects in the single-hadron sector
ii) Finite-volume formalism for two-hadron elastic scattering
iii) Finite-volume formalism for coupled-channel two-hadron elastic scattering 
and resonances

v) Finite-volume formalism for three-hadron scattering and resonances

iv) Finite-volume formalism for transition amplitudes and resonance form factors

vi) Finite-volume effects in lattice QED+QCD studies of hadrons



V V1

M1 1 �K�KM1�K 1�K 1�K �K

(1)

(2) = + + . . .+

= +
T ! 1, a ! 0

V�KV ��0 V �V�KV�0 �KV ��0

VV AA0 VV M1 VV M1 M1A AA0 A0

CV =

+ . . .

++

+

+ . . .

+= C1+

Let’s derive the Luescher’s formula first. A QFT derivation goes as 
follows:

Kim, Sachrajda and Sharpe, 
Nucl.Phys.B727(2005)218-243.



EXERCISE 3

By rearranging the diagrams in        (the first line in the upper panel) using the relations in 
the lower panel, verify the expansion in the second line in the upper panel. What is the 
relation between            and            ?

CV

�(�0) A(A0)



V V1

M1 1 �K�KM1�K 1�K 1�K �K

(1)

(2) = + + . . .+

= +
T ! 1, a ! 0

V�KV ��0 V �V�KV�0 �KV ��0

VV AA0 VV M1 VV M1 M1A AA0 A0

CV =

+ . . .

++

+

+ . . .

+= C1+

Finite-volume function Scattering amplitude

det
⇥
�GV (E⇤) +M�1(E⇤)

⇤
= 0

Kim, Sachrajda and Sharpe, 
Nucl.Phys.B727(2005)218-243.

Let’s derive the Luescher’s formula first. A QFT derivation goes as 
follows:



m1
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m1

m2
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Elastic amplitude more closely…
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CM energy Phase shift

Symmetry factor
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⇥
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+ k?

ZD and Savage, Phys. 
Rev.D84,114502(2011).
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m2
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m2

Finite-volume function more closely…



det
⇥
�GV (E⇤) +M�1(E⇤)

⇤
= 0

k⇤ = ��1


kk �

1

2
(1 +

m2
1 �m2

2

E⇤2
)P

�
+ k?

ZD and Savage, Phys. 
Rev.D84,114502(2011).

m1

m2

m1

m2

Finite-volume function more closely…

q⇤ cot �(0) = 4⇡c00(q
⇤2
)

S-wave approximation, 
valid at low energies:

S-wave phase shift



EXERCISE 4

Derive the S-wave limit of Luescher’s quantization condition from the master relation.

Plot the S-wave finite-volume function        for a range of momenta      , including negative 
values. At what values of        do you observe singularities? What do these momenta 
correspond to?

BONUS EXERCISE 3

C00 q⇤2

q⇤2



Two-baryon states with SU(3) symmetry

6

in the NR limit [42, 65, 69, 70]. Here, 

(1) is the infinite-volume binding momentum of the state
and Z

2 is the residue of the scattering amplitude at the bound-state pole. Note that the occurrence
of negative k

⇤2 values in a system in a finite volume is not necessarily an indication of a bound state,
and the movement of the state on the real energy axis must be examined as function of volume,
according to the above form, to ascertain that the energy (shift) remains in the negative region
towards infinite volume. Here, this will be referred to as a direct method to obtain the binding
energy. A crucial feature of calculations performed in this work is that two-baryon systems are
studied at multiple volumes in order to provide unambiguous signatures for the existence of bound
states once negative-valued energy shifts are observed. In particular, for the largest volume used,
with a spatial extent of ⇡ 6.7 fm, the FV corrections to the infinite-volume binding momenta are
very small for the bound states in the 27, 10 and 8A irreps, see Sec. III C. Since the closed form of
the FV corrections to the binding momenta are known [42, 65, 69, 70], the significance of the terms
that are dropped from the expansion in Eq. (8) can be evaluated order by order.

Another method of obtaining information about a bound state is to first constrain the scattering
amplitude and its parametrization in terms of energy using Lüscher’s methodology. An analytic
continuation to negative energies then allows the bound state energy to be obtained from the pole
location(s) of the scattering amplitude,

k

⇤
cot �|k⇤=i(1) + 

(1)
= 0. (9)

Since this method involves an intermediate step to obtain the binding energies, it is referred to here
as an indirect method. The advantages of this method are that it makes no assumption about the
suppression of higher-order exponentials in the extrapolation form as in Eq. (8), and that it provides
information about the existence or absence of a bound state even near threshold. The disadvantage
of this method is that it relies on a parametrization of the scattering amplitude. Often, including
additional parameters to improve the goodness of the fit increases the uncertainty of constraints
on the location of the pole. Bound state(s) extracted this way must be shown to be robust against
changes in the parameterization, and the scattering amplitude at the bound state energy must
be shown to satisfy certain physical conditions. These features will become more apparent in
Sec. III C, where the determinations of the binding energies in the various baryon-baryon channels
are discussed.

B. Two-baryon scattering with SU(3) flavor symmetry and large-Nc predictions

The number of distinct FV spectra in the baryon-baryon systems is dictated by the SU(3)

flavor symmetry of the present calculations. The flavor representation of two octet baryons, each
transforming in the 8 irrep of SU(3), has a decomposition of the form:

8 ⌦ 8 = 27 � 10 � 10 � 8S � 8A � 1. (10)

Flavor channels belonging to the totally symmetric irreps 27, 8S and 1 have a total spin equal to
zero, while those belonging to the totally antisymmetric irreps 10, 10 and 8A have a total spin equal
to one. The SU(3) classification of the flavor channels is summarized in Appendix A for reference.
The use of interpolating operators that transform under irreps of the SU(3) decomposition of
the product of two octet baryons allows for these distinct spectra to be determined in a LQCD
calculation. The two-baryon interpolating operators used in this study, however, transform under
the isospin subgroup of SU(3), with strangeness treated as a quantum number. As a result, the
excited spectra corresponding to the 8S and 1 irreps cannot be rigorously determined unless multiple
interpolating operators in flavor space are used to isolate the lowest-lying states of the systems. For

{n, p,⌃+,⌃0,⌃�,⌅0,⌅+,⇤}

SU(3) decomposition of states:

Let’s see what these states are…

Now let’s see an application of Luescher’s method to obtain elastic scattering amplitudes 
of two hadrons from lattice QCD: Wagman et al.(NPLQCD), Phys.Rev.D 96,114510(2017).
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2.38

2.40

2.42

2.44

2.46

4 6 8 10 12 14
2.40
2.42
2.44
2.46
2.48
2.50
2.52

N
N

(1
S
0
)

2MN243 ⇥ 48 323 ⇥ 48 483 ⇥ 64

⌧ [l.u.] ⌧ [l.u.]

10

L

3 ⇥ T � bmq b [fm] L [fm] T [fm] m⇡L m⇡T Ncfg Nsrc

24

3 ⇥ 48 6.1 -0.2450 0.1453(16) 3.4 6.7 14.3 28.5 3822 96

32

3 ⇥ 48 6.1 -0.2450 0.1453(16) 4.5 6.7 19.0 28.5 3050 72

48

3 ⇥ 64 6.1 -0.2450 0.1453(16) 6.7 9 28.5 38.0 1905 54

1

TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

CÔ,Ô0(⌧ ;d) =

X

x

e

2⇡id·x/Lh0| ˆO0
(x, ⌧)

ˆO†
(0, 0)|0i = Z 0

0Z†
0e

�E(0)⌧
+ Z 0

1Z†
1e

�E(1)⌧
+ . . . , (15)

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

Step 1: Obtain the lowest-lying spectra
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FIG. 6: The shifts in the energy of the two-baryon systems in the 27, 10, 10 and 8A irreps from that of two
non-interacting baryons at rest in the three lattice volumes, i.e., �E = EBB � 2MB. Energies are expressed
in lattice units (l.u.). Different columns correspond to different volumes and boosts, as indicated.

Figs. 3–5. The energy shifts and their uncertainties are denoted as horizontal bands in the R plots,
and are compiled for all two-baryon channels studied in this work in Fig. 6. The corresponding
values are tabulated in Tables X-XIII of Appendix C for reference.

Recently, there have been comments by Iritani, et al. [95–97] questioning the extraction of en-
ergy eigenvalues from the late-time behavior of correlation functions, and methods for identification
of energies such as those used here. These authors present an example of two-nucleon correlation
functions that exhibit a considerable mismatch in the location of the naive plateaus in the EMPs
when different source and sink operators are used (namely locally-smeared and wall sources). How-
ever, as is shown by the PACS-CS collaboration [98], such a mismatch disappears once both the
single-nucleon and the two-nucleon systems are required to be in their ground states. The failure of
wall sources to overlap well onto the ground state at early times is a well-known problem, and has
no bearing on the results reported by other groups using more optimal sources, such as those used

[NN(1S0)]

Step 1: Obtain the lowest-lying spectra
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Figs. 3–5. The energy shifts and their uncertainties are denoted as horizontal bands in the R plots,
and are compiled for all two-baryon channels studied in this work in Fig. 6. The corresponding
values are tabulated in Tables X-XIII of Appendix C for reference.

Recently, there have been comments by Iritani, et al. [95–97] questioning the extraction of en-
ergy eigenvalues from the late-time behavior of correlation functions, and methods for identification
of energies such as those used here. These authors present an example of two-nucleon correlation
functions that exhibit a considerable mismatch in the location of the naive plateaus in the EMPs
when different source and sink operators are used (namely locally-smeared and wall sources). How-
ever, as is shown by the PACS-CS collaboration [98], such a mismatch disappears once both the
single-nucleon and the two-nucleon systems are required to be in their ground states. The failure of
wall sources to overlap well onto the ground state at early times is a well-known problem, and has
no bearing on the results reported by other groups using more optimal sources, such as those used

[NN(1S0)] [NN(3S1)]

[N⌃(3S1)] [N⌅(3S1)]

Step 1: Obtain the lowest-lying spectra
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25

determined in three volumes, a controlled extrapolation to infinite volume is possible in the present
work. Fitting to the truncated form of the FV QC for negative k

⇤2 values, Eq. (8), the infinite-
volume binding momenta, 

(1), can be obtained in each channel. These results are presented in
Table III for measurements with d = (0, 0, 0) and (0, 0, 2), with complete agreement seen between
the two determinations. The bootstrap samples of extracted 

(1) values from each case can be
combined to obtain a conservative estimate of the binding momenta and their uncertainties, given
in the last row of Table III. The omitted terms in the truncated form in Eq. (8) are negligible as
e

�p
3(1)L is at most ⇠ 10

�3 for the channels belonging to the 27, 10 and 8A irreps. The stability
of the extracted binding momenta has been verified by excluding lower-order terms and by adding
higher-order terms to the fits.

Table III also includes the 

(1) values for the channels belonging to the 10 irrep. As is seen from
Fig. 11, the ground-state energy in the largest volume is close to threshold. Nonetheless, assuming
that there is a bound state in this channel, a determination of 

(1) based on the fit to Eq. (8) is
fully consistent with the ground-state energies at the largest volume, as well as with the location of
the pole in the scattering amplitude. From these results, the existence of a bound state in the 10

irrep cannot be confirmed or excluded with statistical significance. Future calculations with higher
statistics are needed in order to draw robust conclusions about the nature of the ground state in
the 10 irrep.

In physical units, the binding energies of these states are:

27 irrep: B = 20.6

(+1.8)
(�2.4)

(+2.8)
(�1.6) MeV, (25)

10 irrep: B = 27.9

(+3.1)
(�2.3)

(+2.2)
(�1.4) MeV, (26)

10 irrep: B = 6.7

(+3.3)
(�1.9)

(+1.8)
(�6.2) MeV, (27)

8A irrep: B = 40.7

(+2.1)
(�3.2)

(+2.4)
(�1.4) MeV, (28)

where B = �2

q
�

(1)2
+ M

2
B + 2MB. Again, the first uncertainty is statistical and the second

uncertainty encompasses both a fitting uncertainty and an uncertainty encoding variation among
multiple analyses. The uncertainty in the lattice spacing is small compared with other uncertainties.
These binding energies are consistent with our previous determination in Ref. [20, 21], and with
the binding energies obtained on the same ensembles of gauge-field configurations in Ref. [99] for
the ground states of the two-nucleon channels in the 27 and 10 irreps.

4. S-wave baryon-baryon interactions and naturalness

Interactions are considered unnatural if they give rise to some characteristic length scale of the
system that is much larger than their range. There are at least two measures to assess naturalness
in a two-particle system. For scattering states at low energies, scattering length defines a charac-
teristic length scale, and the range of interactions can be approximated by the effective range. As
an example, S-wave interactions in the spin-singlet and spin-triplet two-nucleon channels in nature
produce effective range to scattering length ratios, r/a, that are ⇡ �0.14 and ⇡ 0.32, respectively.
This indicates that both channels are unnatural, particularly the spin-singlet channel. When inter-
actions support a bound state, another characteristic length scale of the two-particle system is the
inverse of the binding momentum, which defines an intrinsic size for the bound state. Considering

Step 2: Feed the energies to the Luescher’s equation 
and obtain the S-wave scattering phase shifts.
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Table III for measurements with d = (0, 0, 0) and (0, 0, 2), with complete agreement seen between
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that there is a bound state in this channel, a determination of 
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fully consistent with the ground-state energies at the largest volume, as well as with the location of
the pole in the scattering amplitude. From these results, the existence of a bound state in the 10

irrep cannot be confirmed or excluded with statistical significance. Future calculations with higher
statistics are needed in order to draw robust conclusions about the nature of the ground state in
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uncertainty encompasses both a fitting uncertainty and an uncertainty encoding variation among
multiple analyses. The uncertainty in the lattice spacing is small compared with other uncertainties.
These binding energies are consistent with our previous determination in Ref. [20, 21], and with
the binding energies obtained on the same ensembles of gauge-field configurations in Ref. [99] for
the ground states of the two-nucleon channels in the 27 and 10 irreps.

4. S-wave baryon-baryon interactions and naturalness

Interactions are considered unnatural if they give rise to some characteristic length scale of the
system that is much larger than their range. There are at least two measures to assess naturalness
in a two-particle system. For scattering states at low energies, scattering length defines a charac-
teristic length scale, and the range of interactions can be approximated by the effective range. As
an example, S-wave interactions in the spin-singlet and spin-triplet two-nucleon channels in nature
produce effective range to scattering length ratios, r/a, that are ⇡ �0.14 and ⇡ 0.32, respectively.
This indicates that both channels are unnatural, particularly the spin-singlet channel. When inter-
actions support a bound state, another characteristic length scale of the two-particle system is the
inverse of the binding momentum, which defines an intrinsic size for the bound state. Considering

Step 2: Feed the energies to the Luescher’s equation 
and obtain the S-wave scattering phase shifts.
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Step 3: Feed the energies to the Luescher’s equation 
and obtain the S-wave scattering phase shifts.

This is a curious observation. Why are the scattering 
parameters so close to each other in different channels?

k⇤ cot �(k⇤) = �1

a
+

1

2

rk⇤2 + . . .SU(Nf = 3) SU(2Nf = 6) SU(16)Kaplan and 
Savage (1998).

This is in fact a prediction of QCD with a large number of colors for nuclear and hyper nuclear interactions.

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm



Let’s discuss in greater depth step V:

Step V: make the connection to physical observables, such as scattering amplitudes, 
decay rates, etc.

i) Finite-volume effects in the single-hadron sector
ii) Finite-volume formalism for two-hadron elastic scattering
iii) Finite-volume formalism for coupled-channel two-hadron elastic scattering 
and resonances

v) Finite-volume formalism for three-hadron scattering and resonances

iv) Finite-volume formalism for transition amplitudes and resonance form factors

vi) Finite-volume effects in lattice QED+QCD studies of hadrons
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For a general proof of the reality of quantization condition with any number of coupled channels

see Refs. [37, 38].

For N=1, one reproduces the result first obtained by Rummukainen and Gottlieb [21] and later

confirmed by Kim et al. [22] and Christ et al. [23] for the case of single-channel moving frame

two-particle systems as follows. First note that it is convenient to evaluate the determinant using

the spherical harmonic basis of ⇤GV , Eq. (12), and the on-shell scattering amplitude Mi [22]

(Mi)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

e2i�
(l)
i (q⇥i ) � 1

2i
. (18)

If the two equal-mass meson interpolating operator is in the A+

1

irreducible representation of the

cubic group, the energy eigenstates of the system have overlap with the l = 0, 4, 6, . . . angular
momentum states at zero total momentum, making the truncation at lmax = 0 a rather reasonable

approximation in the low-energy limit. When P ⌦= 0, the symmetry group is reduced, and at

low energies the l = 0 will mix with the l = 2 partial wave as well as with higher partial waves

[21]. For two mesons with di⌥erent masses, the symmetry group is even further reduced in the

boosted frame, making the mixing to occur between l = 0 and l = 1 states as well as with higher

angular momentum states [49]. An easy way to see the latter is to note that in contrast with the

case of degenerate masses, the kinematic function cPlm as defined in Eq. (13) is non-vanishing for

odd l when the masses are di⌥erent. As a result even and odd angular momenta can mix in the

quantization condition. This however does not indicate that the spectrum of the system is not

invariant under parity. As long as all interactions between the particles are parity conserving, the

spectrum of the system and its parity transformed counterpart are the same. One should note

that the determinant condition, Eq. (17), guarantees this invariance: any mechanism, for example,

which takes an S-wave scattering state to an intermediate P-wave two-body state, would take it

back to the final S-wave scattering state, and the system ends up in the same parity state.6

Nevertheless, let us assume that the contributions from higher partial waves to the scatterings

are negligible, so that one can truncate the determinant over the angular momentum at lmax = 0.

Then the familiar quantization condition for the S-wave scattering,

q⇥i cot(⇤
0

i ) = 4⌥cP
00

(q⇥2i ), (19)

is recovered. It is convenient to introduce a pseudo-phase defined by

q⇥i cot(↵
P
i ) ⇤ �4⌥cP

00

(q⇥2i ) (20)

to rewrite the quantization condition as

cot(⇤i) = � cot(↵P
i ) ⌥ ⇤i + ↵P

i = m⌥, (21)

where m is an integer. In this form, the quantization condition is manifestly real.

For the N=2 case, the expression for the scattering amplitude in Eq. (18) is modified, as it

now depends on the mixing angle ⌅̄, and the scattering matrix is no longer diagonal, while still

symmetric. By labeling the o⌥-diagonal terms as MI,II , and using the definition of the S-matrix

for the coupled-channel system, Eq. (1), the scattering matrix elements can be written as

(Mi,i)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

cos(2⌅̄)e2i�
(l1)
i (q⇥i ) � 1

2i
, (22)

(MI,II)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥
p
nInIIq⇥Iq

⇥
II

sin(2⌅̄)
ei(�

(l1)
I (q⇥I )+�

(l1)
II (q⇥II))

2
, (23)

6 Note that under parity Zd
lm ⇥ (�1)l Zd

lm. Note also that under the interchange of particles Zd
lm ⇥ (�1)l Zd

lm, so
that for degenerate masses the cPlm functions vanish for odd l. This is expected since the parity transformation in
the CM frame is equivalent to the interchange of particles. However, as is explained above for the case of parity
transformation, despite the fact that ⇤GV is not symmetric with respect to the particle masses, the quantization
condition is invariant under the interchange of the particles.

Mixing angle between two channels

Channel index I or II

Coupled-channel generalization of luescher’s formula is straightforward. Requires 
upgrading amplitudes and finite-volume functions to matrices in the channel space:



EXERCISE 5

Derive the manifestly real form of a coupled two-channel scattering in the S-wave limit:

10

where the usual relativistic normalization of the states is used in evaluating the S-matrix elements.

From Eq. (17) one obtains

det

✓
1 + ⇤GV

I MI,I ⇤GV
I MI,II

⇤GV
IIMI,II 1 + ⇤GV

IIMII,II

◆
= 0, (24)

where the determinant is not only over the number of channels but also over angular momentum

which is left implicit. In deriving this result we have made no assumption about the relative size

of the scattering matrix elements, but when lmax = 0, we recover the LO result in Eq. (8). For

lmax = 0 one can use the pseudo-phase definition in Eq. (20) to rewrite the quantization condition

in a manifestly real form,

cos 2⌅̄ cos
�
↵P
1

+ ⇤
1

� ↵P
2

� ⇤
2

�
= cos

�
↵P
1

+ ⇤
1

+ ↵P
2

+ ⇤
2

�
, (25)

which is equivalent to the result given in Refs. [24, 25] in the CM frame.7 It is easy to see that

in the ⌅̄ ⌃ 0 limit, one recovers the decoupled quantization conditions for both channels I and II,
Eq. (21).

The extension to a larger number of coupled channels is straightforward. As an example, we

consider the N=3 case. Unitarity as well as time-reversal invariance allow us to parametrize the

S-matrix using three phases shifts {⇤I , ⇤II , ⇤II} and three mixing angles {⌅̄
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where ci = cos(2⌅̄i), si = sin(2⌅̄i). Note that in the limit ⌅
2

= ⌅
3

= 0 the third channel decouples,

and one obtains a block diagonal matrix composed of S
2

corresponding to the I � II coupled

channel, as well as a single element corresponding to the scattering in the uncoupled channel III.
The spectrum of three-coupled channel is obtained from

det

0

@
1 + ⇤GV

I MI,I ⇤GV
I MI,II ⇤GV

I MI,III

⇤GV
IIMII,I 1 + ⇤GV

IIMII,II ⇤GV
IIMII,III

⇤GV
IIIMIII,I ⇤GV

IIIMIII,II 1 + ⇤GV
IIIMIII,III

1

A = 0, (27)

where the scattering matrix elements can be determined from Eq. (26) using the relationship

between the scattering amplitudes and the S-matrix elements,

(Mi,j)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥
q

ninjq⇥i q
⇥
j

(S(l1)
3

)i,j � ⇤i,j
2i

. (28)

III. TWO-BODY ELECTROWEAK MATRIX ELEMENTS IN A FINITE VOLUME

As discussed in the introduction, electroweak processes in the two-hadron sector of QCD en-

compass a variety of interesting processes, so it is desirable to calculate the electroweak matrix

elements directly from LQCD. One of the very first attempts to develop a formalism for such

processes from a FV Euclidean calculation is due to Lellouch and Lüscher. In their seminal work

[39], they restricted the analysis to K ⌃ ⌥⌥ decay in the kaon’s rest frame, and showed that the

7 The agreement between Eq. (25) and Eq. (37) of Ref. [24] can be achieved by noting that the pseudo-phase ⌥P
i

as defined in Eq. (20) is equivalent to the negative �i as defined in Eq. (36) of Ref. [24]. On the other hand, the
mixing parameter ⌅ as defined in Eq. (1) is related to the mixing parameter ⇧0 defined in Eq. (14) of Ref. [24]
through ⇧0 = cos 2⌅̄.

Here 1 and 2 indices refer to the two channels and superscript (0) is removed from the S-
wave phase shifts for brevity. The finite-volume phase function       is defined as: 

for i=1,2. This is a generic result: Luescher’s “quantization condition” is a real condition.

9

For a general proof of the reality of quantization condition with any number of coupled channels

see Refs. [37, 38].

For N=1, one reproduces the result first obtained by Rummukainen and Gottlieb [21] and later

confirmed by Kim et al. [22] and Christ et al. [23] for the case of single-channel moving frame

two-particle systems as follows. First note that it is convenient to evaluate the determinant using

the spherical harmonic basis of ⇤GV , Eq. (12), and the on-shell scattering amplitude Mi [22]

(Mi)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

e2i�
(l)
i (q⇥i ) � 1

2i
. (18)

If the two equal-mass meson interpolating operator is in the A+

1

irreducible representation of the

cubic group, the energy eigenstates of the system have overlap with the l = 0, 4, 6, . . . angular
momentum states at zero total momentum, making the truncation at lmax = 0 a rather reasonable

approximation in the low-energy limit. When P ⌦= 0, the symmetry group is reduced, and at

low energies the l = 0 will mix with the l = 2 partial wave as well as with higher partial waves

[21]. For two mesons with di⌥erent masses, the symmetry group is even further reduced in the

boosted frame, making the mixing to occur between l = 0 and l = 1 states as well as with higher

angular momentum states [49]. An easy way to see the latter is to note that in contrast with the

case of degenerate masses, the kinematic function cPlm as defined in Eq. (13) is non-vanishing for

odd l when the masses are di⌥erent. As a result even and odd angular momenta can mix in the

quantization condition. This however does not indicate that the spectrum of the system is not

invariant under parity. As long as all interactions between the particles are parity conserving, the

spectrum of the system and its parity transformed counterpart are the same. One should note

that the determinant condition, Eq. (17), guarantees this invariance: any mechanism, for example,

which takes an S-wave scattering state to an intermediate P-wave two-body state, would take it

back to the final S-wave scattering state, and the system ends up in the same parity state.6

Nevertheless, let us assume that the contributions from higher partial waves to the scatterings

are negligible, so that one can truncate the determinant over the angular momentum at lmax = 0.

Then the familiar quantization condition for the S-wave scattering,

q⇥i cot(⇤
0

i ) = 4⌥cP
00

(q⇥2i ), (19)

is recovered. It is convenient to introduce a pseudo-phase defined by

q⇥i cot(↵
P
i ) ⇤ �4⌥cP

00

(q⇥2i ) (20)

to rewrite the quantization condition as

cot(⇤i) = � cot(↵P
i ) ⌥ ⇤i + ↵P

i = m⌥, (21)

where m is an integer. In this form, the quantization condition is manifestly real.

For the N=2 case, the expression for the scattering amplitude in Eq. (18) is modified, as it

now depends on the mixing angle ⌅̄, and the scattering matrix is no longer diagonal, while still

symmetric. By labeling the o⌥-diagonal terms as MI,II , and using the definition of the S-matrix

for the coupled-channel system, Eq. (1), the scattering matrix elements can be written as

(Mi,i)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

cos(2⌅̄)e2i�
(l1)
i (q⇥i ) � 1

2i
, (22)

(MI,II)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥
p
nInIIq⇥Iq

⇥
II

sin(2⌅̄)
ei(�

(l1)
I (q⇥I )+�

(l1)
II (q⇥II))

2
, (23)

6 Note that under parity Zd
lm ⇥ (�1)l Zd

lm. Note also that under the interchange of particles Zd
lm ⇥ (�1)l Zd

lm, so
that for degenerate masses the cPlm functions vanish for odd l. This is expected since the parity transformation in
the CM frame is equivalent to the interchange of particles. However, as is explained above for the case of parity
transformation, despite the fact that ⇤GV is not symmetric with respect to the particle masses, the quantization
condition is invariant under the interchange of the particles.

�P
i
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FIG. 6. The spectra obtained from various choices of operator basis in the T�

1

lattice irrep. The leftmost column contains
all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†|0i, obtained from the variational solutions. See [28, 29] for
more details.

vant in this energy region, and later show that indeed the
⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �

1

(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
the complex-energy plane, corresponding to a single res-
onance.

In elastic scattering, the Breit-Wigner parameteriza-
tion is commonly used to describe isolated resonances –
in our case, with s = E2

cm, this takes the form

t(s) =
1

⇢(s)

p
s�(s)

m2

R

� s� i
p
s�(s)

, (2)

with the energy dependent width, �(s) = g

2
R

6⇡

k

3

s

, includ-
ing a coupling constant, g

R

, and the threshold behavior
required in P -wave scattering. Attempting to describe
22 levels below 4⇡ threshold, we find the following pa-
rameters,

m
R

= 0.13171 (36) (6) · a�1

t


1 0.04

1

�

g
R

= 5.691 (70) (25)

�2/N
dof

= 24.92

22�2

= 1.25 , (3)

where the first set of errors describes the statistical un-
certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
matrix illustrates the statistical correlation between pa-
rameters, which in this case is seen to be very small. The
corresponding �

1

(Ecm) is plotted in Figure 8.
Modifications to the Breit-Wigner form which tame

the k3 barrier behavior at higher energies can be con-
sidered [22, 41] – fits to 22 levels with these forms yield
barely improved �2 values and values of m

R

and g
R

that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < a

t

Ecm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to m

R

, g
R

values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,

t�1

ij

(s) =
1

(2k
i

)`
K�1

ij

(s)
1

(2k
j

)`
+ I

ij

(s) , (4)

where K
ij

(s) is a real function, and I
ij

(s) is the
Chew-Mandelstam function whose imaginary part above

Example: T1 irrep
energies

Now let’s see an application of the coupled-channel formalism: Hunting resonances using 
lattice QCD in the  P-wave coupled                   channel Wilson et al.(HadSpec), 

Phys.Rev. D92 (2015), 094502
⇡⇡ �KK

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3
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lattice irrep. The leftmost column contains
all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†|0i, obtained from the variational solutions. See [28, 29] for
more details.
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When partial waves above ` = 1 are negligible, then us-
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(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
the complex-energy plane, corresponding to a single res-
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certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
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rameters, which in this case is seen to be very small. The
corresponding �
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and g
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that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < a

t

Ecm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to m
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values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,

t�1

ij

(s) =
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FIG. 7. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift extracted from energy levels plotted in Figures 3 and 4, assuming
F -wave and higher partial-wave amplitudes are negligible in this energy region. Two points whose phase-shift values have
rather large error bars are not shown. Grey dashed vertical line shows the ⇡⇡⇡⇡ threshold.

FIG. 8. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curve shows the Breit-Wigner descrip-
tion whose parameters are given in Eq. 3.

thresholds, Im I
ij

(s) = ��
ij

⇢
i

(s), ensures unitarity, and
whose real part is defined by a dispersive integral that
ensures that t(s) has no pseudothreshold branch point
(at s = 0).

In single-channel ⇡⇡ scattering with ` = 1, the K-
matrix is just a single function, and a convenient form
is

K(s) =
g2

m2 � s
+

NX

n=0

�
n

✓
s

s
0

◆
n

, (5)

with s
0

= 4m2

⇡

. Along with a suitable subtraction in the
dispersive integral for I(s) so that Re I(s = m2) = 0, this
gives a t(s) behavior that is similar to a Breit-Wigner, but
with the polynomial allowing more freedom in the en-
ergy dependence. The 22 energy levels below 4⇡ thresh-

FIG. 9. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curves show the Breit-Wigner fit to
the whole elastic region (grey), a Breit-Wigner with Hippel-
Quigg [41] barrier corrections (orange), and a Breit-Wigner
description of a narrower energy region around the resonance
peak (red).

old have been described by this form for three choices,
N = 0, 1, 2, and without any polynomial term at all –
the results are presented in Table III. There is negli-
gible improvement in the �2/N

dof

adding terms linear
or quadratic in s, and the corresponding parameters are
found to possess an increasingly large degree of correla-
tion. The phase-shifts corresponding to the fits in Ta-
ble III are plotted in Figure 10.
The assumption that ⇡⇡ F -wave scattering plays a

negligible role in determining the spectrum in the elas-
tic region, as was assumed in the previous analysis, can
be tested using the energy levels we have determined.
The irreps [100] B

1

and B
2

have JP = 3� as their

P-wave        phase shift as a function of energy⇡⇡Example: T1 irrep
energies

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502
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FIG. 6. The spectra obtained from various choices of operator basis in the T�

1

lattice irrep. The leftmost column contains
all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†|0i, obtained from the variational solutions. See [28, 29] for
more details.
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⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �
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(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
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where the first set of errors describes the statistical un-
certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
matrix illustrates the statistical correlation between pa-
rameters, which in this case is seen to be very small. The
corresponding �
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(Ecm) is plotted in Figure 8.
Modifications to the Breit-Wigner form which tame

the k3 barrier behavior at higher energies can be con-
sidered [22, 41] – fits to 22 levels with these forms yield
barely improved �2 values and values of m

R

and g
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that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < a

t

Ecm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to m
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values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,
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Fit to a Breit-Wigner form
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is the cm momentum in channel i,
is described in Eq. 7 of Ref. [16] and Eq. 89 of Ref. [7].
This expression was derived in Refs. [11–14], and in the
case of a single open channel, reduces to the conditions
presented earlier in [6] and [7, 8]. In the elastic case,

t(`) = 1

⇢

ei�` sin �
`

, and scattering can be described by a

single real function, the scattering phase-shift, �
`

(Ecm).
For a given t-matrix, the solutions of Eq. 1 provide

the finite volume spectrum, {En}, in each lattice ir-
rep ⇤ with some overall momentum ~P . In the elastic
case, if higher partial-waves have negligibly small am-
plitudes, as one expects at low energies, the equation
can be solved for �

1

(En) for each calculated En. In a
two-channel scattering problem there are three unknown
functions of energy to determine for each partial-wave4

so for a given level En this equation is underconstrained.
If higher partial waves are not negligible, there will be
still further unknowns. Fortunately, we are able to ex-
tract multiple energy levels in many irreps and these can
be simultaneously used to constrain the scattering am-
plitude as a function of energy. By parameterizing the
energy-dependence of the t-matrix, we can minimise a
�2 function describing the di↵erence between the calcu-
lated spectrum and the spectrum given by solutions of
Eq. 1 for the t-matrix parameterization5. This method
was first applied to a coupled-channel situation using lat-
tice QCD energy levels in Ref. [15] and further details of
this method and our implementation may be found in
Ref. [16].

A. Elastic ⇡⇡ scattering

We first study the elastic region, by considering only
those levels extracted below the 4⇡ threshold, which lies
slightly below the KK threshold. We will initially pro-
ceed assuming that only ⇡⇡ scattering in P -wave is rele-

4

three independent parameters are required to describe a unitary,

time-reversal invariant, two-channel t-matrix

5

The explicit form of the �2

is provided in Eq. 9 of ref. [22]
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lattice irrep. The leftmost column contains
all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†|0i, obtained from the variational solutions. See [28, 29] for
more details.
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Example: T1 irrep
energies

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502



Using a range of parametrizations:

10

Type Explicit form N
pars

�2/N
dof

K�matrix

Kij =
gigj
m2

�s
+ �(0)

ij ; gK¯K = 0 5 1.75

Kij =
gigj
m2

�s
+ �(0)

ij ; �⇡⇡,K¯K = 0 5 1.48

Kij =
gigj
m2

�s
+ �(0)

ij ; �K¯K,K¯K = 0 5 1.37

Kij =
gigj
m2

�s
+ �(0)

ij 6 1.37

Kij =
gigj
m2

�s
+ �(1)

ij s 6 1.41

Kij =
gigj
m2

�s
+ �(0)

ij + �(1)

ij s; gK¯K = 0 8 1.52

Kij =
gigj
m2

�s
+ �(0)

ij + �(1)

ij s 9 1.39

K�matrix
with g(s)

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
6 1.34

gi(s) = g(0)i + g(1)i s; �K¯K,K¯K = 0, �⇡⇡,K¯K = 0

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
6 1.33

gi(s) = g(0)i + g(1)i s; �⇡⇡,⇡⇡ = 0, �⇡⇡,K¯K = 0

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
7 1.38

g⇡⇡(s) = g(0)⇡⇡ + g(1)⇡⇡ s, gK¯K(s) = g(0)
K¯K

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
7 1.35

g⇡⇡(s) = g(0)⇡⇡ , gKK(s) = g(0)
K¯K

+ g(1)
K¯K

s

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
8 1.37

gi(s) = g(0)i + g(1)i s

K�matrix
with

Ii(s) = �i⇢i(s)

Kij =
gigj
m2

�s
+ �(0)

ij ; gKK = 0 5 1.57

Kij =
gigj
m2

�s
+ �(0)

ij ; �⇡⇡,K¯K = 0 5 1.40

Kij =
gigj
m2

�s
+ �(0)

ij ; �K¯K,K¯K = 0 5 1.58

Kij =
gigj
m2

�s
+ �(0)

ij 6 1.45

TABLE IV. Coupled-channel K-matrix parameterizations.
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FIG. 12. As Figure 3 with the addition of orange points with
errorbars showing the spectrum corresponding to the param-
eterization in Eq. 7.
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III. RESONANCE INTERPRETATION

Although we constrain partial-wave t-matrices only for
real values of energy, either from experimental scatter-
ing, or in this case from finite-volume spectra, the am-
plitudes may be considered to be functions of a complex
value of s = E2

cm. That the singularity structure of t(s)
might be important is already apparent if we consider the
elastic unitarity condition, Im t(s) = ⇢(s) |t(s)|2, where
⇢(s) = 2kcm(s)/

p
s has a square root branch cut begin-

ning at the kinematic threshold. It follows that t(s) also
has this branch cut and remains single-valued only if we
consider two Riemann sheets, one where Im kcm is posi-
tive, the “physical” sheet, named because physical scat-
tering corresponds to energies s + i✏ on this sheet, and
one where Im kcm is negative, the “unphysical” sheet. As
more two-body channels open, a greater multiplicity of
sheets arises, corresponding to the increased number of
channel momenta.

The rapid phase and amplitude variation that we as-
sociate with a narrow resonance can be caused by a pole

at complex values of s = s
0

=
�
m� i 1

2

�
�
2

on unphysical
sheets6. We may consider our parameterized t-matrices,
looking for poles at complex values of s, of the form
t
ij

(s) ⇠ cicj

s0�s

where we factorize the residue of the pole
into couplings to each channel, i.

We find that in every case we considered capable of
describing the finite-volume spectrum, both in single-
channel and coupled-channels, there is a statistically
well-determined pole near a

t

p
s
0

=
�
0.1306� i

2

0.015
�
.

Parameterizations that do not contain the freedom for a
resonance pole to occur were not capable of successfully
describing the finite volume spectra. Figure 14 illustrates
the position of the found pole, with the lower portion of
the diagram showing a zoomed region in which the de-
termined pole is shown for a range of di↵erent parame-
terizations. A best estimate for the pole position, whose
uncertainties allow for the spread over parameterizations
is

a
t

p
s
0

=

✓
0.13055(36)� i

2
0.0150(14)

◆
.

The corresponding coupling to the ⇡⇡ channel also shows
very little variation under parameterizations with a good
estimate being a

t

c
⇡⇡

= 0.049(3) e�i⇡ 0.06(1). The cou-
pling to KK, which only arises in coupled-channel anal-
ysis is not well determined, having a large statistical un-
certainty. Along with the observation that the elastic
data can be very well described without invoking any
KK amplitude, we conclude that we have not reliably
constrained c

KK

. This is to be expected as the e↵ect
of the KK amplitude on the spectrum in finite-volume

6

a conjugate pole must also be present at s⇤
0

, but this pole is

usually much further from the region of physical scattering.

decays exponentially as we go lower in energy below the
KK threshold.
If we follow the procedure used in previous calcula-

tions, making use of the ⌦ baryon mass determined on
these lattice configurations, to set a physical scale we find
a
t

= atm⌦

m

phys
⌦

, where a
t

m
⌦

is determined using lattice QCD

computation and mphys

⌦

= 1672.5MeV is the experimen-
tal mass. Using 16 distillation vectors on this lattice we
have determined a

t

m
⌦

= 0.2789(16), which leads to an
approximate pion mass of m

⇡

= 236 MeV.
With this scale setting, the resonance pole is located

at
p
s
0

=
⇥
783(2)� i

2

90(8)
⇤
MeV. The scale-set Breit-

Wigner mass and width of Eq. 3 are m
BW

= 790(2)MeV,
�
BW

= 87(2)MeV, and a plot of the corresponding
phase-shift with the scale-set energy is presented in Fig-
ure 15.
An earlier calculation by the Hadron Spectrum Col-

laboration considered elastic ⇡⇡ scattering using lattice
configurations with the same quark and gluon action, but
with a larger value of the u, d quark mass, such that
the pion had a mass of 391MeV [22]. We compare the
Breit-Wigner parameters in this study with those deter-
mined for m

⇡

= 391MeV in Table III7. The correspond-
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FIG. 14. Resonance pole position on first unphysical sheet.
Zoomed region shows the pole found for a variety of pa-
rameterizations: various descriptions of the elastic amplitude
(red), various K-matrix descriptions of the coupled-channel
t-matrix, using the Chew-Mandelstam phase-space (orange),
and using the simple phase-space (blue).
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The results presented in [22] su↵er from a small error in the

computation of the o↵-diagonal data covariance, which we fix

here, leading to a very small shift (at the level of 1�) in the

quoted Breit-Wigner parameters with respect to that reference.

Pole position: All three scattering parameters:

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502



SUMMARY OF LECTURE I

— Hybrid Monte Carlo to 
sample gauge configurations
— Determinant of a high-
dimensional matrix required

— Quark contractions
— Inverting a high-dimensional 
matrix required (to get the quark 
propagators)

— Assess stat. and sys. uncertainties 
(take the continuum and infinite-
volume limits)
— Connect to physical observables

GENERATE A 
SAMPLE OF 

VACUUM 
CONFIGURATIONS

COMPUTE 
EUCLIDEAN 

CORRELATION 
FUNCTIONS

ANALYZE 
CORRELATION 
FUNCTIONS: 

NUMERICS AND 
ANALYTICAL WORK

Lattice QCD workflow

LECTURE II: STRUCTURE QUANTITIES FROM LATTICE QCD…



LECTUTE II: 
NUCLEON STRUCTURE FROM LATTICE QCD



If there’s time, we will also discuss at least two methods to obtain structure functions such as 
PDFs from lattice QCD:

Moments of structure functions through 
matrix elements of local operators.

Quasi-PDFs from matrix elements in 
the large-momentum frame

Let’s enumerate some of the methods that give access to structure quantities in general:

Background-field 
methods

For e.g., EM moments and 
polarizabilities, charge 
radius, form factors and 
transition amplitudes.

Three(four)-point 
functions

For e.g., form factors, 
moments of structure 
functions, Compton 
amplitude, transition 

amplitudes

Feynman-Hellmann 
inspired methods

Similar to background 
fields. For e.g., axial charge, 
form factors, EM moments, 

transition amplitudes
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4.2. Three-Point Functions and Matrix Elements 29

where C is the charge-conjugation matrix, defined by the relation

C“µC≠1 = ≠“T
µ . (4.46)

These are contracted with the Dirac projector

�unpol © 1
2(I + “4) , (4.47)

which projects definite positive parity. One may show using the transformation
properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.

The two-point function of the proton is given by

Cp(�unpol; xÕ, x) © [�unpol]–—

e
[‰p(xÕ)]–[ Â‰p(x)]—

f
, (4.48)

which after considering all possible fully Wick contracted combinations becomes
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where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ

x

Õ
�3xÕ Cp(xÕ, x) large �tÃ e≠m

N

�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 
function:

Create the state

Annihilate the state
Insert the 
operator

Chambers, http://inspirehep.net/
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where C is the charge-conjugation matrix, defined by the relation
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properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.
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where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ
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N

�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 
function:
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have

C‰OÂ‰(xÕ, y, x) =
ÿ

X,k
Y,l

⁄ �3k

(2fi)3
�3l
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2EY(l) eik·(xÕ≠y)eil·(y≠x)

È�|‰(0)|X(k)Í ÈX(k)|O(0)|Y(l)Í ÈY(l)| Â‰(0)|�Í . (4.53)

We define the Fourier-projected three-point function as

G‰OÂ‰(pÕ, p; tÕ, ·, t) ©
ÿ

x

Õ,y

�3xÕ �3y e≠ipÕ·(xÕ≠y)e≠ip·(y≠x)C‰OÂ‰(xÕ, y, x) , (4.54)

where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have

G‰OÂ‰(pÕ, p; tÕ, ·, t) =
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2EY(p)
È�|‰(0)|X(pÕ)Í ÈX(pÕ)|O(0)|Y(p)Í ÈY(p)| Â‰(0)|�Í . (4.55)

This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have

G‰OÂ‰(pÕ, p; tÕ, ·, t) large tÕ≠·,·≠t≠æ e≠E
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(pÕ)(tÕ≠·)

2EX
0

(pÕ)
e≠E

X

0

(p)(·≠t)

2EX
0

(p)
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È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.56)

Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R‰OÂ‰(pÕ, p; tÕ, ·, t) large tÕ≠·,·≠tÃ
ÿ

rÕ,r

È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.57)

While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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where C is the charge-conjugation matrix, defined by the relation

C“µC≠1 = ≠“T
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These are contracted with the Dirac projector
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which projects definite positive parity. One may show using the transformation
properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.

The two-point function of the proton is given by
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where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ

x

Õ
�3xÕ Cp(xÕ, x) large �tÃ e≠m

N

�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 
function:
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have
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We define the Fourier-projected three-point function as
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where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have

G‰OÂ‰(pÕ, p; tÕ, ·, t) =
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This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have
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Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R‰OÂ‰(pÕ, p; tÕ, ·, t) large tÕ≠·,·≠tÃ
ÿ
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È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.57)

While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have
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where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have
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This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have
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Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity
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While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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where C is the charge-conjugation matrix, defined by the relation

C“µC≠1 = ≠“T
µ . (4.46)

These are contracted with the Dirac projector
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2(I + “4) , (4.47)

which projects definite positive parity. One may show using the transformation
properties of the fermion fields in Eqs. (4.23) and (4.24) that this projector achieves
the correct parity transformation for the interpolators of Eq. (4.44). Unlike in the
meson case, the forwards and backwards-propagating state of a baryon correlation
function are not in general symmetric or anti-symmetric. After projection to definite
parity, the forwards and backwards-propagating states are parity partners, and hence
it is standard to merely fit to the plateau region of the forwards propagating state,
and ignore the other half of the correlator.

The two-point function of the proton is given by
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where no all-to-all propagators are involved. This is a general property for baryon two-
point functions, where the creation and annihilation operators are always constructed
from adjoint fermion and fermion fields respectively. We can construct the Fourier-
projected two-point function,

Gp(p = 0; �t) =
ÿ

x

Õ
�3xÕ Cp(xÕ, x) large �tÃ e≠m

N

�t , (4.50)

which is shown in Fig. 4.4, as calculated on an N = 342 subset of Ensemble 1,
with mfi = 470 MeV. In this case we only show early times where we observe the
forwards-propagating state, and see the expected exponential decay of Eq. (4.50).
Fig. 4.5 shows the corresponding e�ective mass. We see the expected exponential
decay of the correlator, and the plateau in the e�ective mass at large times.

From an exponential fit to the plateau region, we extract the nucleon mass

amN = 0.4540(66) =∆ mN = 1211(38) MeV . (4.51)

This is consistent with the value calculated on the full ensemble, mN = 1246(36) MeV.

4.2 Three-Point Functions and Matrix Elements
Aside from hadron energies, hadronic matrix elements are some of the most commonly
calculated quantities in lattice QCD. These are accessed through the Euclidean three-
point function, defined as

CÂ‰O‰(xÕ, y, x) © È‰(xÕ)O(y) Â‰(x)Í . (4.52)A three-point (3pt) 
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have
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We define the Fourier-projected three-point function as
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where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have
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This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have
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Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity
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While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function
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Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
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We define the Fourier-projected three-point function as
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where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have
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While plateau identification in the two-point function calculation is relatively un-
ambiguous, it is possible to observe false plateaux in ratios of two and three-point
functions, in cases where the source-current and current-sink separation are insu�-
ciently large. This can lead to significant systematic shifts in the values determined
for observables [93]. There are several alternative approaches to three-point function

Taking a proper ratio 
to 2pt functions

4.2. Three-Point Functions and Matrix Elements 31

Here Â‰ and ‰ are again interpolators coupling to QCD eigenstates, and O is some
local current operator, e.g. a quark bilinear such as Â“µ“5Â. Inserting two complete
sets of states between the operators, and translating the operators to the spacetime
origin through Section 5.2, we have

C‰OÂ‰(xÕ, y, x) =
ÿ

X,k
Y,l

⁄ �3k

(2fi)3
�3l

(2fi)3
e≠E

X

(k)(tÕ≠·)

2EX(k)
e≠E

Y

(l)(·≠t)

2EY(l) eik·(xÕ≠y)eil·(y≠x)

È�|‰(0)|X(k)Í ÈX(k)|O(0)|Y(l)Í ÈY(l)| Â‰(0)|�Í . (4.53)

We define the Fourier-projected three-point function as

G‰OÂ‰(pÕ, p; tÕ, ·, t) ©
ÿ

x

Õ,y

�3xÕ �3y e≠ipÕ·(xÕ≠y)e≠ip·(y≠x)C‰OÂ‰(xÕ, y, x) , (4.54)

where the sum can be taken over any two of the spatial variables. This expression
projects momentum pÕ and p at the sink and source respectively, or equivalently,
momentum p at the source and an insertion of momentum q = pÕ ≠ p through the
current. Using the decomposition of the three-point function in Eq. (4.53), we have

G‰OÂ‰(pÕ, p; tÕ, ·, t) =
ÿ

X,Y

e≠E
X

(pÕ)(tÕ≠·)

2EX(pÕ)
e≠E

Y

(p)(·≠t)

2EY(p)
È�|‰(0)|X(pÕ)Í ÈX(pÕ)|O(0)|Y(p)Í ÈY(p)| Â‰(0)|�Í . (4.55)

This expression forms the basis of hadronic matrix element calculations in lattice
QCD. It includes the matrix elements of the operator O for all states coupling to
the interpolators, and hence includes transitions as well as forward matrix elements.

Analogously to the plateau-isolation method of Section 4.1, we may consider a
simple analysis of the three-point function in the limit of large (tÕ ≠ ·) and (· ≠ t)
(i.e. su�ciently far from the source and sink times). In this regime, it is the lowest
coupling state in the sum of exponentials that dominates, and hence we have

G‰OÂ‰(pÕ, p; tÕ, ·, t) large tÕ≠·,·≠t≠æ e≠E
X

0

(pÕ)(tÕ≠·)

2EX
0

(pÕ)
e≠E

X

0

(p)(·≠t)

2EX
0

(p)
ÿ

rÕ,r

È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.56)

Here rÕ and r again label the possibly degenerate eigenstates. One can then take the
ratio of this quantity with two-point functions formed from Â‰ and ‰ to eliminate the
exponential time-dependence and overlap factors, and form a quantity

R‰OÂ‰(pÕ, p; tÕ, ·, t) large tÕ≠·,·≠tÃ
ÿ

rÕ,r

È�|‰(0)|X0(pÕ, rÕ)Í ÈX0(pÕ, rÕ)|O(0)|X0(p, r)Í ÈX0(p, r)| Â‰(0)|�Í . (4.57)
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EXERCISE 6

If the computational resources do not allow large source, operator and sink time 
separations to be achieved, one should worry about the effect of excited states. One way to 
have more confidence over the extracted ground state to ground state matrix element is to 
perform a multi-exponential fits to the ratio of 3pt to 2pt functions as a function of both the 
source-sink and the source-operator separations. Assume that both the ground state and the 
first excited states contribute significantly to such a ratio. Write down a generic form for 
such a multi-exponential function.

In the above exercise, sum over the time insertions of the operator and write down a new 
form for the ratio of 3pt to 2pt functions, which now is only a function of the source-sink 
time separation. This is referred to as the summation method in literature.

BONUS EXERCISE 4
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ΠR(Γ, q⃗) = ZOΠ(Γ, q⃗) . (2.4)

Finally, the nucleon matrix elements can be parameterized in terms of Generalized Form Fac-
tors (GFFs). As an example we take the axial current insertion which decomposes into two Lorentz
invariant Form Factors (FFs), the axial (GA) and pseudoscalar (Gp):

⟨N(p′,s′)|ψ̄(x)γµ γ5ψ(x)|N(p,s)⟩= i

(

m2
N

EN(p′)EN(p)

)1/2

ūN(p′,s′)

[

GA(q2)γµγ5+
qµγ5

2mN
Gp(q2)

]

uN(p,s) ,

(2.5)
where q2 is the momentum transfer in Minkowski space (hereafter, Q2 =−q2).

In these proceedings I will mostly consider the flavor isovector combination for which the
disconnected contribution cancels out; strictly speaking, this happens for actions with exact isospin
symmetry. Another advantage of the isovector combination is that the renormalization simplifies
considerably.

2.1 Nucleon Axial Charge

One of the fundamental nucleon observables is the axial charge, gA ≡ GA(0), which is deter-
mined from the forward matrix element of the axial current. gqA gives the intrinsic quark spin in the
nucleon. It governs the rate of β -decay and has been measured precisely. In the lattice QCD it can
be determined directly from the evaluation of the matrix element and thus, there is no ambiguity
asocciated to fits. For this reasons, gA is an optimal benchmark quantity for hadron structure com-
putations. It is thus essential for lattice QCD to reproduce its experimental value or if a deviation
is observed to understand its origin.
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Figure 2: Collection of lattice results for gA. In chronological order these correspond to: Nf=2+1 DWF
(RBC/UKQCD [11, 12], RBC/UKQCD [13], χQCD [14]), Nf=2+1 DWF on asqtad sea (LHPC [15]),
Nf=2 TMF (ETMC [16]), Nf=2 Clover (QCDSF/UKQCD [17], CLS/MAINZ [18], QCDSF [19],
RQCD [20, 21]), Nf=1+2 Clover (LHPC [22], CSSM [23]), Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1
HISQ (PNDME [25, 26]), Nf=2 TMF with Clover (ETMC [27]). The asterisk is the experimental value.
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Nucleon spinorAxial-vector current Axial and pseudo scalar form factors
GA(0) = gA

Example: The application of 3pt function method to 
obtain the axial charge/form factors of the nucleon

Constantinou, arXiv:1411.0078 [hep-lat].
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fraction, as well as the nucleon spin, including disconnected contributions. The systematic un-
certainties are investigated and where possible we compare with experimental / phenomenological
data. Recent results on Generalized Form Factors for other baryons and mesons are also presented,
as well as, perspectives and future directions.

2. Nucleon Sector
Although the nucleon is the only stable hadron in the Standard Model, its structure is not fully

understood. Being one of the building-blocks in the universe, the nucleon provides an extremely
valuable laboratory for studying strong dynamics providing important input that can also shed
light in new Physics searches. There have been numerous recent lattice QCD results on nucleon
observables. Here, we discuss selected achievements, as well as, challenges involved in these
computations.

In a nutshell, in the evaluation of nucleon matrix elements in lattice QCD there are two type
of diagrams entering shown in Fig. 1. The disconnected diagram has been neglected in most of the
studies because it is very noisy and expensive to compute. During the last few years a number of
groups are studying various techniques for its computation and first results already appear in the
literature [7 – 10].

q = p p

(x , t)
(x i , ti)(x f , tf )

O Γ

q = p ′ − p

(x , t)
(x i , ti)(x f , tf )

O Γ

Figure 1: Connected (left) and disconnected (right) contributions to the nucleon three-point function.

In the computation of nucleon matrix elements one needs appropriate two- and three-point
correlation functions defined as:

G2pt (⃗q, t f ) = ∑
x⃗ f
e−i⃗x f ·⃗qΓ0βα ⟨Jα (⃗x f , t f )Jβ (0)⟩ , (2.1)

G3pt
O

(Γµ , q⃗, t f ) = ∑
x⃗ f ,⃗x

ei⃗x·⃗q e−i⃗x f ·⃗p
′
Γµβα ⟨Jα (⃗x f , t f )O (⃗x, t)Jβ (0)⟩ . (2.2)

The projectors Γµ are defined as Γ0 ≡ 1
4(1+ γ0), Γk ≡ Γ0 · γ5 · γk . Other Γ-variations can be em-

ployed, in order to compute the quantities of interest. The lattice data are extracted from dimen-
sionless ratio of the two- and three-point correlation functions:

RO(Γ, q⃗, t, t f )=
G3pt

O
(Γ, q⃗, t)

G2pt (⃗0, t f )
×

√

G2pt(−q⃗, t f−t)G2pt (⃗0, t)G2pt (⃗0, t f )
G2pt (⃗0, t f−t)G2pt(−q⃗, t)G2pt(−q⃗, t f )

→
t f−t→∞
t−ti→∞

Π(Γ, q⃗) . (2.3)

The above ratio is considered optimized since it does not contain potentially noisy two-point func-
tions at large separations and because correlations between its different factors reduce the statistical
noise. The most common method to extract the desired matrix element is to look for a plateau with
respect to the current insertion time, t (or, alternatively, the sink time, t f ), which should be located
at a time well separated from the creation and annihilation times in order to ensure single state
dominance. To establish proper connection to experiments we apply renormalization which, for
the quantities discussed in this review, is multiplicative:
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mined from the forward matrix element of the axial current. gqA gives the intrinsic quark spin in the
nucleon. It governs the rate of β -decay and has been measured precisely. In the lattice QCD it can
be determined directly from the evaluation of the matrix element and thus, there is no ambiguity
asocciated to fits. For this reasons, gA is an optimal benchmark quantity for hadron structure com-
putations. It is thus essential for lattice QCD to reproduce its experimental value or if a deviation
is observed to understand its origin.
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Figure 2: Collection of lattice results for gA. In chronological order these correspond to: Nf=2+1 DWF
(RBC/UKQCD [11, 12], RBC/UKQCD [13], χQCD [14]), Nf=2+1 DWF on asqtad sea (LHPC [15]),
Nf=2 TMF (ETMC [16]), Nf=2 Clover (QCDSF/UKQCD [17], CLS/MAINZ [18], QCDSF [19],
RQCD [20, 21]), Nf=1+2 Clover (LHPC [22], CSSM [23]), Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1
HISQ (PNDME [25, 26]), Nf=2 TMF with Clover (ETMC [27]). The asterisk is the experimental value.

4

Nucleon spinorAxial-vector current Axial and pseudo scalar form factors
GA(0) = gA

Connected contribution Disconnected contribution
(vanishes at isospin limit for isovector quantities)      

Example: The application of 3pt function method to 
obtain the axial charge/form factors of the nucleon

Constantinou, arXiv:1411.0078 [hep-lat].



Example: The application of 3pt function method to 
obtain the axial charge/form factors of the nucleon

25

1.1

1.2

1.3

−5 0 5

τ :∞ 6

a15m310

1.1

1.2

1.3

−5 0 5

τ :∞ 7

a15m310

1.1

1.2

1.3

−5 0 5

τ :∞ 5 6 7 8 9

a15m310

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8

a12m310

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 10

a12m310

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8 10 12

a12m310

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8

a12m220S

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 10

a12m220S

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8 10 12 14

a12m220S

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8

a12m220

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 10

a12m220

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8 10 12 14

a12m220

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8

a12m220L

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 10

a12m220L

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8 10 12 14

a12m220L

FIG. 9. Comparison between the 2⇤ and 3⇤ fits to the axial charge gu�d
A data from the a ⇡ 0.15 fm (top row) and a ⇡ 0.12 fm

(bottom 4 rows) ensembles. The results of the fits are summarized in Table XIII along with the number of points tskip skipped.
The first two columns show 2⇤ fits to data versus t at a single value of ⌧ , while the third panel shows the 3⇤ fit using data at
multiple values of ⌧ . The labels give the ensemble ID, and the values of ⌧ used in the fits. The ⌧ ! 1 value is given by the
grey band in each panel.
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FIG. 9. Comparison between the 2⇤ and 3⇤ fits to the axial charge gu�d
A data from the a ⇡ 0.15 fm (top row) and a ⇡ 0.12 fm

(bottom 4 rows) ensembles. The results of the fits are summarized in Table XIII along with the number of points tskip skipped.
The first two columns show 2⇤ fits to data versus t at a single value of ⌧ , while the third panel shows the 3⇤ fit using data at
multiple values of ⌧ . The labels give the ensemble ID, and the values of ⌧ used in the fits. The ⌧ ! 1 value is given by the
grey band in each panel.
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FIG. 2. The 11-point CCFV fit using Eq. (12) to the data for the renormalized isovector charges gu�d
A , gu�d

S , and gu�d
T in the MS

scheme at 2 GeV. The result of the simultaneous extrapolation to the physical point defined by a ! 0, M⇡ ! Mphys

⇡0 = 135 MeV
and M⇡L ! 1 are marked by a red star. The pink error band in each panel is the result of the simultaneous fit but shown as
a function of a single variable. The overlay in the left (middle) panels with the dashed line within the grey band is the fit to
the data versus a (M2

⇡), i.e., neglecting dependence on the other two variables. The symbols used to plot the data are defined
in the left panels.

parts of the flavor diagonal charges for the proton are

gu,connA = 0.895(21) gd,connA = �0.320(12) ,

gu,connT = 0.790(27) gd,connT = �0.198(10) . (14)

Estimates for the neutron are given by the u $ d
interchange.

We again remind the reader that the disconnected
contributions for the flavor diagonal axial charges are
O(15%) and will be discussed elsewhere. The discon-
nected contribution to gu+d

T is small (comparable to the
statistical errors) and Zu�d

T ⇡ Zu+d
T . Thus, the results

for gu,dT and gu+d
T are a good approximation to the total

contribution. The new estimates given here supersede
the values presented in Refs. [1, 2].

VI. ASSESSING ADDITIONAL ERROR DUE
TO CCFV FIT ANSATZ

In this section we reassess the estimation of errors from
various sources and provide an additional systematic un-
certainty in the isovector charges due to using a CCFV
ansatz with only the leading order correction terms. We
first briefly review the systematics that are already ad-
dressed in our analysis leading to the results in Eq. (13):

• Statistical and excited-state contamination
(SESC): Errors from these two sources are jointly
estimated in the 2- and 3⇤ state fits. The 2- and
3⇤ state fits for gu�d

A and gu�d
T give overlapping

results and in most cases the error estimates from
the quoted 3⇤-state fits are larger. For gu�d

S , we
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(SESC): Errors from these two sources are jointly
estimated in the 2- and 3⇤ state fits. The 2- and
3⇤ state fits for gu�d

A and gu�d
T give overlapping

results and in most cases the error estimates from
the quoted 3⇤-state fits are larger. For gu�d

S , we

Extrapolation to continuum, infinite 
volume and physical quark masses

3pt function for a single lattice spacing, 
volume and quark masses

Excited state 
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Compilation of results
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Error From gu�d
A gu�d

S gu�d
T

SESC 0.02 * 0.03 * 0.01 +
Z 0.01 + 0.04 * 0.03 +
a 0.02 + 0.04 * 0.01 +

Chiral 0.01 * 0.01 + 0.02 +
Finite volume 0.01 * 0.01 * 0.01 *

Guesstimate error 0.033 0.066 0.04
Error quoted 0.025 0.080 0.032
Fit ansatz 0.03 0.06 0.01

TABLE IX. Estimates of the error budget for the three isovec-
tor charges due to each of the five systematic e↵ects described
in the text. The symbols * and + indicate the direction in
which a given systematic is observed to drive the central value
obtained from the 11-point fit. The sixth row gives a guessti-
mate of error obtained by combining these five systematics
in quadrature. This guesstimate is consistent with the actual
errors obtained from the 11-point fit and quoted in Eq. 13
and reproduced in the seventh row. The last row gives the
additional systematic error assigned to account for possible
uncertainty due to the using the CCFV fit ansatz with just
the lowest order correction terms as described in the text.

MN �MP Nf {md,mu}QCD

(MeV) Flavors (MeV)

2.58(32) 2+1 md = 4.68(14)(7),mu = 2.16(9)(7) [50]

2.73(44) 2+1+1 md = 5.03(26),mu = 2.36(24) [50]

2.41(27) 2+1 md �mu = 2.41(6)(4)(9) [51]

2.63(27) 2+1+1 md = 4.690(54),mu = 2.118(38) [52]

TABLE X. Results for the mass di↵erence (MN � MP )
QCD

obtained using the CVC relation with our estimate gu�d
S =

1.022(80)(60) and lattice results for the up and down quark
masses from the FLAG review [50] and recent results [51, 52].

Figs. 5, 6 and 7. They show the steady improvement in
results from lattice QCD. In this section we compare our
results with two calculations published after the analy-
sis and the comparison presented in Ref. [3], and that
include data from physical pion mass ensembles. These
are the ETMC [36, 37, 53] and CalLat results [47].

The ETMC results gu�d
A = 1.212(40), gu�d

S = 0.93(33)
and gu�d

T = 1.004(28) [36, 37, 53] were obtained from
a single physical mass ensemble generated with 2-flavors
of maximally twisted mass fermions with a clover term
at a = 0.0938(4) fm, M⇡ = 130.5(4) MeV and M⇡L =
2.98. Assuming that the number of quark flavors and
finite volume corrections do not make a significant di↵er-
ence, one could compare them against our results from
the a09m130W ensemble with similar lattice parame-
ters: gu�d

A = 1.249(21), gu�d
S = 0.952(74) and gu�d

T =
1.011(30). We remind the reader that this comparison is
at best qualitative since estimates from di↵erent lattice
actions are only expected to agree in the continuum limit.

Based on the trends observed in our CCFV fits shown
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FIG. 5. A summary of results for the axial isovec-
tor charge, gu�d

A , for Nf = 2- 2+1- and 2+1+1-
flavors. Note the much finer x-axis scale for the plot
showing experimental results for gu�d

A . The lattice re-
sults (top panel) are from: PNDME’18 (this work);
PNDME’16 [3]; CalLat’18 [47]; LHPC’14 [54]; LHPC’10 [55];
RBC/UKQCD’08 [56]; Lin/Orginos’07 [57]; ETMC’17 [37,
53]; Mainz’17 [58] RQCD’14 [59]; QCDSF/UKQCD’13 [60];
ETMC’15 [61] and RBC’08 [62]. Phenomenological and other
experimental results (middle panel) are from: AWSR’16 [63]
and COMPASS’15 [64]. The results from neutron de-
cay experiments (bottom panel) have been taken from:
Brown’17 [9]; Mund’13 [10]; Mendenhall’12 [8]; Liu’10 [65];
Abele’02 [66]; Mostovoi’01 [67]; Liaud’97 [68]; Yerozolim-
sky’97 [69] and Bopp’86 [70]. The lattice-QCD estimates in
red indicate that estimates of excited-state contamination,
or discretization errors, or chiral extrapolation were not pre-
sented. When available, systematic errors have been added to
statistical ones as outer error bars marked with dashed lines.

in Figs. 2–4, we speculate where one may expect to see a
di↵erence due to the lack of a continuum extrapolation in
the ETMC results. The quantities that exhibit a signifi-
cant slope versus a are gu�d

A and gu�d
S . Again, under the

assumptions stated above, we would expect ETMC val-
ues gu�d

A = 1.212(40) to be larger and gu�d
S = 0.93(33) to

be smaller than our extrapolated values given in Eq. (13).
We find that the scalar charge (ignoring the large error)
fits the expected pattern, but the axial charge does not.
We also point out that the ETMC error estimates are

taken from a single ensemble and a single value of the
source-sink separation using the plateau method. Our re-
sults from the comparable calculation on the a09m130W
ensemble with ⌧ = 14 (see Figs. 10 and 16 and results in
Table XIII), have much smaller errors.
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are the ETMC [36, 37, 53] and CalLat results [47].
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red indicate that estimates of excited-state contamination,
or discretization errors, or chiral extrapolation were not pre-
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in Figs. 2–4, we speculate where one may expect to see a
di↵erence due to the lack of a continuum extrapolation in
the ETMC results. The quantities that exhibit a signifi-
cant slope versus a are gu�d

A and gu�d
S . Again, under the

assumptions stated above, we would expect ETMC val-
ues gu�d

A = 1.212(40) to be larger and gu�d
S = 0.93(33) to

be smaller than our extrapolated values given in Eq. (13).
We find that the scalar charge (ignoring the large error)
fits the expected pattern, but the axial charge does not.
We also point out that the ETMC error estimates are

taken from a single ensemble and a single value of the
source-sink separation using the plateau method. Our re-
sults from the comparable calculation on the a09m130W
ensemble with ⌧ = 14 (see Figs. 10 and 16 and results in
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FIG. 4. Electric (left) and isovector axial (right) form factors of the nucleon vs Q

2 = �q

2. Data
from Ref. [66, 75].

tors for a long time. A representative set of recent work can be found in Refs. [60–74]
Significant improvements have been made to investigate the quark-mass, finite-volume, and
finite-lattice-spacing dependence, and the e↵ects of excited-state contamination in the corre-
lation functions. With these technical and algorithmic advances, lattice QCD can calculate
not only the isovector contribution but also the computationally more demanding isoscalar
and strange-quark contributions, which are needed for neutral-current processes, discussed
below.

Sample lattice-QCD calculations [66, 75] of the nucleon isovector electric and axial form
factors—GE and FA—are shown in Fig. 4. Eight di↵erent 2 + 1 + 1-flavor HISQ ensembles
generated by the MILC collaboration [40] with lattice spacings in the range 0.06–0.12 fm
and pion mass in the range 130–310 MeV are employed. In this calculation, excited-state
contamination is controlled via a three-state fit. The results are in good agreement with the
experimental data for the nucleon electromagnetic form factorGE(q2) On the other hand, the
axial form factor is not as steep as experimental determinations with mA ⇡ 1 GeV [76], yet
is compatible with MiniBooNE’s mA ⇡ 1.35 GeV [55]. Despite the many laudable aspects
of Ref. [66], a full and robust accounting of all systematics involved in these lattice-QCD
calculations has not yet been feasible. Reliable confrontation with precise experimental
data for GE—and, hence, a solid prediction of FA—requires an increase in computational
resources to overcome the technical obstacles to nucleon matrix elements, discussed in Sec. I.

The status of lattice-QCD calculations of gA and r

2
A is shown in Fig. 5. The left plot [77],

for gA, shows that lattice-QCD is at this time much less precise than the results from neutron
� decay.2 Note, however, that bottle and beam experiments measuring the neutron lifetime
yield values of gA that di↵er by 3�. For example, a 2015 bottle measurement leads to
gA = 1.2749(11) [80], while a 2013 beam measurement leads to gA = 1.2684(20) [81]. It
would be interesting to know the answer from lattice QCD. The precision required depends
on whether the (average of several) calculation(s) lands between the two neutron-lifetime
values or outside the interval. In the latter case, at least percent-level precision is needed,
which is likely to be achieved with three years (assuming sustained computing support). If

2 The color code here is adapted from the Flavor Lattice Averaging Group [78], as specified in the Appendix

of Ref. [79].
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Quark spin quark orbital 
angular 
momentum

Total gluon 
angular 
momentum

2

pseudoscalar renormalization function determined non-
perturbatively in the MS at 2 GeV [17].

Matrix elements: We use Ji’s sum rule [20], that pro-
vides a gauge invariant decomposition of the nucleon spin
as

JN=
X

q=u,d,s,c···

✓
1

2
�⌃q + Lq

◆
+ Jg,

where 1

2

�⌃q is the contribution from the intrinsic quark
spin, Lq the quark orbital angular momentum and Jg is
the gluon total angular momentum. The quark intrinsic
spin 1

2

�⌃q is obtained from the first Mellin moment of
the polarized parton distribution function (PDF), which
is the nucleon matrix element of the axial-vector opera-
tor. The total quark angular momentum, Jq, can be ex-
tracted by computing the second Mellin moment of the
unpolarized nucleon PDF, which is the nucleon matrix
element of the vector one-derivative operator at zero mo-
mentum transfer. These matrix elements in Euclidean
space are given by

hN(p, s0)|Oµ
A|N(p, s)i=ūN (p, s0)

h
g

q
A�

µ
�

5

i
uN (p, s),

hN(p0, s0)|Oµ⌫
V |N(p, s)i=ūN (p0, s0)⇤q

µ⌫(Q
2)uN (p, s),

⇤µ⌫
q (Q2)=A

q
20

(Q2)�{µ
P

⌫} +B

q
20

(Q2)
�

{µ↵
q↵P

⌫}

2m

+ C

q
20

(Q2)
1

m

Q

{µ
Q

⌫}
, (1)

with Q=p

0�p the momentum transfer and P=(p0+p)/2
the total momentum. The axial-vector operator is
Oµ

A=q̄�µ�5q and the one-derivative vector operator

Oµ⌫
V =q̄�

{µ !
D

⌫}
q, where the curly brackets in OV rep-

resent a symmetrization over pairs of indices and a sub-
traction of the trace. ⇤µ⌫

q is decomposed in terms of
three Lorentz invariant generalized form factors (GFFs)
A

q
20

(Q2), Bq
20

(Q2) and C

q
20

(Q2). A corresponding decom-
position can also be made for the nucleon matrix element
of the gluon operator Oµ⌫

g . The quark (gluon) total an-

gular momentum can be written as Jq(g)=
1

2

[Aq(g)
20

(0) +

B

q(g)
20

(0)], while the average momentum fraction is deter-

mined from A

q(g)
20

(0)=hxiq(g) and g

q
A⌘�⌃q where g

q
A is

the nucleon axial charge. While A

q
20

(0) can be extracted
directly at Q

2=0, B

q
20

(0) needs to be extrapolated to
Q

2=0 using the values obtained at finite Q

2.
We compute the gluon momentum fraction by consid-

ering the Q

2=0 nucleon matrix element of the operator
Oµ⌫

g =2Tr[Gµ�G⌫�], taking the combination Og⌘O44

�
1

3

Ojj ,

hN(p, s0)|Og|N(p, s)i=
✓
� 4E2

N �
2

3
~p

2

◆
hxig, (2)

where we further take the nucleon momentum ~p=0.

In lattice QCD the aforementioned nucleon matrix ele-
ments are extracted from a ratio, R

�

(ts, tins), of a three-
point function G

3pt

�

(ts, tins) constructed with an opera-
tor � coupled to a quark divided by the nucleon two-
point functions G

2pt(ts), where t

ins

is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For su�ciently large time separations
ts � t

ins

and t

ins

the ratio R

�

(ts, tins), yields the appro-
priate nucleon matrix element. To determine B

20

(Q2)
we need the nucleon matrix element for Q

2 6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B

20

(Q2) is then carried out to obtain B

20

(0). We em-
ploy three approaches in order to check that the time
separations ts � t

ins

and t

ins

are su�ciently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of t

ins

for which the ratio R

�

(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing R

�

(ts, tins) over
t

ins

, to yield
P

tins
R

�

(ts, tins)=R

sum

�

(ts)=C + tsM +

O �
e

�(E1�E0)ts)
�
+ · · · , where C is a constant. The ma-

trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying t

ins

for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
R
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(ts, tins), receive two contributions, one when the op-
erator couples to the valence up and down quarks (so-
called connected) and when it couples to sea quarks and
gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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fraction, as well as the nucleon spin, including disconnected contributions. The systematic un-
certainties are investigated and where possible we compare with experimental / phenomenological
data. Recent results on Generalized Form Factors for other baryons and mesons are also presented,
as well as, perspectives and future directions.

2. Nucleon Sector
Although the nucleon is the only stable hadron in the Standard Model, its structure is not fully

understood. Being one of the building-blocks in the universe, the nucleon provides an extremely
valuable laboratory for studying strong dynamics providing important input that can also shed
light in new Physics searches. There have been numerous recent lattice QCD results on nucleon
observables. Here, we discuss selected achievements, as well as, challenges involved in these
computations.

In a nutshell, in the evaluation of nucleon matrix elements in lattice QCD there are two type
of diagrams entering shown in Fig. 1. The disconnected diagram has been neglected in most of the
studies because it is very noisy and expensive to compute. During the last few years a number of
groups are studying various techniques for its computation and first results already appear in the
literature [7 – 10].
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Figure 1: Connected (left) and disconnected (right) contributions to the nucleon three-point function.

In the computation of nucleon matrix elements one needs appropriate two- and three-point
correlation functions defined as:

G2pt (⃗q, t f ) = ∑
x⃗ f
e−i⃗x f ·⃗qΓ0βα ⟨Jα (⃗x f , t f )Jβ (0)⟩ , (2.1)
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O

(Γµ , q⃗, t f ) = ∑
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ei⃗x·⃗q e−i⃗x f ·⃗p
′
Γµβα ⟨Jα (⃗x f , t f )O (⃗x, t)Jβ (0)⟩ . (2.2)

The projectors Γµ are defined as Γ0 ≡ 1
4(1+ γ0), Γk ≡ Γ0 · γ5 · γk . Other Γ-variations can be em-

ployed, in order to compute the quantities of interest. The lattice data are extracted from dimen-
sionless ratio of the two- and three-point correlation functions:

RO(Γ, q⃗, t, t f )=
G3pt

O
(Γ, q⃗, t)
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×
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G2pt (⃗0, t f−t)G2pt(−q⃗, t)G2pt(−q⃗, t f )

→
t f−t→∞
t−ti→∞

Π(Γ, q⃗) . (2.3)

The above ratio is considered optimized since it does not contain potentially noisy two-point func-
tions at large separations and because correlations between its different factors reduce the statistical
noise. The most common method to extract the desired matrix element is to look for a plateau with
respect to the current insertion time, t (or, alternatively, the sink time, t f ), which should be located
at a time well separated from the creation and annihilation times in order to ensure single state
dominance. To establish proper connection to experiments we apply renormalization which, for
the quantities discussed in this review, is multiplicative:
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pseudoscalar renormalization function determined non-
perturbatively in the MS at 2 GeV [17].

Matrix elements: We use Ji’s sum rule [20], that pro-
vides a gauge invariant decomposition of the nucleon spin
as

JN=
X

q=u,d,s,c···
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+ Jg,

where 1

2

�⌃q is the contribution from the intrinsic quark
spin, Lq the quark orbital angular momentum and Jg is
the gluon total angular momentum. The quark intrinsic
spin 1

2

�⌃q is obtained from the first Mellin moment of
the polarized parton distribution function (PDF), which
is the nucleon matrix element of the axial-vector opera-
tor. The total quark angular momentum, Jq, can be ex-
tracted by computing the second Mellin moment of the
unpolarized nucleon PDF, which is the nucleon matrix
element of the vector one-derivative operator at zero mo-
mentum transfer. These matrix elements in Euclidean
space are given by

hN(p, s0)|Oµ
A|N(p, s)i=ūN (p, s0)

h
g

q
A�

µ
�

5

i
uN (p, s),

hN(p0, s0)|Oµ⌫
V |N(p, s)i=ūN (p0, s0)⇤q
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with Q=p

0�p the momentum transfer and P=(p0+p)/2
the total momentum. The axial-vector operator is
Oµ

A=q̄�µ�5q and the one-derivative vector operator

Oµ⌫
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{µ !
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⌫}
q, where the curly brackets in OV rep-

resent a symmetrization over pairs of indices and a sub-
traction of the trace. ⇤µ⌫

q is decomposed in terms of
three Lorentz invariant generalized form factors (GFFs)
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q
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(Q2), Bq
20

(Q2) and C

q
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(Q2). A corresponding decom-
position can also be made for the nucleon matrix element
of the gluon operator Oµ⌫

g . The quark (gluon) total an-

gular momentum can be written as Jq(g)=
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the nucleon axial charge. While A
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directly at Q
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(0) needs to be extrapolated to
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2=0 using the values obtained at finite Q
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We compute the gluon momentum fraction by consid-

ering the Q
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where we further take the nucleon momentum ~p=0.

In lattice QCD the aforementioned nucleon matrix ele-
ments are extracted from a ratio, R

�

(ts, tins), of a three-
point function G

3pt

�

(ts, tins) constructed with an opera-
tor � coupled to a quark divided by the nucleon two-
point functions G

2pt(ts), where t

ins

is the time slice of
the operator insertion relative to the time slice where
a state with the quantum numbers of the nucleon is
created (source). For su�ciently large time separations
ts � t

ins

and t

ins

the ratio R

�

(ts, tins), yields the appro-
priate nucleon matrix element. To determine B

20

(Q2)
we need the nucleon matrix element for Q

2 6= 0, which
can be extracted by defining an equivalent ratio as de-
scribed in detail in Refs. [21–23]. An extrapolation of
B

20

(Q2) is then carried out to obtain B

20

(0). We em-
ploy three approaches in order to check that the time
separations ts � t

ins

and t

ins

are su�ciently large to sup-
press higher energy states with the same quantum num-
bers with the nucleon. These are: i) Plateau method.
Identify the range of t

ins

for which the ratio R

�

(ts, tins)
becomes time-independent and perform a constant fit;
ii) Summation method. Summing R
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(ts, tins) over
t

ins

, to yield
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+ · · · , where C is a constant. The ma-

trix elementM is then obtained from the slope of a linear
fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying t

ins

for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
R

�

(ts, tins), receive two contributions, one when the op-
erator couples to the valence up and down quarks (so-
called connected) and when it couples to sea quarks and
gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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h
g

q
A�

µ
�

5

i
uN (p, s),

hN(p0, s0)|Oµ⌫
V |N(p, s)i=ūN (p0, s0)⇤q
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2 6= 0, which
can be extracted by defining an equivalent ratio as de-
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(Q2) is then carried out to obtain B
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fit with respect to ts; iii) Two-state fit method. We per-
form a simultaneous fit to the three- and two-point func-
tion varying t
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for several values of ts include the first
excited state in the fit function. If excited states are sup-
pressed, the plateau method should yield consistent val-
ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
these values are compatible with the results extracted
from the two-state fit and the summation method. We
take the di↵erence between the plateau and two-state fit
values as a systematic error due to residual excited states.
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gluons (disconnected). The connected contributions are
computed by employing sequential inversion through the
sink [24]. Disconnected diagrams are computationally
very demanding, due to the fact that they involve a
closed quark loop and thus a trace over the quark prop-
agator. A feasible alternative is to employ stochastic
techniques [25] to obtain an estimate of the all-to-all
propagator needed for the evaluation of the closed quark
loop. For the up and down quarks, we utilize exact defla-
tion [26, 27], by computing the Nev lowest eigenmodes of
the Dirac matrix to precondition the conjugate gradient
(CG) solver. Taking Nev=500 yields an improvement of
about twenty times, compared to the standard conjugate
gradient method. We also exploit the properties of the
twisted mass action to improve our computation using
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ues when increasing ts within a su�ciently large ts-range.
We require that we observe convergence of the values ex-
tracted from the plateau method and additionally that
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values as a systematic error due to residual excited states.

The three-point functions for the axial-vector and
vector one-derivative operators entering the ratio
R

�

(ts, tins), receive two contributions, one when the op-
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In Fig. 1 we show the result of the three analyses car-
ried out to extract the disconnected contribution to the
isoscalar axial charge gu+d

A and quark momentum fraction
hxiu+d. Taking the value at ts=14a=1.3 fm is consistent
with the result from the two-state fit and summation
method, for both quantities. We take the plateau value
at ts=14a as our final result and assign as systematic
error due to excited states the di↵erence between this
value and the mean value determined from the two-state
fit. The same analysis is performed for the strange and
charm disconnected contributions. The analysis for the
valence quark contributions at lower statistics was pre-
sented in Ref. [40] and it is followed also here.

Results: In Fig. 2 we present our results on the up,
down and strange quark contributions to the nucleon ax-
ial charge that yield the quark intrinsic spin contributions
to the nucleon spin. Since we are using a single ensemble
we cannot directly assess finite volume and lattice spac-
ings e↵ects. However, previous studies carried out us-
ing Nf=2 and Nf=2+1+1 twisted mass fermion (TMF)
ensembles at heavier than physical pion masses for the
connected contributions allow us to assess cut-o↵ and
volume e↵ects [21, 41]. In Fig. 2 we include TMF results
for Nf=2 ensembles at m⇡⇠465 MeV one with lattice
spacing a=0.089 fm and one with a=0.07 fm with similar
spatial lattice length L, as well as, at m⇡=260 MeV, one
with a=0.089 fm and another with a=0.056 fm and sim-
ilar L. At both pion masses the results are in complete
agreement as we vary the lattice spacing from 0.089 fm
to 0.056 fm pointing to cut-o↵ e↵ects smaller than our
statistical errors. For assessing finite volume e↵ects we
compare two Nf=2 ensembles both with a=0.089 fm and
m⇡⇠300 MeV, but one with m⇡L=3.3 and the other
with m⇡L=4.3. The values are completely compatible
showing that volume e↵ects are also within our statisti-
cal errors. To assess possible strange quenching e↵ects
we compare in Fig. 2 results for the connected contribu-
tions using Nf=2 and Nf=2+1+1 TMF ensembles both
at m⇡⇠375 MeV and find very good agreement [51]. The
latter is a high statistics analysis yielding very small er-
rors. We note, however, that the limited accuracy of the
Nf=2 result would still allow a quenching e↵ect of the or-
der of its statistical error and only an accurate calculation
usingNf=2+1+1 simulations at the physical point would
be able to resolve this completely. In Fig. 2, we also
compare recent lattice QCD results on the strange in-
trinsic spin, 1

2

�⌃s, at heavier than physical pion masses
and find agreement among lattice QCD results, indicat-
ing that lattice artifacts are within the current statistical
errors. We note, in particular, that all lattice QCD re-
sults yield a non-zero and negative strange quark intrinsic
spin contribution 1

2

�⌃s. We also compute the charm ax-
ial charge and momentum fraction, at the physical point,
and find that both are consistent with zero.

To determine the total quark angular momentum Jq,
we need, beyond A

q
20

(0), the generalized form factor
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FIG. 2: The up (upper), down (center) and strange (lower)
quark intrinsic spin contributions to the nucleon spin versus
the pion mass. Open symbols show results with only con-
nected contributions while filled symbols denote both con-
nected and disconnected contributions using the same ensem-
ble as the one for the connected only. Red diamonds are the
results of this work. Circles are Nf=2 results, and squares are
Nf=2+1+1 [30, 31, 41] by ETMC. We compare with lattice
QCD results from other O(a)-improved actions from Refs.[42]
(filled magenta triangle) by QCDSF, [43] (light blue cross)
and [44] by CSSM/QCDSF (yellow filled right triangle). We
also show results using a hybrid action from PNDME [45]
(open blue triangles). Experiment is denoted by the black
asterisks [46, 47].

B

q
20

(0), which is extracted from the nucleon matrix el-
ement of the vector one-derivative operator for Q

2 6= 0
as described in Ref. [21]. For the isovector case, we
find B

u�d
20

(0)=0.313(19), and for the isoscalar connected

contribution B

u+d,conn.
20

(0)=0.012(20). We observe that
the latter is consistent with zero, as is the disconnected
contribution B

u+d,disc.
20

(Q2=0.074 GeV2). Similarly, the
strange and charm B

s,c
20

(Q2) are zero, which implies
Js,c=

1

2

hxis,c. In what follows we will also take the gluon
B

g
20

(0) to be zero and thus Jg=
1

2

hxig.
Our final values for the quark total and angular mo-

mentum contributions are given in Table II. The value
of hxiu�d=0.194(9)(11) is on the upper bound as com-
pared to the recent phenomenological value extracted in
Ref. [7]. Determinations of hxiu�d within lattice QCD
using simulations with larger than physical pion masses
have yielded larger values, an e↵ect that is partly un-
derstood to be due to contribution of excited states to
the ground state matrix element [48]. We note that our
value is in agreement with that determined by RQCD us-
ing Nf=2 clover fermions at pion mass of 151 MeV [49]
and that lattice QCD results on hxiu�d and Ju�d for en-
sembles with larger than physical pion masses including
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TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
(L) and total (J) momentum contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

ours are in overall agreement [41]. Results within lattice
QCD for the individual quark hxiq and Jq contributions
are scarce. The current computation is the first one using
dynamical light quarks with physical masses. A recent
quenched calculation yielded values of hxiu,d consistent
with ours.

In Fig. 3 we show schematically the various contri-
butions to the spin and momentum fraction. Using a
di↵erent approach to ours, the gluon helicity was re-
cently computed within lattice QCD and found to be
0.251(47)(16) [8]. Although we instead compute the
gluon total angular momentum and the two approaches
have di↵erent systematic uncertainties, we both find non-
negligible gluon contributions to the proton spin.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calculation of
the quark and gluon contributions to the proton spin,
directly at the physical point.

Having a single ensemble, we can only assess lat-
tice systematic e↵ects due to the quenching of the
strange quark, the finite volume and the lattice spac-
ing indirectly from other twisted mass ensembles. A
direct evaluation of these systematic errors is cur-
rently not possible and will be carried out in the fu-
ture. Individual components are computed for the up,

down, strange and charm quarks, including both con-
nected (valence) and disconnected (sea) quark contri-
butions. Our final numbers are collected in Table II.
The quark intrinsic spin from connected and discon-
nected contributions is 1

2

�⌃u+d+s=0.299(12)(3)|
conn. �

0.098(12)(4)|
disc.=0.201(17)(5), while the total quark

angular momentum is Ju+d+s=0.255(12)(3)|
conn. +

0.153(60)(47)|
disc.=0.408(61)(48). Our result for the

intrinsic quark spin contribution agrees with the up-
per bound set by a recent phenomenological analy-
sis of experimental data from COMPASS [50], which
found 0.13 <

1

2

�⌃ < 0.18. Using the spin
sum one would deduce that Jg=

1

2

�Jq=0.092(61)(48),
which is consistent with taking Jg=

1

2

hxig=0.133(11)(14)
via the direct evaluation of the gluon momen-
tum fraction, which suggests that B

g
20

(0) is indeed
small. Furthermore, we find that the momentum
sum is satisfied

P
qhxiq + hxig=0.497(12)(5)|

conn. +
0.307(121)(95)|

disc.+0.267(12)(10)|
gluon

=1.07(12)(10) as
is the spin sum of quarks and gluons giving JN=

P
q Jq+

Jg=0.408(61)(48) + 0.133(11)(14)=0.541(62)(49) resolv-
ing a long-standing puzzle.
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TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
(L) and total (J) momentum contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

ours are in overall agreement [41]. Results within lattice
QCD for the individual quark hxiq and Jq contributions
are scarce. The current computation is the first one using
dynamical light quarks with physical masses. A recent
quenched calculation yielded values of hxiu,d consistent
with ours.

In Fig. 3 we show schematically the various contri-
butions to the spin and momentum fraction. Using a
di↵erent approach to ours, the gluon helicity was re-
cently computed within lattice QCD and found to be
0.251(47)(16) [8]. Although we instead compute the
gluon total angular momentum and the two approaches
have di↵erent systematic uncertainties, we both find non-
negligible gluon contributions to the proton spin.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calculation of
the quark and gluon contributions to the proton spin,
directly at the physical point.

Having a single ensemble, we can only assess lat-
tice systematic e↵ects due to the quenching of the
strange quark, the finite volume and the lattice spac-
ing indirectly from other twisted mass ensembles. A
direct evaluation of these systematic errors is cur-
rently not possible and will be carried out in the fu-
ture. Individual components are computed for the up,

down, strange and charm quarks, including both con-
nected (valence) and disconnected (sea) quark contri-
butions. Our final numbers are collected in Table II.
The quark intrinsic spin from connected and discon-
nected contributions is 1

2

�⌃u+d+s=0.299(12)(3)|
conn. �

0.098(12)(4)|
disc.=0.201(17)(5), while the total quark

angular momentum is Ju+d+s=0.255(12)(3)|
conn. +

0.153(60)(47)|
disc.=0.408(61)(48). Our result for the

intrinsic quark spin contribution agrees with the up-
per bound set by a recent phenomenological analy-
sis of experimental data from COMPASS [50], which
found 0.13 <

1

2

�⌃ < 0.18. Using the spin
sum one would deduce that Jg=

1

2

�Jq=0.092(61)(48),
which is consistent with taking Jg=

1

2

hxig=0.133(11)(14)
via the direct evaluation of the gluon momen-
tum fraction, which suggests that B

g
20

(0) is indeed
small. Furthermore, we find that the momentum
sum is satisfied

P
qhxiq + hxig=0.497(12)(5)|

conn. +
0.307(121)(95)|

disc.+0.267(12)(10)|
gluon

=1.07(12)(10) as
is the spin sum of quarks and gluons giving JN=

P
q Jq+

Jg=0.408(61)(48) + 0.133(11)(14)=0.541(62)(49) resolv-
ing a long-standing puzzle.
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If there’s time, we will also discuss at least two methods to obtain structure functions such as 
PDFs from lattice QCD:

Moments of structure functions through 
matrix elements of local operators.

Quasi-PDFs from matrix elements in 
the large-momentum frame

Let’s enumerate a some of the methods that give access to structure quantities in general:

Background-field 
methods

For e.g., EM moments and 
polarizabilities, charge 
radius, form factors and 
transition amplitudes.

Three(four)-point 
functions

For e.g., form factors, 
moments of structure 
functions, Compton 
amplitude, transition 

amplitudes

Feynman-Hellmann 
inspired methods

Similar to background 
fields. For e.g., axial charge, 
form factors, EM moments, 

transition amplitudes



Background fields are non-dynamical, i.e., 
there will be no pair creation and annihilation 
in vacuum with a classical EM background 
field. This mean the photon zero mode is no 
problem: it is absent in the calculation!

d ~A d ~A

~E

U (QCD) ! U (QCD) ⇥ U (QED)

Modify the links when forming the quark propagators.



Background fields are non-dynamical, i.e., 
there will be no pair creation and annihilation 
in vacuum with a classical EM background 
field. This mean the photon zero mode is no 
problem: it is absent in the calculation!

d ~A d ~A

~E

Magnetic moments

Electric and magnetic polarizabilities

See e.g., BEANE et al (NPLQCD), Phys.Rev.Lett. 113 (2014) 25, 252001 and Phys.Rev. D92 (2015) 11, 
114502. for nuclear-physics calculations.

Traditionally they are used for constraining the 
response of hadrons/nuclei to external probes:

U (QCD) ! U (QCD) ⇥ U (QED)

Modify the links when forming the quark propagators.



What does the requirement of periodicity impose on background fields? Let’s consider a 
uniform background field.
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correlation function is defined as

C(x3, ⌧) ⌘ C(x3, ⌧ ;x

(src)
3 , 0)

���
p1=p2=0

=

L�a

sX

x1=0

L�a

sX

x2=0

C(x, ⌧ ;x

(src)
, 0), (16)

where

C(x, ⌧ ;x

(src)
, 0) = h0|O

⇡

(x, ⌧)O†
⇡

(x

(src)
, 0)|0i

E

. (17)

O†
⇡

(O
⇡

) is a lattice interpolating operator that creates (annihilates) any hadronic states with the
quantum numbers of the neutral pion. Subscript E refers to the fact that the expectation value is
evaluated in the background of an electric field, E. The calculation only involves imposing the U(1)

gauge links on the QCD gauge links in the valence sector. x

(src) denotes the location of the source,
which for the upper panel is taken to be x

(src)
= (0, 0, 0). Since for a neutral pion in a uniform

electric field, the finite-volume correlation function with PBC must be symmetric about the point
L

2 + x

(src)
3 , the deviation of the correlation function from symmetricity for nonperiodic gauge-link

choices, including those with the correct link structure but with nonquantized values of electric field,
signals the breakdown of translational invariance in units of L in the x3 direction (this translational
invariance is the analogue of the magnetic translation group discussed in Ref. [47] for a uniform
magnetic field). Such breakdown is most evident in the quantity

M(x3, ⌧) ⌘ log

C(x3, ⌧)

C(x3, ⌧ + 1)

, (18)

as is plotted as a function of x3 � x

(src)
3 for ⌧/a

t

= 18 in the lower panel of Fig. 1. Here, the source is
located x

(src)
= (0, 0, 9a

s

) and therefore the boundary point x3 = L ⌘ 0 corresponds to x3�x

(src)
3 = 3a

s

in these plots. Nonuniformities in M(x3, ⌧) when crossing this boundary (denoted by the dashed line)
are observed in all the cases considered, except for the “Modified links - Quantized” case.3 This is
again a signature of losing translational invariance in units of L in the x3 direction. In Refs. [23, 43],
a similar kinked feature was observed in the correlation function of neutral pions with nonperiodic
implementations of a uniform electric field with the choice of a time-dependent gauge potential.

Example II: A linearly varying electric field in the x3 direction

An external periodic U(1) gauge field

A

µ

=

✓
�E0

2

(x3 � R �
h
x3

L

i
L)

2
,0

◆
, (19)

gives rise to a linearly varying electric field in the x3 direction,

E = E0 ⇥ (x3 � R �
h
x3

L

i
L)

ˆ

x3, (20)

as plotted in Fig. 2. This electric field can be implemented in a lattice QCD calculation through the
following links,

U

(QCD)
µ

(x) ! U

(QCD)
µ

(x) ⇥ e

� i

2 eQ̂E0at(x3�R�
[

x3
L

]

L)2⇥�

µ,0
e

ieQ̂E0L(�R+L

2 )(t�[

t

T

]

T )⇥�

µ,3�
x3,L�a

s

, (21)

3 These nonuniformities may be quantified more precisely by evaluating (the finite-difference approximation to) the
derivative of the functions with respect to x3. As the continuum limit is approached, this (numerical) derivative
diverges near the boundary as a result of nonperiodic implementations.

ZD and Detmold, Phys. Rev. D 92, 074506 (2015).
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gives rise to a linearly varying electric field in the x3 direction,
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as plotted in Fig. 2. This electric field can be implemented in a lattice QCD calculation through the
following links,
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3 These nonuniformities may be quantified more precisely by evaluating (the finite-difference approximation to) the
derivative of the functions with respect to x3. As the continuum limit is approached, this (numerical) derivative
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a similar kinked feature was observed in the correlation function of neutral pions with nonperiodic
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as plotted in Fig. 2. This electric field can be implemented in a lattice QCD calculation through the
following links,
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3 These nonuniformities may be quantified more precisely by evaluating (the finite-difference approximation to) the
derivative of the functions with respect to x3. As the continuum limit is approached, this (numerical) derivative
diverges near the boundary as a result of nonperiodic implementations.

An example: A neutral pion correlation function with 
E = Ex3
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value

A. Antognini
MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1

2) Electric quadrupole moment

3) Form factors
4) Axial background fields

p

p

n
p

e+⌫e

ZD and Detmold, Phys. Rev. D 93, 014509 (2016).ZD and 
Detmold, 
Phys. Rev. 
D 93, 
014509 
(2016).

Detmold, Phys.Rev. D71, 054506 (2005).

Beane at al, Phys.Rev. Lett, 115 132001 (2015).

Various other structure properties of hadrons and nuclei, as well as their transitions, can be 
studied using more complex background fields:



EXERCISE 7

Consider a non-uniform background electric field that is produced by a background gauge 
potential

where                  . Derive the prescription for the modified links as well as a quantization 
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FIG. 3: The scalar potential in Eq. (19) (the left panel) with E0 < 0 and R =

L
2 is a finite harmonic oscillator

potential between 0  x3  L. It produces a linearly varying electric field, Eq. (20), as depicted in the right
panel. The periodic images of the potential and the electric field are also shown in the figures.

in these plots. Nonuniformities in M(x3, ⌧) when crossing this boundary (denoted by the dashed line)
are observed in all the cases considered, except for the “Modified links - Quantized” case.3 This is
again a signature of losing translational invariance in units of L in the x3 direction. In Refs. [24, 44],
a similar kinked feature was observed in the correlation function of neutral pions with nonperiodic
implementations of a uniform electric field with the choice of a time-dependent gauge potential.
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3 .

For the charged particles, correlation functions in uniform background fields are expected to depend
upon a gauge-dependent, non-translationally invariant phase (see e.g., Refs. [15, 38]). This phase must
be factored out before comparing properties of correlation functions under translation with different
implementations of background fields. For nonuniform background fields, the translational invariance
is fully broken in the correlation functions [15], and the dependence on the source location does not
provide much insight into the lack of periodicity of different implementations of background fields.

Example II: A linearly varying electric field in the x3 direction

An external periodic U(1) gauge field

A

µ

=

✓
�E0

2

(x3 � R �
h
x3

L

i
L)

2
,0

◆
, (19)

gives rise to a linearly varying electric field in the x3 direction,

E = E0 ⇥ (x3 � R �
h
x3

L

i
L)

ˆ

x3, (20)

3 These nonuniformities may be quantified more precisely by evaluating (the finite-difference approximation to) the
derivative of the functions with respect to x3. As the continuum limit is approached, this (numerical) derivative
diverges near the boundary as a result of nonperiodic implementations.

0  R < L
E0 x̂3
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C
h;jz(t;B) on the source location x

i

is suppressed. This location averaging e↵ectively projects the
source interpolating operator onto zero momentum and is discussed in detail in Appendix A. In
most cases, two correlation functions are constructed for each nuclear state using the smeared and
point sink interpolators, although for larger nuclei there are more possibilities than are calculated.

C. Magnetic Field Strength Dependence of Energies

In a uniform background magnetic field, the energy eigenvalues of a hadron, h, either a nucleon
or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number j

z

, are of
the form

E
h;jz(B) =

q
M2

h

+ P 2
k + (2n

L

+ 1)|Q
h

eB|� µ

h

·B� 2⇡�(M0)
h

|B|2 � 2⇡�(M2)
h

hT̂
ij

B
i

B
j

i+ . . . ,

(7)

where M
h

is the mass of the hadron, Pk is its momentum parallel to the magnetic field, Q
h

is
its charge in units of e, and n

L

is the quantum number of the Landau level that it occupies.
For a nucleon or nucleus with spin j � 1

2 , there is a contribution from the magnetic moment,
µ

h

, that is linear in the magnetic field. The magnetic polarizability is conveniently decomposed

into multipoles, with �
h

⌘ �
(M0)
h

denoting the scalar polarizability and �
(M2)
h

denoting the tensor

polarizability (the latter contributes for hadrons with j � 1). T̂
ij

is a traceless symmetric tensor
operator which, when written in terms of angular momentum generators, is of the form

T̂
ij

=
1

2


Ĵ
i

Ĵ
j

+ Ĵ
j

Ĵ
i

� 2

3
�
ij

Ĵ2

�
, (8)

and h...i in Eq. (7) denotes its expectation value.4 Note that the polarizabilities defined here
represent the full quadratic response to the field and di↵er from other conventions used in the
literature where Born terms are explicitly removed (for a discussion, see e.g. Ref. [57]). The ellipses
denote contributions that involve three or more powers of the magnetic field. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hE
h

(B)i ⌘ 1

2j + 1

jX

jz=�j

E
h;jz(B) =

q
M2

h

+ P 2
k + (2n

L

+ 1)|Q
h

eB| � 2⇡�(M0)
h

|B|2 + ... ,(9)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy
di↵erence between j

z

= ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy

4 For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB
2i = �

j

2
z � 1

3 j(j + 1)
�
B

2. This

vanishes for both the j = 0 and j = 1
2 states, and takes the values hT̂ijBiBji = 1

3B
2 for j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3B

2 for j = 1, jz = 0 states.
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E

(B) = �2µ |B|+ � |B|3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µ

p

= 1.792(19)(37) NM (nu-
clear magnetons) and µ

n

= �1.138(03)(10) NM, respec-

FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt
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,
where M

latt
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masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
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=
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pion mass can be compared with those of nature, µexpt
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= �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, g
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.

In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ
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A quanta of magnetic field

Nucleon Light nuclei

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm
Beane et al.(NPLQCD), phys.rev.lett.113 (2014) 25, 
252001.
Beane et al.(NPLQCD), phys.rev. D92 (2015) 11, 114502.
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j

Ĵ
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2 states, and takes the values hT̂ijBiBji = 1

3B
2 for j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3B

2 for j = 1, jz = 0 states.
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E

(B) = �2µ |B|+ � |B|3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µ

p

= 1.792(19)(37) NM (nu-
clear magnetons) and µ

n

= �1.138(03)(10) NM, respec-
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N

,
where M

latt
N

is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µ

p

= 3.119(33)(64) nNM and µ

n

=
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p

=
2.792847356(23) NM and µ

expt
n

= �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, g

A

.

In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ

3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d

= µ

p

+µ

n

, µSM
3He = µ

n

(where
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Here’s an application of the background-field technique to obtain magnetic moment and 
polarizabilities of the nucleon:

Landau levels for 
charged particles

Magnetic 
moment

Magnetic polarizabilities

7

C
h;jz(t;B) on the source location x

i

is suppressed. This location averaging e↵ectively projects the
source interpolating operator onto zero momentum and is discussed in detail in Appendix A. In
most cases, two correlation functions are constructed for each nuclear state using the smeared and
point sink interpolators, although for larger nuclei there are more possibilities than are calculated.

C. Magnetic Field Strength Dependence of Energies

In a uniform background magnetic field, the energy eigenvalues of a hadron, h, either a nucleon
or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number j

z

, are of
the form

E
h;jz(B) =

q
M2

h

+ P 2
k + (2n

L

+ 1)|Q
h

eB|� µ

h

·B� 2⇡�(M0)
h

|B|2 � 2⇡�(M2)
h

hT̂
ij

B
i

B
j

i+ . . . ,

(7)

where M
h

is the mass of the hadron, Pk is its momentum parallel to the magnetic field, Q
h

is
its charge in units of e, and n

L

is the quantum number of the Landau level that it occupies.
For a nucleon or nucleus with spin j � 1

2 , there is a contribution from the magnetic moment,
µ

h

, that is linear in the magnetic field. The magnetic polarizability is conveniently decomposed

into multipoles, with �
h

⌘ �
(M0)
h

denoting the scalar polarizability and �
(M2)
h

denoting the tensor

polarizability (the latter contributes for hadrons with j � 1). T̂
ij

is a traceless symmetric tensor
operator which, when written in terms of angular momentum generators, is of the form

T̂
ij

=
1

2


Ĵ
i

Ĵ
j

+ Ĵ
j

Ĵ
i

� 2

3
�
ij

Ĵ2

�
, (8)

and h...i in Eq. (7) denotes its expectation value.4 Note that the polarizabilities defined here
represent the full quadratic response to the field and di↵er from other conventions used in the
literature where Born terms are explicitly removed (for a discussion, see e.g. Ref. [57]). The ellipses
denote contributions that involve three or more powers of the magnetic field. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hE
h

(B)i ⌘ 1

2j + 1

jX

jz=�j

E
h;jz(B) =

q
M2

h

+ P 2
k + (2n

L

+ 1)|Q
h

eB| � 2⇡�(M0)
h

|B|2 + ... ,(9)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy
di↵erence between j

z

= ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy

4 For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB
2i = �

j

2
z � 1

3 j(j + 1)
�
B

2. This

vanishes for both the j = 0 and j = 1
2 states, and takes the values hT̂ijBiBji = 1

3B
2 for j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3B

2 for j = 1, jz = 0 states.
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252001.
Beane et al.(NPLQCD), phys.rev. D92 (2015) 11, 114502.
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E

(B) = �2µ |B|+ � |B|3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µ

p

= 1.792(19)(37) NM (nu-
clear magnetons) and µ

n

= �1.138(03)(10) NM, respec-

p

n

d

3He

3H

-2

0

2

4

μ
[�
�
�
]

FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N

,
where M

latt
N

is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µ

p

= 3.119(33)(64) nNM and µ

n

=
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p

=
2.792847356(23) NM and µ

expt
n

= �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, g

A

.

In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ

3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d

= µ

p

+µ

n

, µSM
3He = µ

n

(where
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the complete cross section. Using the physical scattering parameters and the LQCD calculations
of the correlated short-distance two-nucleon interactions with the magnetic field, a cross section
of s lqcd = 332.4+54.

�4.7 mb is calculated at a neutron incident speed of v = 2200 m/s, which is to be
compared with the experimental value of s exit = 334.2±0.5 mb.

The curvature of the energy of the nucleon or nucleus, after removing the contribution from
the Landau level, provides a determination of its magnetic polarizability. In nature, there is signif-

p n nn d jz=±1 pp 3He 3H 4He
0

2

4

6

8

10
p n nn d jz=±1 pp 3He 3H 4He

β
[1
0-

4
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3 ]

Figure 10: The magnetic polarizabilities of the lightest nuclei at a pion mass of mp ⇠ 805 MeV [2]. The
left panel is in units of the naive D-pole contribution, e2/M2

N(MD �MN), while the right panel is in physical
units.

icant cancellation between the contribution from the D-pole and from chiral loops to the magnetic
polarizability, a cancellation that is expected to diminish as the quark masses are increased [28]
(the D-nucleon mass splitting is relatively insensitive to the light-quark mass). A large isovector
component to the nucleon magnetic polarizability is found, and as mentioned previously, while
the isoscalar polarizabilities are subject to modifications (that are expected to be small) due to the
omission of disconnected diagrams, the isovector contributions are complete at the flavor-SU(3)
symmetry point. It is interesting that, as shown in Fig. 10, the magnetic polarizabilities of the light
nuclei are found to be near that of the proton.

The precision with which we have been able to determine the neutron systems is sufficient to
determine that, while the di-neutron is bound at these heavier quark masses, there are values of the
magnetic field for which it unbinds and the ground state becomes two isolated neutrons. This is a
QCD Feshbach resonance! Figure 11 shows the results of the LQCD calculation at mp = 805 MeV
of the energy difference between the bound di-neutron and two isolated neutrons. Clearly, the
di-neutron is becoming less bound with increasing magnetic field, and is consistent with being
unbound, and hence the two-neutron system having an infinite scattering length, near ñ ⇠ 5.

In summary, Lattice QCD is emerging from an extended research and development phase into
the production phase. Calculations of the binding and properties of light nuclei are now possible,
and I have presented the state-of-the-art of such calculations. The magnetic moments are providing
important insights into the nature of nuclei and their stability with regard to changes in the fun-
damental parameters of nature. The first inelastic nuclear reaction, np ! dg , has been calculated
and when extrapolated to the physical point is found to be in agreement with experiment. The
magnetic polarizabilities of light nuclei have been calculated, and a large isovector component has
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If there’s time, we will also discuss at least two methods to obtain structure functions such as 
PDFs from lattice QCD:

Moments of structure functions through 
matrix elements of local operators.

Quasi-PDFs from matrix elements in 
the large-momentum frame

Let’s enumerate a some of the methods that give access to structure quantities in general:

Background-field 
methods

For e.g., EM moments and 
polarizabilities, charge 
radius, form factors and 
transition amplitudes.

Three(four)-point 
functions

For e.g., form factors, 
moments of structure 
functions, Compton 
amplitude, transition 

amplitudes

Feynman-Hellmann 
inspired methods

Similar to background 
fields. For e.g., axial charge, 
form factors, EM moments, 

transition amplitudes



5.2. Hamiltonian Lattice QCD 41

is diagonal, then the first derivatives of the energy about ⁄0 are given by

dEr
n

d⁄
= W rr

n =
ÈÂr

n|dĤ
d⁄

|Âr
nÍ

ÈÂr
n|Âr

nÍ , r not summed . (5.24)

Otherwise, the derivatives of the eigenstates are not well-defined about ⁄0, and
instead the eigenvectors vr

n of Wn determine new linear combinations of the original
eigenstates,

|„r
nÍ =

ÿ

s

(vr
n)s |Âs

nÍ , (5.25)

which do have well-defined derivatives. The corresponding eigenvalues give the first
derivatives of the energies of the new eigenstates with respect to ⁄. The derivatives
of the energies also be found through Eq. (5.24) in terms of the new eigenstates.

There are a few important things to note about these results. Firstly, the
Hamiltonian is only required to be Hermitian at ⁄0, and hence the result applies to
Hamiltonians such as

Ĥ(⁄) = Ĥ + ⁄V̂ , (5.26)

where the potential V̂ is non-Hermitian. The energy shifts will in general be complex,
however. This will be important in our calculation of disconnected contributions to
quark axial charges in Chapter 6, where we include a non-Hermitian potential in the
QCD Lagrangian to avoid introducing a sign-problem in gauge-field generation.

Secondly, a su�cient condition for Wn to be diagonal is that the degenerate
eigenstates are distinct eigenstates of an operator Ô commuting with the derivative
of the Hamiltonian at ⁄0. That is, if the degenerate eigenstates can be distinguished
by their distinct eigenvalues with an expanded set of operators commuting with dĤ

d⁄
,

then these eigenstates are already ‘good’ eigenstates. This means that for derivatives
of the Hamiltonian commuting with the spin operator, for example, we do not need
to consider the e�ect of spin-degeneracy on the energy shifts.

5.2 Hamiltonian Lattice QCD
We can now translate the results of Section 5.1 to a lattice setting. The Hamiltonian
operator becomes an integrated Hamiltonian density,

Ĥ ≠æ
ÿ

x

�3x H(x) , (5.27)

and the natural particle eigenstates include definite momentum quantum numbers,

|Âr
nÍ ≠æ |X(p, r)Í , (5.28)

En ≠æ EX(p) . (5.29)

Here we are explicitly labelling degenerate states, which we generally ignored in
Chapter 4. These states have relativistic normalisation

ÈX(p, r)|Y(q, s)Í = 2EX(p)(2fi)3”XY”rs”
3(p ≠ q) . (5.30)

Hamiltonian as a 
function of a 
variable parameter Energy eigenvalue

Energy eigenstate
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This application makes use of a parameter already present in the QCD Lagrangian.
The idea of the method implemented in this thesis is to calculate matrix elements of
an extended set of operators by introducing new terms to the Lagrangian. This is
based on the proposal of [124] amongst others, and several variants o the approach
are being pursued [125, 126].

In this chapter we begin in Section 5.1 by deriving the FH relation in quantum
mechanics. We then make a simple extension to lattice QCD through a substitution
argument in Section 5.2, and introduce the FH method. We finish by deriving the
same results through a path integral approach in Section 5.3.

5.1 Hamiltonian Quantum Mechanics
5.1.1 Non-Degenerate Eigenstates
Consider a Hermitian, ⁄-dependent Hamiltonian operator Ĥ with a set of orthogonal
eigenstates |ÂnÍ, such that at some point ⁄0,

Ĥ(⁄0) |Ân(⁄0)Í = En(⁄0) |Ân(⁄0)Í , (5.4)
ÈÂn(⁄0)|Âm(⁄0)Í = ”nm ÈÂn(⁄0)|Ân(⁄0)Í . (5.5)

Here we imply by the labelling of the energies and eigenstates in terms of ⁄ that
these quantities are continuous with respect to ⁄ about ⁄0. Taking the derivative of
Eq. (5.4) with respect to ⁄, we have

1
Ĥ ≠ En

2d |ÂnÍ
d⁄

+
A

dĤ

d⁄
≠ dEn

d⁄

B

|ÂnÍ = 0 , (5.6)

where we have omitted explicit ⁄-dependence for clarity, assuming all quantities are
to be evaluated at ⁄0. Taking the inner product of ÈÂn| with Eq. (5.6), and using
the Hermiticity of the Hamiltonian at ⁄0, we obtain

dEn

d⁄
=

ÈÂn|dĤ
d⁄

|ÂnÍ
ÈÂn|ÂnÍ . (5.7)

This is the familiar form of the FH theorem, and is true about any point ⁄0 where
the Hamiltonian is Hermitian, and the derivative of the wave function in Eq. (5.6) is
well-defined. That is, the wavefunctions are di�erentiable at ⁄0. The denominator
is often omitted by virtue of unit-normalised eigenstates, however we will retain it
for when we later consider the extension to lattice QCD, and the normalisation of
states is relativistic.

Next, let’s consider the derivative of the wavefunction as it appears in Eq. (5.6).
Since the unperturbed eigenstates form a complete set, we can write at ⁄0,

d |ÂnÍ
d⁄

=
ÿ

l
l ”=n

cnl |ÂlÍ . (5.8)

We are free to omit the m = n term, since if d|ÂnÍ
d⁄

satisfies Eq. (5.6), then so does
d|ÂnÍ

d⁄
+ – |ÂnÍ for any –, and we can choose to subtract this term from the expansion.

The perturbed wavefunction will not in general be normalised, however. Substituting

Example: sigma term
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1
School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

2
Department of Physics, The College of William & Mary Williamsburg, VA 23187-8795, USA

3
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

4
NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

5
Thomas Je↵erson National Accelerator Facility Newport News, VA 23606, USA

6
Thomas Je↵erson National Accelerator Facility, Newport News, VA 23606, USA

The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation
functions determined with functional derivatives of the partition function. Using this insight, we
fully develop an improved method for computing matrix elements of external currents utilizing only
two-point correlation functions. Our method applies to matrix elements of any external bilinear
current, including nonzero momentum transfer, flavor-changing, and two or more current insertion
matrix elements. The ability to identify and control all the systematic uncertainties in the analysis
of the correlation functions stems from the unique time dependence of the ground-state matrix
elements and the fact that all excited states and contact terms are Euclidean-time dependent. We
demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-
flowed domain-wall valence quarks on the N

f

= 2 + 1 + 1 MILC highly improved staggered quark
ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively.
We show full control over excited-state systematics with the new method and obtain a value of
g
A

= 1.213(26) with a quark-mass-dependent renormalization coe�cient.

I. INTRODUCTION

The Feynman-Hellmann theorem (FHT) in quantum
mechanics relates matrix elements to variations in the
spectrum [1–4]:

@E
n

@�
= hn|H

�

|ni , (1)

where the Hamiltonian is given by H = H0 + �H
�

. This
simple relation follows straightforwardly at first order in
perturbation theory. The method is applicable beyond
perturbation theory and is often used in lattice QCD
(LQCD) calculations, for example, to compute the scalar
quark matrix elements in the nucleon [5–20]

m
q

@m
N

@m
q

����
mq=m

phy
q

= hN|m
q

q̄q|N i , (2)

for the light (q = {u, d}) and strange (q = s) quarks.
Quantitative knowledge of these matrix elements is nec-
essary for interpreting direct searches for dark matter
which look for the elastic recoil of nuclei. In the sce-
nario that dark matter is heavy and couples through the
electroweak sector, the uncertainty on the strange and
charm nucleon matrix elements is one of the largest un-
certainties in spin-independent constraints upon direct
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dark matter detection [21]. In particular, due to cancel-
lations in the amplitude at the level of quarks and gluons,
there is a particular sensitivity to the scalar charm quark
matrix elements with current uncertainties allowing for
several orders of magnitude variability in the cross sec-
tion; see Fig. 3 of Ref. [21]. A significant reduction over
the current uncertainty in these matrix elements would
be a welcome advancement for the field.

Recently, the FHT has been used to compute other
nucleon matrix elements, such as the spin content of
the nucleon [22, 23]. More recently, a hybrid method
using ideas from background field methods [24–30] and
the FHT has been introduced to compute few-nucleon
electroweak matrix elements [31]. An advantage of the
FHT is that it relates a three-point correlation function
to a change in a two-point correlation function induced
by an external source. Thus, one can take advantage
of the simplified analyses of two-point functions. Tradi-
tional lattice calculations of three-point functions, par-
ticularly those involving nucleons, face a number of chal-
lenging systematics beyond those present for two-point
functions: the stochastic noise of three-point functions is
more severe than the corresponding two-point functions
and also three-point functions have systematic contami-
nation from excited states which is constant in Euclidean
time for fixed source-sink(insertion) separation with iden-
tical initial and final states at zero momentum transfer.
Controlling these systematics requires a significant in-
crease in the numerical cost.

Previous implementations of the FHT and related
methods [22, 23, 31] are also costly, as the calculation
must be performed for several values of the external pa-
rameter, �. In the case of the scalar quark matrix ele-
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is diagonal, then the first derivatives of the energy about ⁄0 are given by

dEr
n

d⁄
= W rr

n =
ÈÂr

n|dĤ
d⁄

|Âr
nÍ

ÈÂr
n|Âr

nÍ , r not summed . (5.24)

Otherwise, the derivatives of the eigenstates are not well-defined about ⁄0, and
instead the eigenvectors vr

n of Wn determine new linear combinations of the original
eigenstates,

|„r
nÍ =

ÿ

s

(vr
n)s |Âs

nÍ , (5.25)

which do have well-defined derivatives. The corresponding eigenvalues give the first
derivatives of the energies of the new eigenstates with respect to ⁄. The derivatives
of the energies also be found through Eq. (5.24) in terms of the new eigenstates.

There are a few important things to note about these results. Firstly, the
Hamiltonian is only required to be Hermitian at ⁄0, and hence the result applies to
Hamiltonians such as

Ĥ(⁄) = Ĥ + ⁄V̂ , (5.26)

where the potential V̂ is non-Hermitian. The energy shifts will in general be complex,
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d⁄
,
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5.2 Hamiltonian Lattice QCD
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Ĥ ≠æ
ÿ

x

�3x H(x) , (5.27)

and the natural particle eigenstates include definite momentum quantum numbers,

|Âr
nÍ ≠æ |X(p, r)Í , (5.28)

En ≠æ EX(p) . (5.29)

Here we are explicitly labelling degenerate states, which we generally ignored in
Chapter 4. These states have relativistic normalisation

ÈX(p, r)|Y(q, s)Í = 2EX(p)(2fi)3”XY”rs”
3(p ≠ q) . (5.30)
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This application makes use of a parameter already present in the QCD Lagrangian.
The idea of the method implemented in this thesis is to calculate matrix elements of
an extended set of operators by introducing new terms to the Lagrangian. This is
based on the proposal of [124] amongst others, and several variants o the approach
are being pursued [125, 126].

In this chapter we begin in Section 5.1 by deriving the FH relation in quantum
mechanics. We then make a simple extension to lattice QCD through a substitution
argument in Section 5.2, and introduce the FH method. We finish by deriving the
same results through a path integral approach in Section 5.3.

5.1 Hamiltonian Quantum Mechanics
5.1.1 Non-Degenerate Eigenstates
Consider a Hermitian, ⁄-dependent Hamiltonian operator Ĥ with a set of orthogonal
eigenstates |ÂnÍ, such that at some point ⁄0,
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Here we imply by the labelling of the energies and eigenstates in terms of ⁄ that
these quantities are continuous with respect to ⁄ about ⁄0. Taking the derivative of
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1
Ĥ ≠ En

2d |ÂnÍ
d⁄

+
A

dĤ

d⁄
≠ dEn

d⁄

B

|ÂnÍ = 0 , (5.6)

where we have omitted explicit ⁄-dependence for clarity, assuming all quantities are
to be evaluated at ⁄0. Taking the inner product of ÈÂn| with Eq. (5.6), and using
the Hermiticity of the Hamiltonian at ⁄0, we obtain

dEn

d⁄
=

ÈÂn|dĤ
d⁄

|ÂnÍ
ÈÂn|ÂnÍ . (5.7)

This is the familiar form of the FH theorem, and is true about any point ⁄0 where
the Hamiltonian is Hermitian, and the derivative of the wave function in Eq. (5.6) is
well-defined. That is, the wavefunctions are di�erentiable at ⁄0. The denominator
is often omitted by virtue of unit-normalised eigenstates, however we will retain it
for when we later consider the extension to lattice QCD, and the normalisation of
states is relativistic.

Next, let’s consider the derivative of the wavefunction as it appears in Eq. (5.6).
Since the unperturbed eigenstates form a complete set, we can write at ⁄0,

d |ÂnÍ
d⁄

=
ÿ

l
l ”=n

cnl |ÂlÍ . (5.8)

We are free to omit the m = n term, since if d|ÂnÍ
d⁄

satisfies Eq. (5.6), then so does
d|ÂnÍ

d⁄
+ – |ÂnÍ for any –, and we can choose to subtract this term from the expansion.

The perturbed wavefunction will not in general be normalised, however. Substituting
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puted such that @
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In this work, we develop an improved implementation
of the FHT and explore its connection with the partition
function of quantum field theory. This new method o↵ers
several advantages including: an improved implementa-
tion, improved stochastic sampling over computations of
equal computing time, a complete discussion of all sys-
tematics, and demonstrably rigorous control over all sys-
tematics associated with analysis of correlation functions.
To demonstrate these claims, we present the formulation
of our method, and perform a sample calculation of the
nucleon axial-vector charge. We then discuss the gener-
alizations and conclude.
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Here, � is a general field operator representing the var-
ious quantum fields of the theory. The state |�i is the
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denote the sourceless vacuum state, partition function,
and two-point correlation function by
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respectively. The operator O†(0) creates a tower of states
with specified quantum numbers out of the vacuum at

time t = 0, which are later destroyed by a conjugate
operator O(t) at time t.
We are interested in the partial derivative of this cor-

relation function with respect to �, at � = 0. This par-
tial derivative can be built from an integral of uniform
functional derivatives over the space-time volume or, if
we wish for more general matrix elements (such as those
involving momentum transfer), an integral over nonuni-
form values of �(x). For now, we will focus on the sim-
plest case of a constant source, �(x) = �.
The partial derivative of interest is related to the ma-

trix elements of the current j(x)
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The first term is proportional to the vacuum matrix ele-
ment of the current and vanishes unless the current has
vacuum quantum numbers. The second term involves an
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where we have defined J (t) =
R
d3xj(t, ~x). The second

term is related to the hadronic matrix of interest in the
time region 0 < t0 < t. In the other time regions, t0 < 0
and t0 > t, the current J creates/destroys a tower of
states that also couple to the states created by O (in the
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Recall that the FHT relates matrix elements to deriva-
tives of the spectrum. In Euclidean calculations, the ef-
fective mass is a derived quantity which asymptotes to
the ground-state energy in the long-time limit,
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In analogy with the FHT, consider the linear response of
the e↵ective mass to the external current
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respectively. The operator O†(0) creates a tower of states
with specified quantum numbers out of the vacuum at

time t = 0, which are later destroyed by a conjugate
operator O(t) at time t.
We are interested in the partial derivative of this cor-

relation function with respect to �, at � = 0. This par-
tial derivative can be built from an integral of uniform
functional derivatives over the space-time volume or, if
we wish for more general matrix elements (such as those
involving momentum transfer), an integral over nonuni-
form values of �(x). For now, we will focus on the sim-
plest case of a constant source, �(x) = �.
The partial derivative of interest is related to the ma-

trix elements of the current j(x)
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The first term is proportional to the vacuum matrix ele-
ment of the current and vanishes unless the current has
vacuum quantum numbers. The second term involves an
integral over matrix elements involving the current and
the creation/annihilation operators:
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where we have defined J (t) =
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d3xj(t, ~x). The second

term is related to the hadronic matrix of interest in the
time region 0 < t0 < t. In the other time regions, t0 < 0
and t0 > t, the current J creates/destroys a tower of
states that also couple to the states created by O (in the
case of quark bilinear operators in QCD, these are just
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Recall that the FHT relates matrix elements to deriva-
tives of the spectrum. In Euclidean calculations, the ef-
fective mass is a derived quantity which asymptotes to
the ground-state energy in the long-time limit,
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In analogy with the FHT, consider the linear response of
the e↵ective mass to the external current
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ments, the QCD action contains the operators of interest,
� = m

q

. The FHT is then simply used by varying the
values of the quark masses and determining the result-
ing variation of the spectrum, a routine step in present
LQCD calculations. In the case of the nucleon spin, the
operator � q̄�

µ

�5q is perturbatively added to the theory
for varying values of � and the resulting spectrum is com-
puted such that @

�

E
n

(�) can be approximated via finite
di↵erence.

In this work, we develop an improved implementation
of the FHT and explore its connection with the partition
function of quantum field theory. This new method o↵ers
several advantages including: an improved implementa-
tion, improved stochastic sampling over computations of
equal computing time, a complete discussion of all sys-
tematics, and demonstrably rigorous control over all sys-
tematics associated with analysis of correlation functions.
To demonstrate these claims, we present the formulation
of our method, and perform a sample calculation of the
nucleon axial-vector charge. We then discuss the gener-
alizations and conclude.

II. THE FEYNMAN-HELLMANN THEOREM
AND A NEW METHOD
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Integrated matrix element

Example: sigma term
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The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation
functions determined with functional derivatives of the partition function. Using this insight, we
fully develop an improved method for computing matrix elements of external currents utilizing only
two-point correlation functions. Our method applies to matrix elements of any external bilinear
current, including nonzero momentum transfer, flavor-changing, and two or more current insertion
matrix elements. The ability to identify and control all the systematic uncertainties in the analysis
of the correlation functions stems from the unique time dependence of the ground-state matrix
elements and the fact that all excited states and contact terms are Euclidean-time dependent. We
demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-
flowed domain-wall valence quarks on the N

f

= 2 + 1 + 1 MILC highly improved staggered quark
ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively.
We show full control over excited-state systematics with the new method and obtain a value of
g
A

= 1.213(26) with a quark-mass-dependent renormalization coe�cient.

I. INTRODUCTION

The Feynman-Hellmann theorem (FHT) in quantum
mechanics relates matrix elements to variations in the
spectrum [1–4]:

@E
n

@�
= hn|H

�

|ni , (1)

where the Hamiltonian is given by H = H0 + �H
�

. This
simple relation follows straightforwardly at first order in
perturbation theory. The method is applicable beyond
perturbation theory and is often used in lattice QCD
(LQCD) calculations, for example, to compute the scalar
quark matrix elements in the nucleon [5–20]

m
q

@m
N

@m
q

����
mq=m

phy
q

= hN|m
q

q̄q|N i , (2)

for the light (q = {u, d}) and strange (q = s) quarks.
Quantitative knowledge of these matrix elements is nec-
essary for interpreting direct searches for dark matter
which look for the elastic recoil of nuclei. In the sce-
nario that dark matter is heavy and couples through the
electroweak sector, the uncertainty on the strange and
charm nucleon matrix elements is one of the largest un-
certainties in spin-independent constraints upon direct
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dark matter detection [21]. In particular, due to cancel-
lations in the amplitude at the level of quarks and gluons,
there is a particular sensitivity to the scalar charm quark
matrix elements with current uncertainties allowing for
several orders of magnitude variability in the cross sec-
tion; see Fig. 3 of Ref. [21]. A significant reduction over
the current uncertainty in these matrix elements would
be a welcome advancement for the field.

Recently, the FHT has been used to compute other
nucleon matrix elements, such as the spin content of
the nucleon [22, 23]. More recently, a hybrid method
using ideas from background field methods [24–30] and
the FHT has been introduced to compute few-nucleon
electroweak matrix elements [31]. An advantage of the
FHT is that it relates a three-point correlation function
to a change in a two-point correlation function induced
by an external source. Thus, one can take advantage
of the simplified analyses of two-point functions. Tradi-
tional lattice calculations of three-point functions, par-
ticularly those involving nucleons, face a number of chal-
lenging systematics beyond those present for two-point
functions: the stochastic noise of three-point functions is
more severe than the corresponding two-point functions
and also three-point functions have systematic contami-
nation from excited states which is constant in Euclidean
time for fixed source-sink(insertion) separation with iden-
tical initial and final states at zero momentum transfer.
Controlling these systematics requires a significant in-
crease in the numerical cost.

Previous implementations of the FHT and related
methods [22, 23, 31] are also costly, as the calculation
must be performed for several values of the external pa-
rameter, �. In the case of the scalar quark matrix ele-
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Example: axial charge of the nucleon and triton!

S

(q)
�q ;�

(x, y) = S

(q)(x, y) + �q

Z
dz S

(q)(x, z)�S(q)(z, y)

Since the operator here is a quark bilinear, a clever to implement this is by modifying 
the quark propagator.

Savage et al (NPLQCD), Phys.Rev.Lett.119,062002(2017).

Buochard et al (CALLATT), Phys.Rev.D96,014504(2017). 
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�q ;�

(x, y) = S

(q)(x, y) + �q

Z
dz S

(q)(x, z)�S(q)(z, y)

Since the operator here is a quark bilinear, a clever to implement this is by modifying 
the quark propagator.

⌧ = 0
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N(y)

N†(0)

N†(0)

⇥

� = t

C(P; t, tO) =
X

p1+p2=P

X

x,y,z

eip1·x+ip2·y⇥

(tO, z)

Savage et al (NPLQCD), Phys.Rev.Lett.119,062002(2017).

Buochard et al (CALLATT), Phys.Rev.D96,014504(2017). 

e.g.,

Example: axial charge of the nucleon and triton!



This gives more generally:

⌧ = 0
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N(y)

N†(0)

N†(0)
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C(P; t, tO) =
X
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(⌧0, z)

(⌧ 00, z
0)(⌧0, z)

time-ordered producT

All possibilities

Double-current MEs are exact for isotensor 
quantities.

All possibilities �
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FIG. 2. The field-strength dependency of sample correlation functions constructed from compound prop-
agators on a given configuration at a given time. The quantities shown are correlation functions with the

zero-field limit subtracted: Ĉ

(h)
�u;�d

(t) = C

(h)
�u;�d

(t) � C

(h)
�u=0;�d=0(t). The polynomial fits (solid curves) are

used to extract the requisite linear and quadratic responses. The points denote the results of numerical
calculations at six values of the field strength.

produce one value for each of the 437 configurations. These averaged values are then resampled
using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
from the comparison of multiple independent analyses in which specific details of the fit procedures
were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-
quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
field-strength dependencies of the correlation functions determined, the remaining task is to isolate
the matrix elements of interest through the time dependences of the combinations of correlation
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produce one value for each of the 437 configurations. These averaged values are then resampled
using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
from the comparison of multiple independent analyses in which specific details of the fit procedures
were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.
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can be performed with additional field strengths, but they will only depart from the expected
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using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
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were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-
quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
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produce one value for each of the 437 configurations. These averaged values are then resampled
using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
from the comparison of multiple independent analyses in which specific details of the fit procedures
were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-
quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
field-strength dependencies of the correlation functions determined, the remaining task is to isolate
the matrix elements of interest through the time dependences of the combinations of correlation

FIG. 2. The field-strength dependence of sample correlation functions constructed from compound prop-
agators on a given configuration at a given time (each configuration and timeslice shows similar poly-
nomial behavior). The quantities shown are correlation functions with the zero-field limit subtracted:

Ĉ

(h)
�u;�d

(t) = C

(h)
�u;�d

(t) � C

(h)
�u=0;�d=0(t). The solid curves show the polynomials used to extract the req-

uisite linear and quadratic responses. The points denote the results of numerical calculations at six values
of the field strength.

Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
ratio Rnn!pp(t) and derived quantities, fits can only be performed over timeslices equal to or larger
than this threshold, even though the ratios may appear to plateau earlier.

The quantity R

+
3S1,1S0

(t), defined in Eq. (26), is shown in the left panel of Fig. 4, along with a fit
to this quantity at late times which is used to determine the value of the pp ! d axial transition
matrix element. In addition, the quantity R

�
3S1,1S0

(t), used to estimate the e↵ects of excited states
contaminating the extraction of the pp ! d transition matrix element, is shown in the right panel
of Fig. 4. The late-time behavior of this quantity saturates to a very small value indicating that the
Nc scaling is borne out (recall from Sec. III B 2 that this quantity vanishes as 1/N

4
c based on a large-

Nc analysis). With this supporting evidence, it is reasonable to conclude that the contaminating
term c� in Eq. (22) is O(1/N

4
c ) ⇠ O(1%) of the dominant term. To account for this systematic

e↵ect, an additional Wigner symmetry-breaking uncertainty of this size is added to the value of
the bare hd|J̃+

3 |ppi matrix element extracted from the late-time asymptote of R

+
3S1,1S0

(t).

Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each bootstrap
ensemble allow for the deuteron-pole term to be determined and subtracted in a correlated manner
(in all cases, the statistically cleaner SP results are used for this subtraction in the results shown

Tiburzi et al (NPLQCD), Phys. Rev. D 96, 054505 (2017).
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with both smeared (SS) and point (SP) sinks and at six di↵erent nonzero values of the background
field-strength parameters �u,d = {±0.05, ±0.1, ±0.2}, as well as at �u,d = 0. These propagators are
used to produce correlation functions for all allowed spin states of single and two-nucleon states,
h 2 {p, n, np(3S1), nn, np(1S0), pp}. Results from di↵erent source locations are blocked on each
configuration before any subsequent analysis.

B. Correlation functions and matrix elements

Both the first and second-order weak matrix elements are required for the determination of M

2⌫
GT .

These are extracted from the response of two-point correlation functions, defined in Eq. (13), to
the background field. The first-order response to the field determines the isovector axial charge
of the nucleon and the nuclear matrix element relevant for pp ! de

+
⌫e, while the second-order

response determines the nn ! pp transition matrix element. Isolating these quantities requires a
detailed analysis of the correlation functions presented in the following subsections.

In what follows, the finite temporal extent of the lattice is ignored. In principle, there are thermal
contributions in which hadronic states propagate between the source and sink by going around the
temporal boundary. The present analysis is confined to source-sink separations t < T/3, so these
thermal e↵ects are suppressed by at least e

�2m⇡T/3 ⇠ 10�7 relative to the dominant contributions.

1. The Proton Axial Charge

As the proton has two valence up quarks and one valence down quark, the correlation function

C

(ps)
�u;�d

(t) (where s denotes the spin) is at most quadratic in �u and linear in �d. Explicitly, for a
spin-up proton, and for nonzero u or d background axial fields, respectively,

C

(p")
�u;�d=0(t) =

X

x

 

h0|�p"(x, t)�†
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where d2 is a higher-order term not needed for the present analysis. Here, and in all subsequent
correlation functions defined in this work, Euclidean spacetime is assumed, and the sum over the
time at which the current is inserted (t1 in the case above) is taken to extend only over the temporal
range between the source and the sink because of the isoscalar nature of the vacuum (exponentially
small contributions that are suppressed by the mass of the lightest state with the quantum number
of the axial-vector current are ignored). Given the summation over t1, this procedure resembles
the “summation method” of Ref. [52]. The above expressions hold configuration-by-configuration
as well as on the ensemble average. As a result, their polynomial structure is exact and the linear
terms can be determined, given calculations of the correlation functions at at least two (three)
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Insert two complete set of states

Isolate the ground 
state to ground state 
matrix element:
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where “
�

�

O(�j
q)

” denotes the piece proportional to �

j
q and n and m are summed over complete sets of

energy eigenstates, with eigenenergies En and Em, respectively.3 Using the Hamiltonian to express
the Euclidean time evolution, and performing the sum over the insertion time as an integral, which
is valid up to discretization corrections, the correlation function in Eq. (15) becomes
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, (16)

where only states with zero spatial momentum and total spin equal to that of the spin-up proton
contribute to the sum in the first two lines, zn is proportional to the overlap of the interpolating
operator onto a given state, i.e., zn =

p
V hn|�p"(0)|0i, and quantities with subscript 0 correspond

to the ground state. Terms involving the time-independent constant c and the leading exponential
contamination are complicated functions of the energy gaps (denoted as �̂), excited-state overlap
factors and transition matrix elements. These terms will not produce linear time dependence in
the bracket in Eq. (16) at late times. Similar expressions can be obtained for the spin-down state
and for the response to the background field with �u = 0 and �d 6= 0. Finally, the bare isovector
axial matrix element can be obtained from the late-time behavior of the di↵erence4

Rp(t) ⌘ Rp(t + a) � Rp(t)
t!1�! hp|J̃3

3 |pi =
gA

2ZA
, (17)

where the ratios Rp(t) are spin-weighted averages,
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, (18)

with ⌘" = �⌘# = �1. The factor ZA in Eq. (17) is the axial-current renormalization factor discussed
in Sec. III D.

2. �I = 1 two-nucleon axial transitions: pp ! de

+
⌫e

The transition correlation functions of the I3 = J3 = 0 two-nucleon system,5 used to access the
pp-fusion matrix element in Ref. [18], are at most cubic in the applied u and d fields. The forms
of these correlation functions are

C
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X
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3
u, (19)
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3 (y, t1)�
†
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(0)|0i + b2�
2
d + b3�

3
d, (20)

3 A nonrelativistic normalization of states is used throughout such that the complete set of states is
P

n |nihn| = 1,
and hn|mi = �m,n, where n is a collective label in the case of multi-particle states.

4 Note that the convention used for the axial current di↵ers from that of Ref. [18] by a factor of 1
2 , following the

definitions after Eq. (1).
5 J used here to represent the total angular momentum is not to be confused with the J used to denote the current.

The desired matrix element

Energy gap to 
excited states
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FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) ef-
fective correlator ratios, Rp(t), defined in Eq. (4), and the
band corresponds to a constant fit to the plateau interval of
both SS and SP.

can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely

Rp(t) =
C

(p)
�u;�d=0(t)

���
O(�u)

� C

(p)
�u=0;�d

(t)
���
O(�d)

C

(p)
�u=0;�d=0(t)

, (3)

where the ratios are spin-weighted averages, and “
��
O(�q)

”

extracts the coe�cient of �q in the preceding expression.
Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t)
t!1�! gA

ZA
, (4)

where corrections to this relation from backwards propa-
gating states originating from the finite extent of the time
direction are suppressed by at least e�2m⇡T/3 ⇠ 10�7 in
the signal region in the present set of calculations. The
e↵ective-gA plots resulting from the correlator di↵erences
are shown in Fig. 1, along with the result of a combined
constant fit to the SS and SP ratios that extracts gA/ZA

from the late-time asymptote. The extracted value is
gA/ZA = 1.298(2)(7), where the first uncertainty is sta-
tistical (determined from a bootstrap analysis) and the
second is systematic (arising from choices of fit ranges
in both the field strengths and temporal separation as
well as from di↵erences in analysis techniques). Includ-
ing the renormalization factor yields an axial charge of
gA = 1.13(2)(7), which is consistent with previous deter-
minations from standard three-point function techniques
at this pion mass [53, 54].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix
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FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.

elements by [1]

(1 + �R)fV
K/G

2
V

t1/2 =
1

hFi2 + fA/fV g

2
AhGTi2 , (5)

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote known Fermi functions [55] and hFi
and hGTi are the F and GT reduced matrix elements,
respectively. The Ademollo-Gatto theorem [56] im-
plies hFi ⇠ 1, modified only by second-order isospin-
breaking and by electromagnetic corrections. However,
h3He|q�k�5⌧+q|3Hi = u�k�5⌧

+
u gAhGTi (assuming van-

ishing electron mass and at vanishing lepton momentum)
is less constrained, and its evaluation is the focus of this
section.

By isospin symmetry, the spin-averaged GT matrix el-
ement for 3H!3He e

�
⌫ is related to the axial charge of

the triton, gA(3H), when the light quarks are degener-
ate and in the absence of electromagnetism. Analogous
to Rp(t) in Eq. (3), the ratio R

3H(t) of correlation func-
tions in background fields is constructed such that, anal-
ogous to Eq. (4), R3H(t) ! gA(3H)/ZA in the large-time
limit. The analysis of these correlation functions is more
complex than for the proton because the triton has four
up quarks and five down quarks and the correlators are
thus quartic and quintic polynomials in �u,d, respectively.
Polynomial fits to the calculated correlation functions are
su�cient to extract the terms linear in �u,d. Results for
R

3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R

3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm
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FIG. 3. Analysis of the a12m220 ensemble with 5000 bootstrap samples. (top left) e↵ective mass (top right) axial e↵ective
derivative (middle left) vector e↵ective derivative are shown with smeared-sink (�) and point-sink(◯) correlation functions,
with corresponding reconstructed fit curves plotted in light- and dark-green respectively. The grey regions encompass data not
included in the analysis. The data is staggered for clarity. (middle right) Stability plot of g̊A�̊gV for ensemble a12m220. The
preferred fit is presented by the solid black symbol, the green band shades the 68% confidence interval and helps guide the
eye. Variations of the fit region of the two-point correlator (�), GA(t) (△), and GV (t) (�) are presented. The corresponding
frequentist p-values are plotted below, with the dashed red line at p = 0.05 discriminating the statistical significance of the
fit results. Uncertainty of the fit variations are determined by 1000 bootstrap samples. (bottom left) Bootstrap histogram of
g̊A�̊gV . Di↵erent shaded regions mark the 68% and 95% confidence interval. The central value of g̊A�̊gV is consistent with the
median at the sub-percent level. (bottom right) Bootstrap histogram for ✏⇡, discussed in Sec. IVE. The shaded regions are
defined similarily to the g̊A�̊gV histogram.
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short name Eq. extrapolation function �

2�dof AIC weight gA(✏phy⇡ )
T✏0⇡a

2 (49a) c

0

+ �a + �L 4.73/5 10.729 0.0447 1.275(17)

T✏0⇡↵Sa
2 (49b) c

0

+ ↵S�a + �L 4.73/5 10.728 0.0447 1.269(14)

T✏2⇡a
0 (49c) c

0

+ c
2

✏

2

⇡ + �L 7.82/5 13.819 0.0095 1.257(14)

T✏2⇡a
2 (49d) c

0

+ c
2

✏

2

⇡ + �a + �L 0.14/4 8.138 0.1632 1.321(26)

T✏2⇡↵Sa
2 (49e) c

0

+ c
2

✏

2

⇡ + ↵S�a + �L 0.13/4 8.131 0.1637 1.311(24)

�✏

0

⇡a
2 (49f) g

0

+ �a + �L 6.47/6 10.467 0.0509 1.272(16)

�✏

0

⇡↵Sa
2 (49g) g

0

+ ↵S�a + �L 6.41/6 10.413 0.0523 1.265(14)

�✏

2

⇡a
0 (49h) g

0

− (g
0

+ 2g3
0

)✏2⇡ ln(✏2⇡) + c2✏2⇡ + �L 9.13/6 13.126 0.0135 1.208(12)

�✏

2

⇡a
2 (49i) g

0

− (g
0

+ 2g3
0

)✏2⇡ ln(✏2⇡) + c2✏2⇡ + �a + �L 1.46/5 7.463 0.2286 1.260(22)

�✏

2

⇡↵Sa
2 (49j) g

0

− (g
0

+ 2g3
0

)✏2⇡ ln(✏2⇡) + c2✏2⇡ + ↵S�a + �L 1.46/5 7.462 0.2289 1.253(20)

weighted avg. 1.278(21)(26)

TABLE VI. Minimization results from the various extrapolation functions and our weighted average as described in the text.
For the average, the first uncertainty arises from the fitting statistical and systematic uncertainties and the second uncertainty
is from the variation due to the model extrapolation. The resulting distribution is displayed in Fig. 5.

FIG. 5. The AIC weighted histogram distribution of our
extrapolation results as described in Sec. VIIA. The overall
magenta distribution is from the weighted bootstrap distri-
butions from each analysis, with the varying shaded regions
representing the 1, 2, and 3+ sigma confidence intervals. The
underlying distributions visible are from the weighted distri-
bution from each analysis.

spread in the resulting distribution is driven by the high-
est weighted fits, Eqs. (49d), (49e), (49i) and (49j) which
show tension at the 1-sigma level. The dominant source
of this discrepancy arises from the pion mass extrapola-
tion, rather than the discretization corrections. To un-
derstand this, first observe that the discrepancy between
the O(a2) and O(↵

S

a2) extrapolations (the subsequent
pairs in Table VI), di↵er by less than one standard de-
viation. Contrast this to the discrepancy between the
final result from Eq. (49d) and (49i), for example, which
di↵er by more than one standard deviation of each re-
sult. At the same time, the coe�cient of the discretiza-
tion LEC in these two fits are consistent with each other
c
2a

[(49d)] = −0.101(40) and c
2a

[(49i)] = −0.084(30), as
displayed in Fig. 6. Further, at the coarsest lattice spac-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a/w0)2
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T✏2⇡a2

gA(✏
(130)
⇡ , a/w0)

gA(✏
(220)
⇡ , a/w0)

gA(✏
(310)
⇡ , a/w0)

m⇡ ⇠ 130 MeV
m⇡ ⇠ 220 MeV
m⇡ ⇠ 310 MeV

gLQCD
A (✏phys⇡ , a/w0)

gPDG
A = 1.2723(23)

FIG. 6. Continuum extrapolation of gA using the two fit
ansätze Eqs. (49d) (top) and (49i) (bottom). The values of gA
in the plots have been adjusted for finite volume corrections.

ing, our value of g
A

is only 6% di↵erent from the con-
tinuum extrapolated value and at the finest, it is 2.1%,
demonstrating a very mild continuum extrapolation.
The resulting pion mass dependence (✏

⇡

) is displayed
in Fig. 7, for the two most weighted fits. From bottom
to top, the solid red, green and blue curves are the re-

Example of two works using the method:
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where “
�

�

O(�j
q)

” denotes the piece proportional to �

j
q and n and m are summed over complete sets of

energy eigenstates, with eigenenergies En and Em, respectively.3 Using the Hamiltonian to express
the Euclidean time evolution, and performing the sum over the insertion time as an integral, which
is valid up to discretization corrections, the correlation function in Eq. (15) becomes

C

(p")
�u;�d=0(t)

�

�

�

O(�u)
=

t
X

t1=0

X

n,m

znz
†
me

�En(t�t1)
e

�Emt1hn|J̃ (u)
3 |mi

=
X

n,m

znz
†
m

e

�Ent � e

�Emt

aEm � aEn
hn|J̃ (u)

3 |mi

t!1�! |z0|2e�E0t
h

c + t hp "|J̃ (u)
3 |p "i + O(e��̂t)

i

, (16)

where only states with zero spatial momentum and total spin equal to that of the spin-up proton
contribute to the sum in the first two lines, zn is proportional to the overlap of the interpolating
operator onto a given state, i.e., zn =

p
V hn|�p"(0)|0i, and quantities with subscript 0 correspond

to the ground state. Terms involving the time-independent constant c and the leading exponential
contamination are complicated functions of the energy gaps (denoted as �̂), excited-state overlap
factors and transition matrix elements. These terms will not produce linear time dependence in
the bracket in Eq. (16) at late times. Similar expressions can be obtained for the spin-down state
and for the response to the background field with �u = 0 and �d 6= 0. Finally, the bare isovector
axial matrix element can be obtained from the late-time behavior of the di↵erence4

Rp(t) ⌘ Rp(t + a) � Rp(t)
t!1�! hp|J̃3

3 |pi =
gA

2ZA
, (17)

where the ratios Rp(t) are spin-weighted averages,

Rp(t) =
X

s={#,"}

⌘s

2

C

(ps)
�u;�d=0(t)

�

�

�

O(�u)
� C

(ps)
�u=0;�d

(t)
�

�

�

O(�d)

C

(ps)
�u=0;�d=0(t)

, (18)

with ⌘" = �⌘# = �1. The factor ZA in Eq. (17) is the axial-current renormalization factor discussed
in Sec. III D.

2. �I = 1 two-nucleon axial transitions: pp ! de

+
⌫e

The transition correlation functions of the I3 = J3 = 0 two-nucleon system,5 used to access the
pp-fusion matrix element in Ref. [18], are at most cubic in the applied u and d fields. The forms
of these correlation functions are

C

(3S1,1S0)
�u;�d=0(t) = �u

t
X

t1=0

X

x,y

h0|�3S1
(x, t)J (u)

3 (y, t1)�
†
1S0

(0)|0i + c2�
2
u + c3�

3
u, (19)

C

(3S1,1S0)
�u=0;�d

(t) = �d

t
X

t1=0

X

x,y

h0|�3S1
(x, t)J (d)

3 (y, t1)�
†
1S0

(0)|0i + b2�
2
d + b3�

3
d, (20)

3 A nonrelativistic normalization of states is used throughout such that the complete set of states is
P

n |nihn| = 1,
and hn|mi = �m,n, where n is a collective label in the case of multi-particle states.

4 Note that the convention used for the axial current di↵ers from that of Ref. [18] by a factor of 1
2 , following the

definitions after Eq. (1).
5 J used here to represent the total angular momentum is not to be confused with the J used to denote the current.

Savage et al (NPLQCD), Phys.Rev.Lett.119,062002(2017).

Chang at al (CALLATT), Nature volume 558, 91–94 (2018).  



If there’s time, we will also discuss at least two methods to obtain structure functions such as 
PDFs from lattice QCD:

Moments of structure functions through 
matrix elements of local operators.

Quasi-PDFs from matrix elements in 
the large-momentum frame

Let’s enumerate a some of the methods that give access to structure quantities in general:

Background-field 
methods

For e.g., EM moments and 
polarizabilities, charge 
radius, form factors and 
transition amplitudes.

Three(four)-point 
functions

For e.g., form factors, 
moments of structure 
functions, Compton 
amplitude, transition 

amplitudes

Feynman-Hellmann 
inspired methods

Similar to background 
fields. For e.g., axial charge, 
form factors, EM moments, 

transition amplitudes

LECTURE III: NUCLEAR STRUCTURE, CHALLENGES AND PROGRESS

We did not discuss many other interesting directions in the field, e.g.,

Moments of structure functions Quasi-PDFs and pseudo-PDFs

Hadron tensor through inverse 
transform methods GPDs, TMDs, gluonic observables, etc.



What about nuclear observables? Let’s see the application of these methods to 
two examples:
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this Letter. Taken as a whole, the results indicate that
nuclear e↵ects in the charges are typically at the <⇠ 2%
level in light nuclei with atomic number A  3. The
exception to this picture is in the scalar channel where
⇠ 10% e↵ects are seen. For each type of interaction,
nuclear modifications scale approximately with the mag-
nitude of the corresponding charge. While strange quark
(equivalently, disconnected) contributions to the nuclear
axial and tensor charges are negligible, strange quarks
make significant contributions to the scalar charges, as
seen for matrix elements of the same operators in the
proton in previous studies [64, 66, 67].

The tensor charges encode the quark EDM contribu-
tions to the EDMs of light nuclei and thus set bounds
on BSM sources of CP violation [10]. Given that the CP
violation in the weak interaction is insu�cient to gen-
erate the observed matter-anti-matter asymmetry of the
universe (assuming exact CPT invariance and baryon–
anti-baryon symmetry of the initial conditions), many
experiments have sought to measure permanent EDMs
as evidence for such sources. Even with a successful
measurement of a permanent EDM, fully disentangling
the sources of CP violation requires multiple observ-
ables [7, 68], and experiments searching for EDMs of light
nuclei are in the planning stages [69–71]. Nuclear e↵ects
in the tensor charge have not been previously observed;
here they are resolved for the first time and found to
be at the few percent level for A  3 at these quark
masses. Similarly, modification of the axial charge in nu-
clei is found to be at the 1–2% level for both the isoscalar
and isovector combinations. The isovector 3He charge is
consistent with values extracted from measurements of
the � decay of tritium [72] and is more precise than our
previous work [46]. Nuclear e↵ects in the axial charges
can test predictions that nuclear modification of the spin-
dependent structure function may be significantly di↵er-
ent than the modification of the spin-independent struc-
ture function [73–75]. The small deviation resolved in
this study implies that quarks in nuclei carry a di↵erent
fraction of the total spin than quarks in free nucleons.

In contrast to the few-percent nuclear e↵ects seen in
the tensor and axial charges, the scalar charges of light
nuclei are suppressed at the 10% level relative to expec-
tations for non-interacting nucleons.2 In phenomenolog-
ical models of nuclei such as the Walecka model [76, 77]
and the quark-meson coupling model [78], a mean scalar
field in which the nucleons move is an important con-
tribution to the saturation of nuclear matter. The large
modifications of the scalar charges found here suggest
that models based on similar mechanisms may approxi-

2 The sign of these nuclear e↵ects is consistent with the deeper
binding of nuclei with increasing quark masses that is found from
direct calculations of the binding energies of light nuclei [45].
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FIG. 3: The calculated values of �R(f)
X for the deuteron (cir-

cles), diproton (diamonds) and 3He (squares) to those in the
proton. The panels display the results obtained for the scalar
(top), axial (middle) and tensor (bottom) interactions, and
the columns within the panels display results for the di↵erent
flavor structures of the currents, as indicated at the top of the
figure. In each case, the statistical and systematic uncertain-
ties have been combined in quadrature. The points exactly
at zero are constrained to vanish by spin and/or isospin sym-
metry, while ratios are not given for the strange quark axial
and tensor charges as both the numerators and denominator
are consistent with zero.

mately describe nuclei even at unphysical values of the
quark masses. A determination of the scalar polar-
izabilities through extensions of the calculations pre-
sented here (using analogues of the methods discussed
in Refs. [48, 49, 79]) would be interesting in this context
[80, 81].

The scalar charges of nuclei are also important in the
interpretation of experimental searches for dark mat-
ter [26–31, 33–39, 41, 42]. These charges quantify the
contribution of explicit chiral symmetry breaking to nu-
clear masses [82, 83], and define nuclear �-terms. The

=
X

, ?

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm EMC effect from QCD?

CHANG et al.(NPLQCD), Phys.Rev.Lett. 120 
(2018) 15, 152002. 
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FIG. 2: The strange-quark (disconnected) scalar matrix el-
ement in 3He. The left (right) panel shows results obtained
using the SS (SP) correlation functions for a range of current
insertion times ⌧ and sink insertion times. The green band
corresponds to the extracted matrix element determined as
described in the text, and the blue (orange) curves and bands
illustrate a correlated two-state fit to the data shown.

ators are renormalized using the flavor-nonsinglet renor-
malization constants ZS = 0.823(16), ZA = 0.879(12),
and ZT = 0.889(16), determined in Ref. [62] from en-
sembles with the same action. For the scalar and ten-
sor operators, results are presented in the MS scheme
at a renormalization scale of µ = 2 GeV. The isovector
charges are free from significant operator mixing, while
the isoscalar matrix elements are only determined up to
mixings with gluon operators, which are not computed.
For the isoscalar scalar and tensor operators, this is a
small e↵ect [63, 64], while for the isoscalar axial charges,
mixing through the strong anomaly is potentially sig-
nificant. Nevertheless, to leading order in the strong
coupling, these renormalization factors, mixing, and the
renormalization-scale–dependence of the scalar and ten-
sor charges, cancel in ratios of nuclear matrix elements
to the matrix elements of the same operators in the pro-
ton [65]. These ratios, and their di↵erences from the
expectations for non-interacting collections of nucleons,
encode nuclear e↵ects and are the primary focus of this
work.

Proton and nuclear charges: The renormalized scalar,
axial and tensor charges of the proton, deuteron, dipro-
ton and 3He are given in Table I (the bare charges are
presented in the supplementary material). Results are
given in the basis of flavor matrices ⇤(3) ⌘ diag(1,�1, 0),
⇤(8) ⌘ diag(1, 1,�2), and the identity, with the charges

labeled as g(3,8,0)X respectively, where X = S,A, T in-
dicates the Dirac structure. Since the calculations are
performed in the limit of SU(3)f flavor symmetry, the

disconnected contributions cancel in both g(3)X and g(8)X .
As the hadrons considered here do not contain strange

p d pp 3He

g(0)S 3.65(7) 7.20(15) 7.22(15) 10.4(2)

g(3)S 0.78(2) - 1.55(4) 0.77(2)

g(8)S 2.94(6) 5.84(12) 5.86(12) 8.55(18)

g(s)S 0.234(8) 0.45(2) 0.45(2) 0.63(3)

g(0)A 0.634(9) 1.26(2) - 0.63(1)

g(3)A 1.14(2) - - 1.13(2)

g(8)A 0.633(9) 1.25(2) - 0.625(9)

g(s)A 0.0002(6) 0.001(1) - 0.003(2)

g(0)T 0.684(12) 1.36(2) - 0.678(12)

g(3)T 1.12(2) - - 1.12(3)

g(8)T 0.684(12) 1.36(2) - 0.676(12)

g(s)T 0.00007(13) 0.0002(2) - 0.0004(4)

TABLE I: The renormalized scalar, axial and tensor charges
of the proton and light nuclei at a renormalization scale of
µ = 2 GeV in the MS scheme, neglecting mixing with gluonic
operators. Statistical uncertainties, the systematic uncertain-
ties arising from choices of fit procedure, and the uncertain-
ties of the renormalization constants, have been combined in
quadrature.

valence quarks, the purely disconnected contributions
(equivalently, the strangeness contributions) are defined

by the di↵erence g(s)X =
⇣
g(0)X � g(8)X

⌘
/3. For conve-

nience, these contributions are given separately in Ta-
ble I.
The ratios of the charges in a nucleus A to those in

the proton, R(f)
X (A) = g(f)X (A)/g(f)X (p), can be compared

with the NSN estimates, defined previously, which are
determined entirely by the baryon number, isospin, and
spin quantum numbers. Most sources of systematic un-
certainty in these calculations, such as lattice spacing
and finite volume e↵ects, cancel to a significant extent
in these ratios [65]. Figure 3 summarizes the di↵erences

�R(f)
X (A) = R(f)

X (A) � R(f)
X (A)NSN, which highlight the

e↵ects of nuclear interactions and correlations on the
charges, and present a coherent picture of medium e↵ects
in light nuclei at m⇡ ⇠ 806 MeV—the central results of
this Letter. Taken as a whole, the results indicate that
nuclear e↵ects in the charges are typically at the <⇠ 2%
level in light nuclei with atomic number A  3. The
exception to this picture is in the scalar channel where
⇠ 10% e↵ects are seen. For each type of interaction,
nuclear modifications scale approximately with the mag-
nitude of the corresponding charge. While strange quark
(equivalently, disconnected) contributions to the nuclear
axial and tensor charges are negligible, strange quarks
make significant contributions to the scalar charges, as
seen for matrix elements of the same operators in the
proton in previous studies [64, 66, 67].
The tensor charges encode the quark EDM contribu-

tions to the EDMs of light nuclei and thus set bounds
on BSM sources of CP violation [10]. Given that the CP

g(f)X (A) = hA|q̄f�Xqf |Ai
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FIG. 5: Ratios of the gluon momentum fraction in the nucleon and light nuclei h = {N , d, nn, 3He} from
left to right, to the central value of this quantity in the nucleon with SP source-sink smearing. The left and
right panels show results for Ensemble A (with m⇡ ⇠ 450 MeV), and Ensemble B (with m⇡ ⇠ 806 MeV),
respectively. The blue circles and orange diamonds denote results obtained using SP and SS source-sink
smearing combinations. The green dashed line is at 1, shown to guide the eye.

FIG. 6: Di↵erences from unity of the ratios of the gluon momentum fraction in the nucleon and light nuclei
h = {N , d, nn, 3He} from left to right, to the nucleon with the same source-sink smearing. The left and
right panels show results for Ensemble A (with m⇡ ⇠ 450 MeV), and Ensemble B (with m⇡ ⇠ 806 MeV),
respectively. The blue circles and orange diamonds denote results obtained using SP and SS source-sink
smearing combinations.

For the deuteron, the unpolarised gluon PDFs in the j

z

= ±1 and j

z

= 0 spin states are

not necessarily the same, and the first Mellin moment of the di↵erence is determined by c

(d)
2 in

Eq. (8). Through appropriate combinations of the averaged ratios R

d

for di↵erent polarisations

and momenta, c(d)2 can in principle be extracted from these calculations. However, at the current

statistical precision, c(d)2 is not resolvable from zero for either ensemble, as shown in Fig. 8. Taking

the size of the uncertainties at t = 7 as a bound on the size of the unrenormalised c

(d)
2 , it is

apparent that c(d)2 /b

(d)
2

<⇠ 1/20. This suppression is a natural consequence of the large N
c

scaling of
I 6= J operators [64–68] and the somewhat unnatural loosely-bound structure of the deuteron [69].
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Eq. (8). Through appropriate combinations of the averaged ratios R

d

for di↵erent polarisations

and momenta, c(d)2 can in principle be extracted from these calculations. However, at the current

statistical precision, c(d)2 is not resolvable from zero for either ensemble, as shown in Fig. 8. Taking

the size of the uncertainties at t = 7 as a bound on the size of the unrenormalised c

(d)
2 , it is

apparent that c(d)2 /b

(d)
2

<⇠ 1/20. This suppression is a natural consequence of the large N
c

scaling of
I 6= J operators [64–68] and the somewhat unnatural loosely-bound structure of the deuteron [69].
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local gluonic operators, namely
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corresponding to the unpolarised, helicity and transversity distributions, respectively. Here G

µ⌫

is the field strength tensor and G̃

µ⌫

= 1
2✏µ⌫↵�G

↵� is its dual,
 !
D = 1

2

⇣�!
D � �D

⌘
, ‘S’ denotes

symmetrisation in the indices µ
i

and subtraction of traces in all indices1, and µ is the factorization
and renormalisation scale. The operators with the fewest derivatives are expected to be the most
well-determined in LQCD calculations and are the focus of this work. For n = 2, the unpolarised
operator corresponds to the traceless part of the energy momentum tensor and its matrix elements
encode the lightcone momentum fraction carried by gluons in the corresponding hadron or nucleus.
The transversity operators require a double helicity flip and their forward limit matrix elements
vanish in targets of spin J < 1 [16], although they have non-zero o↵-forward matrix elements in
targets of any spin [17, 46].

The light nuclei investigated in this study are the deuteron (d), the dinucleon (nn), and 3He,
or equivalently the triton (3H), with spins J = 1, 0, 12 (note that at the unphysically large quark
masses used here, the dinucleon is a bound state [47, 48]). In this work, only the forward limit
matrix elements of the lowest (n=2) spin-independent and transversity operators defined in the
towers of Eqs. (1) and (3) are computed (matrix elements of the n = 2 gluonic helicity operator
of Eq. (2) vanish by operator symmetries). The relevant decompositions of the forward nuclear
matrix elements are as follows:
For spin-zero nuclei,
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For spin-one nuclei [16, 44, 49],
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where the tensor structure multiplying c(h)2 transforms as J = 2 under spatial rotations and vanishes
when averaged over polarisation states. In each case, h labels the state, m

h

is its mass, s denotes
the spin of a J = 1

2 particle, and ✏

µ represents the dimensionless polarisation vector of a J = 1
particle2. As above, ‘S’ denotes symmetrisation in the indices µ

i

and and trace-subtraction in all

1 Here, the normalisation convention of the symmetrisation and trace subtraction is S[AµB⌫ ] =
1
2 (AµB⌫ +A⌫Bµ)�

1
4gµ⌫A↵B

↵.
2 The polarisation vectors are defined by ✏µ(~p,�) =

⇣
~p·~e�
mh

,~e� + ~p·~e�
mh(mh+Eh)~p

⌘
, where � = {+,�, 0}, Eh =

p|~p|2 +m2 is the energy of the state, and ~e± = ⌥ 1p
2
(0, 1,±i), ~e0 = (1, 0, 0).
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i) The complexity of systems grows rapidly with the number of quarks.
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Naively the number of quark 
contractions for a nucleus goes as:

How bad is this?
Example: Consider radium-226 isotope. 
the number of contractions required is ~ 1.4209⇥ 101425

(2Np +Nn)! (Np + 2Nn)!
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in Ref. [11] but can be trivially added). The process of deriving the reduced weights w̃

(a1,a2···anq ),k

h from Eq. 6, can
be automated and we perform it within our symbolic manipulation program. An interesting feature that arises from

the calculation of the reduced weights w̃

(a1,a2···anq ),k

h is that if we restrict ourselves to simple spatial wave-functions
making use of only few spatial points, then the expected exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of the spatial wave-functions used can eliminate this problem, in
principle for arbitrarily large nuclei. However, restriction to a small number of quark degrees of freedom also makes
it impossible to construct certain states (an example is presented in Ref. [8] where the two baryon symmetric flavour
octet was found to be inaccessible).

III. TECHNIQUES FOR MULTI-BARYON CONTRACTIONS

In this section, we consider how the interpolating fields constructed in the previous section can be used to generate
the correlation functions of multi-baryon systems. A general multi-hadron two point function is given by

hN h
1 (t)N̄ h

2 (0)i =
1

Z
Z

DUDqDq̄ N h
1 (t)N̄ h

2 (0) e
�SQCD

, (8)

where SQCD and Z are the QCD action and partition function respectively, and DU , DqDq̄ are the gluon and quark
field integration measures respectively. We have also introduced explicit dependence of the interpolating fields on the
Euclidean time separation, t, and consider a two point function with di↵erent creation and annihilation interpolating
fields with commensurate quantum numbers. For a given choice of the interpolating fields, it is straightforward to
perform the Grassmann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an e�cient calculation of the two point function we need to be mindful of the structure of
the interpolating fields.

One successful class of interpolating fields for two or more hadron systems is one in which a plane wave basis at the
level of the hadronic interpolating fields is used. This amounts to projecting the individual hadrons comprising the
multi-body system to definite momentum states, while preserving the spatial transformation properties of the overall
multi-hadron system [1, 12–18]. In this case, the complexity of the spatial wave-function is such that the number of
terms contributing to Eq. 4 is rather large and hadronic interpolating fields have to be used in order to build the
desired two point function. Constructing these types of interpolating fields both at the source and the sink becomes
computationally expensive because a large number of quark propagators that are required. Nevertheless, this method
has been employed for meson-meson and multi-meson spectroscopy [18–21]. For the case of multi-meson systems,
special contraction methods were required [19, 20, 22]. For multi-baryon systems, the problem is more complex and
will be the subject of further investigations. A further approach is to consider correlation functions in which the quark
creation interpolating fields (source) have simple spatial wave-functions with few degrees of freedom (for example,
restricted to a few spatial locations), while using a plane wave basis for the hadronic interpolating fields at the sink.
Finally, as we shall discuss below, su�ciently simple nuclear interpolating fields exist, where the number of terms
contributing in Eq. 4 is small and factorization into hadrons is not computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 = (x0, 0), can be used to construct baryon building blocks
with quantum numbers b and momentum p, as:

Ba1,a2,a3

b (p, t;x0) =
X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i

✏

i1,i2,i3
S(ci1 , x; a1, x0)S(ci2 , x; a2, x0)S(ci3 , x; a3, x0) , (9)

where S(c,x, t; a, x0, 0) is the quark propagator from x0 to x = (x, t) and ci, ai are the remaining combined spin-
colour-flavour indices. In this notation, the sink indices are kept to the left of the source indices and the spatial
indices are displayed explicitly as they play an essential role in the construction of the block. This baryon block
corresponds to the propagation of an arbitrary three-quark state from the source to the sink where it is annihilated
by the prescribed baryon interpolating field. As discussed above, we have chosen to momentum project these blocks
at the sink to a given momentum p to allow control of the total momentum of multi-hadron systems, although this
is not necessary and other forms of blocks can be envisaged.
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consider them further. The procedure described has been used to perform the contractions needed for the large class
of interpolating fields considered in the study of the spectrum of hyper-nuclei up to A = 5 in Ref. [8, 23].

For large numbers of baryons (A > 8 for protons and neutrons alone), it is necessary to use multiple source locations
because of the Pauli exclusion principle. In this case, the generalised blocks in Eq. 10 can be used with the algorithm
presented above.

C. Scaling

From the above description, it is clear that this algorithm will in general scale as

Mw ·Nw · (3A)!

(3!)A
, (11)

where A is the atomic number and Mw and Nw are the number of terms in the sink and source interpolating fields
respectively. In addition, the fact that the hadron blocks are completely anti-symmetric under all quark exchanges
has been taken into account. If we also take into account that the strong interactions are flavour-blind and consider
only octet baryon building blocks, this reduces to

Mw ·Nw
nu!nd!ns!

2A�n⌃0�n⇤
, (12)

where n⌃0 and n⇤ are the number of ⌃0 and ⇤ baryons in the hadronic interpolating field and the factor in the
denominator arises because all octet baryons have two quarks of the same flavour except from the ⌃0 and ⇤. This
algorithm can be e�ciently implemented and is computationally feasible for small systems, A . 10. As an example
of this method, a 4He two point correlation function can be computed in ⇠ 0.8 seconds per time slice on a single core
of a Dual Core AMD Opteron 285 processor.

IV. MULTI-BARYON CONTRACTIONS WITH DETERMINANTS

For larger atomic number, A & 10, alternative methods are required to perform the contractions in a computationally
feasible manner. It is straightforward to see how this can be done by examining the two point functions above and
making use of Wick’s theorem [24]. The numerator of Eq. 8 before the integration over the gauge fields is performed
is given by
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) , (13)

where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively and
are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the value of the enclosed expression on
a fixed gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of
the qq pairs by elements of the quark propagator.
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where Seff [U ] denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the
Dirac matrix. The above expression of Wick’s theorem, can be written in terms of the determinant of a matrix G

whose matrix elements are given by

G(a0;a)j,i =

⇢
S(a0j ; ai) for a

0
j 2 a

0 and ai 2 a

�a0
j ,ai

otherwise , (15)
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The new scaling is:

Number of terms 
in the source

Number of terms 
in the sink

An example of a more efficient algorithm:



Naively the number of quark 
contractions for a nucleus goes as:

How bad is this?
Example: Consider radium-226 isotope. 
the number of contractions required is ~ 1.4209⇥ 101425

(2Np +Nn)! (Np + 2Nn)!

BARYON BLOCKS

4

in Ref. [11] but can be trivially added). The process of deriving the reduced weights w̃

(a1,a2···anq ),k

h from Eq. 6, can
be automated and we perform it within our symbolic manipulation program. An interesting feature that arises from
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h is that if we restrict ourselves to simple spatial wave-functions
making use of only few spatial points, then the expected exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of the spatial wave-functions used can eliminate this problem, in
principle for arbitrarily large nuclei. However, restriction to a small number of quark degrees of freedom also makes
it impossible to construct certain states (an example is presented in Ref. [8] where the two baryon symmetric flavour
octet was found to be inaccessible).
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where SQCD and Z are the QCD action and partition function respectively, and DU , DqDq̄ are the gluon and quark
field integration measures respectively. We have also introduced explicit dependence of the interpolating fields on the
Euclidean time separation, t, and consider a two point function with di↵erent creation and annihilation interpolating
fields with commensurate quantum numbers. For a given choice of the interpolating fields, it is straightforward to
perform the Grassmann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an e�cient calculation of the two point function we need to be mindful of the structure of
the interpolating fields.
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has been employed for meson-meson and multi-meson spectroscopy [18–21]. For the case of multi-meson systems,
special contraction methods were required [19, 20, 22]. For multi-baryon systems, the problem is more complex and
will be the subject of further investigations. A further approach is to consider correlation functions in which the quark
creation interpolating fields (source) have simple spatial wave-functions with few degrees of freedom (for example,
restricted to a few spatial locations), while using a plane wave basis for the hadronic interpolating fields at the sink.
Finally, as we shall discuss below, su�ciently simple nuclear interpolating fields exist, where the number of terms
contributing in Eq. 4 is small and factorization into hadrons is not computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 = (x0, 0), can be used to construct baryon building blocks
with quantum numbers b and momentum p, as:

Ba1,a2,a3

b (p, t;x0) =
X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i

✏

i1,i2,i3
S(ci1 , x; a1, x0)S(ci2 , x; a2, x0)S(ci3 , x; a3, x0) , (9)

where S(c,x, t; a, x0, 0) is the quark propagator from x0 to x = (x, t) and ci, ai are the remaining combined spin-
colour-flavour indices. In this notation, the sink indices are kept to the left of the source indices and the spatial
indices are displayed explicitly as they play an essential role in the construction of the block. This baryon block
corresponds to the propagation of an arbitrary three-quark state from the source to the sink where it is annihilated
by the prescribed baryon interpolating field. As discussed above, we have chosen to momentum project these blocks
at the sink to a given momentum p to allow control of the total momentum of multi-hadron systems, although this
is not necessary and other forms of blocks can be envisaged.
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consider them further. The procedure described has been used to perform the contractions needed for the large class
of interpolating fields considered in the study of the spectrum of hyper-nuclei up to A = 5 in Ref. [8, 23].

For large numbers of baryons (A > 8 for protons and neutrons alone), it is necessary to use multiple source locations
because of the Pauli exclusion principle. In this case, the generalised blocks in Eq. 10 can be used with the algorithm
presented above.

C. Scaling

From the above description, it is clear that this algorithm will in general scale as

Mw ·Nw · (3A)!

(3!)A
, (11)

where A is the atomic number and Mw and Nw are the number of terms in the sink and source interpolating fields
respectively. In addition, the fact that the hadron blocks are completely anti-symmetric under all quark exchanges
has been taken into account. If we also take into account that the strong interactions are flavour-blind and consider
only octet baryon building blocks, this reduces to

Mw ·Nw
nu!nd!ns!

2A�n⌃0�n⇤
, (12)

where n⌃0 and n⇤ are the number of ⌃0 and ⇤ baryons in the hadronic interpolating field and the factor in the
denominator arises because all octet baryons have two quarks of the same flavour except from the ⌃0 and ⇤. This
algorithm can be e�ciently implemented and is computationally feasible for small systems, A . 10. As an example
of this method, a 4He two point correlation function can be computed in ⇠ 0.8 seconds per time slice on a single core
of a Dual Core AMD Opteron 285 processor.

IV. MULTI-BARYON CONTRACTIONS WITH DETERMINANTS

For larger atomic number, A & 10, alternative methods are required to perform the contractions in a computationally
feasible manner. It is straightforward to see how this can be done by examining the two point functions above and
making use of Wick’s theorem [24]. The numerator of Eq. 8 before the integration over the gauge fields is performed
is given by

⇥N h
1 (t)N̄ h

2 (0)
⇤
U

=

Z
DqDq̄ e

�SQCD[U ]

N 0
wX

k0=1

NwX

k=1

w̃

0(a0
1,a

0
2···a

0
nq

),k0

h w̃

(a1,a2···anq ),k

h ⇥
X

j

X

i

✏

j1,j2,··· ,jnq
✏

i1,i2,··· ,inq
q(a0jnq

) · · · q(a0j2)q(a0j1)⇥ q̄(ai1)q̄(ai2) · · · q̄(ainq
) , (13)

where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively and
are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the value of the enclosed expression on
a fixed gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of
the qq pairs by elements of the quark propagator.

⇥N h
1 (t)N̄ h

2 (0)
⇤
U

= e

�Seff [U ]

N 0
wX

k0=1

NwX

k=1

w̃

0(a0
1,a

0
2···a

0
nq

),k0

h w̃

(a1,a2···anq ),k

h ⇥
X

j

X

i

✏

j1,j2,··· ,jnq
✏

i1,i2,··· ,inq
S(a0j1 ; ai1)S(a

0
j2 ; ai2) · · ·S(a0jnq

; ainq
) , (14)

where Seff [U ] denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the
Dirac matrix. The above expression of Wick’s theorem, can be written in terms of the determinant of a matrix G

whose matrix elements are given by

G(a0;a)j,i =

⇢
S(a0j ; ai) for a

0
j 2 a

0 and ai 2 a

�a0
j ,ai

otherwise , (15)

Can also start propagators at different locations.

The new scaling is:

Number of terms 
in the source

Number of terms 
in the sink

An example of a more efficient algorithm:



Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Beane, et al. (NPLQCD), Phys.Rev. D87 (2013) , Phys.Rev. C88 (2013)
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding

Nuclei obtained from such an approach (at a heavier quark masses)



According to the naive counting, how many contractions are required for a nucleus at the 
source and sink with atomic numbers A = 4, 8, 12, 16? How many contractions are there 
with the use of the efficient algorithm described? There are even more optimal algorithms 
that lead to a polynomial scaling with the number of the quarks.

EXERCISE 8



ii) Excitation energies of nuclei are much smaller than the QCD scale.



Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



Nuclear excitations of two pear-shaped 
nuclei (radium and radon)

Gaffney et al., Nature 497, 199–204 (013).

Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



Getting radium directly from QCD will remain challenging for a long time! One should 
first compute A = 2, 3, 4 systems well. This is till not that easy: B_d = 2 MeV!

Nuclear excitations of two pear-shaped 
nuclei (radium and radon)

Gaffney et al., Nature 497, 199–204 (013).

Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



With a given amount of computational resources, you have achieved a 1% statistical 
uncertainty on the extracted mass of the nucleon from your lattice QCD calculation. By 
what factor should you increase your computing resources (your statistics) to also achieve 
a 1% statistical uncertainty on the binding energy of the deuteron?

EXERCISE 9



So what to do?

• With the most naive operators with similar overlaps to all states, unreasonably 
large times are needed to resolve nuclear energy gaps.

• The key to success of this program is in the use of good interpolating operators 
for nuclei. Since nucleons retain their identity in nuclei, forming baryon blocks 
at the sink turns out to be very advantageous.

• Ideally need to use a large set of operators for a variational analysis, but this has 
remained too costly in nuclear calculations.

• Methods such as matrix Prony that eliminate the excited states in linear 
combinations of interpolators or correlations functions have shown to be useful.

Applications in mesonic sector: Briceno, 
Dudek and Young, Rev. Mod. Phys. 90 025001.

A good review: Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).



Consider a simple two-state model in the spectral decomposition of an Euclidean two-point 
function. Demonstrate that the time scale to reach the ground state of the model with a 
finite statistical precision can depend highly on the corresponding overlap factor for the 
state. It is sufficient to show this numerically and for a set of chosen energies and overlap 
factors.

EXERCISE 10



Linear combos. at the level of correlation functions

An example

Beane et al (NPLQCD), Phys.Rev.D79:114502 (2009).



Linear combos. at the level of sink construction

Berkowitz et al (CalLatt), arXiv:1710.05642(2017).
Linear combos. at the level of correlation functions

Beane et al (NPLQCD), Phys.Rev.D79:114502 (2009).

An example
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Figure 1: (Left) The e↵ective mass plot of the original SS and PS nucleon correlation functions as well as the optimized
ground state correlation functions. (Right) The e↵ective mass of the two linear combinations of SS and PS correlation functions
constructed from the MP analysis.

• This method is substantially less expensive than the full variational method as it relies upon a
smaller number of quark propagators, and many fewer contractions. This method also o↵ers a
numerical savings over the more traditional method of computing two and more nucleon correla-
tion functions: the standard approach requires the contractions to be computed for all the di↵erent
choices of sink operators. For values of the pion mass used in present day calculations, the con-
traction cost is a substantial fraction of the total cost of the calculation, often exceeding the cost of
obtaining propagators. Our new method requires the contractions to be computed only once with
the optimized linear combination of sink operators.

We note that the NPLQCD collaboration has previously investigated the application of MP to two-
nucleon correlation functions [6, 27] by constructing sinks with all possible di↵erent combinations of
single-nucleon operator smearings [31], gaining benefits from the reduction of single-nucleon excited
states, but possibly leading to the di�culties which can occur when trying to tune more than two
operators. Only by imposing the selection of the single-nucleon MP combination that eliminates the
first excited state explicitly before constructing two-nucleon operators do we gain the full advantage
of our method. As we will show below, combining this method with spatially displaced two-nucleon
operators [9] to help reduce overlap onto the first elastic two-nucleon excited states reveals the full
power of this method.

2.3 Results

As a first test of this new method, we apply it to the same set of gauge ensembles used in our previous
calculation, Ref. [9], where we introduced the use of displaced nucleon operators at the source which
were found to significantly improve the coupling to the ground states of interest 2 . This allows us
to provide a direct comparison with known results. Specifically, for this comparison, we performed
calculations on the smallest volume with L/a = 24, using a reduced set with one quarter the statistics.

In Fig. 1, we show the e↵ective mass of the nucleon generated from a point sink, a gaussian sink
and optimized linear combination produced with MP, with a subset of 829 configurations. As can
be seen, the optimized ground state MP correlation function plateaus 5-6 time slices earlier than the
original SS and PS correlation functions.

2 These configurations were generated by the WM/JLab group using an isotropic clover action, at the SU(3) flavor symmetric
point with m⇡ ⇠ 800 MeV and a ⇠ 0.145 fm. For more details, see Ref. [8].
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iii) There is a severe signal-to-noise degradation.
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ū

u

d

u

d̄

ū
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The origin of noise
h|C|2i = h0|N†(t)N(t)N†(0)N(0)|0i
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The ground-state of the variance correlator 
is three pions and not two nucleons:

Parisi (1984) and Lepage (1989).

The origin of noise
h|C|2i = h0|N†(t)N(t)N†(0)N(0)|0iiii) THERE IS A SEVERE SIGNAL-TO-NOISE DEGRADATION.

THE GROUND-SATATE OF THE 
VARIANCE CORRELATOR IS 3 
PIONS AND NOT TWO NUCLEONS:

Parisi (1984) and Lepage (1989).

Beane et al, NPLQCD 
collaboration (2009).
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Magnitude - Phase Decomposition

mR(t) = ln

 ⌦
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↵
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m⇡ ⇠ mN � 3
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Magnitude and phase of generic hadron correlation functions are 
empirically observed to be approximately decorrelated

MW and Savage, arXiv:1611.07643
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Wagman and Savage (2016,2017).
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Phase Reweighting

Exponent of StN problem set by number of 
steps in random walk of the phase 
included in measurement

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

G✓(t, t) = hCi(t)i = G(t)

StN ⇠ e�(mN� 3
2m⇡)�t

“Phase-reweighted correlation function” 
measures fixed-length phase differences

Reduces to standard correlation function in limit           �t ! t

MW and Savage, arXiv:1704.07356

Let’s consider the magnitude and the phase of 
the correlation functions:

4

The Sign(al-to-Noise) Problem
Statistical estimation of an exponentially decaying average 

phase always has exponential StN degradation
⌦
ei✓i(t)

↵
q⌦

|ei✓i(t)|2
↵ ⇠ e�m✓t

Average correlation functions are real. Individual correlation 
functions in generic gauge fields are complex 

Is the LQCD signal-to-noise problem in all or part a sign problem?

G(t) = hCi(t)i =
Z

DU e�S(U)+R(t,Ui)+i✓(t,Ui) =
1

N

NX

i=1

eRi(t)+i✓i(t)

Ci(t) = eRi(t)+i✓i(t)

Standard LQCD methods equivalent to reweighting a complex action

Can we understand better the noise in nuclear 
correlation function and control it?
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A phase reweighting method seems to work:

14

Phase Reweighting Extrapolation
Known results for simple systems correctly recovered after        

extrapolation �t ! t

Phase-reweighted effective mass exactly reproduces standard EM if 
correlation functions at      and        are decorrelated. Exploits same 
physics of approximate factorization as

�tt

Cè, Giusti, and Schaefer, Phys.Rev. D93 (2016)

G✓(t,�t) = he�i✓(t��t)C(t)i



12

Phase Reweighting

Exponent of StN problem set by number of 
steps in random walk of the phase 
included in measurement

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

G✓(t, t) = hCi(t)i = G(t)

StN ⇠ e�(mN� 3
2m⇡)�t

“Phase-reweighted correlation function” 
measures fixed-length phase differences

Reduces to standard correlation function in limit           �t ! t

MW and Savage, arXiv:1704.07356

A phase reweighting method seems to work:

14

Phase Reweighting Extrapolation
Known results for simple systems correctly recovered after        

extrapolation �t ! t

Phase-reweighted effective mass exactly reproduces standard EM if 
correlation functions at      and        are decorrelated. Exploits same 
physics of approximate factorization as

�tt

Cè, Giusti, and Schaefer, Phys.Rev. D93 (2016)

14

Phase Reweighting Extrapolation
Known results for simple systems correctly recovered after        

extrapolation �t ! t

Phase-reweighted effective mass exactly reproduces standard EM if 
correlation functions at      and        are decorrelated. Exploits same 
physics of approximate factorization as

�tt

Cè, Giusti, and Schaefer, Phys.Rev. D93 (2016)

14

Phase Reweighting Extrapolation
Known results for simple systems correctly recovered after        

extrapolation �t ! t

Phase-reweighted effective mass exactly reproduces standard EM if 
correlation functions at      and        are decorrelated. Exploits same 
physics of approximate factorization as

�tt

Cè, Giusti, and Schaefer, Phys.Rev. D93 (2016)

14

Phase Reweighting Extrapolation
Known results for simple systems correctly recovered after        

extrapolation �t ! t

Phase-reweighted effective mass exactly reproduces standard EM if 
correlation functions at      and        are decorrelated. Exploits same 
physics of approximate factorization as

�tt

Cè, Giusti, and Schaefer, Phys.Rev. D93 (2016)

13

Phase Reweighted Effective Mass

Calculable by re-analyzing existing 
correlation functions

m✓(t) = ln

✓
G✓(t,�t)

G✓(t+ 1,�t+ 1)

◆

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

MW and Savage, arXiv:1704.07356

Data from Orginos et al, Phys.Rev. D92 (2015)
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DESPITE CHALLENGES, GREAT PROGRESS HAS BEEN MADE. LQCD 
IS ON TRACK TO DELIVER RESULTS ON IMPORTANT QUANTITIES 

FOR THE EIC PHYSICS.

QUESTIONS?


