

EIC Detector Design

Alexander Kiselev

CFNS Summer School Stony Brook University August, 1-9 2019

Outline

- Introduction
- EIC detector concepts
- Tracking
- Calorimetry
- Particle identification
- Summary

Wednesday

Thursday

*Input from E.Aschenauer, M.Chiu, R.Erbacher, Y.Furletova, K.Gnanvo, T.Horn, U.Langenegger, V.Manzari, P.Nadel-Turonski, B.Page, D.Pitzl, J.Repond, L.Ruan, F.Sefkow, M.Stanitzki, B.Surrow, M.Vandenbroucke, H.Wennloef, P.Wintz, C.Woody, R.Yoshida and other colleagues used in this lecture

Introduction

EIC Physics

Precision study of quark and gluon dynamics inside nucleon and nuclei

Key questions:

- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?
- How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?
- Where does the saturation of gluon densities set in? Does this saturation produce matter with universal properties?

ď

non-perturbative region

Typical EIC experimental measurements

- (A) Inclusive Reactions in ep/eA:
- Structure Functions: g₁, F₂, F_L

(B) Semi-inclusive Reactions in ep/eA:

 TMDs, Helicity PDFs, FFs (with flavor separation); di-hadron correlations; Kaon asymmetries, cross sections

(C) Exclusive Reactions in ep/eA:

 DVCS, exclusive VM production (GPDs; parton imaging)

x-ξ

 $H, H, E, E (x, \xi)$

 γ_L^* (Q²)

x+ξ

Example (A): scattered e⁻ acceptance

Typically use pseudo-rapidity $\eta = -\ln(\tan(\theta/2))$ rather than θ

Scattered electron {n,p} for various Q² ranges at the same set of beam energies

 In principle need to cover at least -4 < η < 2 range with appropriate tracking and e/m calorimetry

Example (B): kinematics of SIDIS pions

Cuts: Q²>1 GeV², 0.01<y<0.95, p>1GeV

(no difference between π^{\pm} , K[±], p[±])

-> -3.5 < η < 3.5 covers entire kinematic region in hadron p_t (transverse momentum) and z (virtual photon energy fraction), which are important for physics

Example (C): DVCS photons & protons

• Need e/m calorimetry coverage in -4 < η < 2 range

DVCS proton P_t (by far forward spectrometers B0/RP); range up to ~1.3 GeV/c required by physics

 20mrad vacuum system cone opening from IP to B0 magnet suffices, except for the lowest energy combination

DIS kinematics reconstruction basics

- (1) Scattered electron
- (2) Proton (ion) remnants
- (3) Struck quark fragmentation products

"Classic" way to determine {x,Q²}

Obviously diverges at small y

Electron method

-> only scattered electron information is used

$$Q_{\rm EM}^2 = 2E_e E_{e'} (1 + \cos \theta_{e'}),$$

$$y_{\rm EM} = 1 - \frac{E_{e'}}{2E_e} (1 - \cos \theta_{e'}),$$

$$x = \frac{Q^2}{4E_e E_{\rm ion}} \frac{1}{y}$$

DIS kinematics reconstruction basics

Jacquet-Blondel method

-> only hadronic final state information is used

$$y_{\rm JB} = \frac{1}{2E_e} \sum_{h} \left(E_h - p_{z,h} \right),$$
$$Q_{\rm JB}^2 = \frac{1}{1 - y_{\rm JB}} \left(\left(\sum_{h} p_{x,h} \right)^2 + \left(\sum_{h} p_{y,h} \right)^2 \right)$$

Relatively poor resolution (yet better than nothing)

The only way to reconstruct {x,Q²} for charged current events (since neutrino in the final state can not be detected)

-> FYI: "mixed" reconstruction methods exist as well (see e.g. next slide)

DIS kinematics reconstruction example

- $Purity = \frac{N_{gen} N_{out}}{N_{gen} N_{out} + N_{in}} \quad \bullet$
- Describes migration between kinematic bins
 - Important to keep it close to 1.0 for successful unfolding
 - {PYTHIA events 20x250 GeV} -> {BeAST detector; full GEANT simulation} -> {Kalman filter track fit}
 - Bremsstrahlung turned on here (and it matters even for detector with ~5% X/X 0!)

- "Straightforward" lepton tracking can hardly help at Y<0.1
- Hadronic final state accounting allows to recover part of the high Q² range

EIC detector concepts

Detector requirements: ideal vs real life

• The "ideal" detector (for a given process):

- Detect all *final state* particles of interest with 100% efficiency
- Determine their type (PDG) with high confidence level
- Measure all 4-momenta precisely

• Real life:

- Only 13 particle species have cτ > 500µm -> have to deal with the decay products, secondary vertices, invariant mass peaks
- Never get 100% efficient acceptance (cracks, support system, beam pipe, sub-detector frames, ...)
- Never get 100% detection efficiency (detector imperfectness, reconstruction algorithms, DAQ limitations, ...)
- Particle identification is never perfect
- Have to deal with the finite detector resolutions (detector size and technology limitations, costs, ...)
- Background processes spoil the picture

How do we detect particles?

- Long-lived: through their interaction with the detector material
 - Tracking ("gentle" measurement)
 - Calorimetry (destructive measurement)
 - & PID detectors
- Short-lived: through measuring their decay products

neutrinos	none	Missing energy
electrons	Ionisation, electromagnetic	Track and EM shower
muons	Ionisation	Penetrating track
p, K, π	Ionisation, hadronic	Track and hadron shower
photons	electromagnetic	EM shower
neutrons, K ⁰ _L	hadronic	hadron shower
B, D	Weak decay	Secondary vertex
J/ψ , Y , W, Z, H, t	prompt decay	Invariant mass

Emerging practical implementation

• Caveats:

- Calorimetry measurement is destructive, therefore tracking system should be the closest to the IP
- EIC physics also requires hadron species $\pi/K/p$ identification!

Illustration: CMS detector at LHC

EIC detector concept: JLEIC

Jefferson Laboratory (JLab) "green field" detector

EIC detector concept: BeAST

Brookhaven Laboratory (BNL) "green field" detector

EIC detector concept: ePHENIX

Brookhaven Laboratory sPHENIX-based implementation

EIC detector concept: TOPSiDE

Argonne Laboratory (ANL) all-silicon implementation

EIC Detector Concepts

Common features:

- Compact design
- (Almost) 4π hermetic acceptance in tracking/calorimetry/PID
- Vertex + central + forward/backward + far forward tracker layout
- Low material budget in the tracker volume
- Strong central solenoid field
- Moderate momentum resolution (~1% level)
- Moderate EmCal and HCal energy resolution

Note:

Community wants *two* general-purpose detectors

Tracking

Tracking basics: idea

Charged particles lose energy via ionization when passing through media (a gas volume, a silicon layer, ...):

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Bethe-Bloch formula

Tracking detector:

- Amplify this "electron signal" if needed
- Discretize it according to the detector design
- Track fitting algorithm:
 - Use the resulting N discrete "space points", their respective covariance matrices (error estimates) and knowledge about the underlying dynamics (magnetic field, material distribution) in order to estimate track parameters at the detector location
 - Extrapolate to the interaction point and build vertices

Tracking basics: momentum measurement

solenoidal field

Important observations:

 $\sigma_{p_t}/p_t \sim p_t$

$$\sigma_{p_t}/p_t \sim \sigma_x/BL^2$$

-> resolution becomes worse with increasing momentum

-> want high single point resolution, large field and large size

Tracking basics: Kalman filter algorithm

- Originally developed by R.Kalman in 1960 for spacecraft radar applications
- Formulated for charged particle tracking and vertex fitting by R.Fruehwirth in 1987

EIC detector tracking: systems & options

Vertex detector

MAPS

Central tracker

- TPC (+ MM)
- All-silicon tracker
- A set of MM cylinders
- Drift chamber
- Straw tube tracker
- Endcap trackers
 - Large-area GEMs (MM, μRWELL, GEM-TRD, sTGC)
- Forward & backward trackers
 - MAPS
 - (Very) high resolution GEMs

Close-to-beamline instrumentation

Roman Pots, B0 magnet tracker, low-Q² tagger, …

Expected "typical" EIC tracker performance

→H1 : $0.6\%^*P_t + 1.5\%$ →ZEUS : $0.5\%^*P_t + 1.5\%$

Radiation length scan

EIC Detector Geometry: Radiation Length Scan

Momentum resolution

"Traditional" Si detectors (here: CMS strips)

- Planar sensor from a high purity silicon wafer (here n-type).
- Segmented into strips by implants forming pn junctions.
- Strip pitch 20 to 200 µm, high precision photolithography.
- Bulk is fully depleted by a reverse bias voltage (25-500V).
- Ionizing particle creates electron-hole pairs (25k in 300 μm; 3.6eV/pair).
- Electrons and holes are separated by the electric field and collected on the implanted strips
- High spatial resolution (dozens of microns, pitch-dependent)
- Fast (~10ns collection time)

"Traditional" Si detectors (CMS)

Bump-bonding to a (separate from sensor) readout chip ...

Tracker Material Budget

Impressive system: 10⁷ channels; 200 m²!

... this blows up the material budget (no good for EIC)!

Monolithic active pixel sensors

Hybrids

Sensitive volume and readout electronics on separate chips Most commonly used in silicon vertex trackers Radiation tolerant and fast

 Monolithic Active Pixel Sensors (MAPS) Sensitive volume and readout electronics on same chip Made using commercial CMOS technology Thin and fine granularity Slow (charge collection partly via diffusion)

Readout chip			
Bump bonds			
Sensitive volume			

Monolithic active pixel sensors (ALICE)

Upgraded ALICE Inner Tracker System (ITS2)

artistic view of charge collection process

- Based on novel MAPS ALPIDE (vs ITS1)
- 10 m² active silicon area, 12.5 G-pixels
- Smaller pixels: ~5 μ m in r ϕ and z directions (vs 12 μ m and 100 μ m)
- Power density < 40mW / cm2
- Less material: ~0.3% X0 for Inner Barrel (vs 1.1% X0)
- Faster readout: 100 kHz Pb-Pb (vs 1 kHz)

Monolithic active pixel sensors (ALICE)

Upgraded ALICE Inner Tracker System (ITS2)

Depleted monolithic active pixel sensors

 Depleted Monolithic Active Pixel Sensors (DMAPS) Utilizing high voltage/high resistivity CMOS technology Depleted volume intended to be as large as possible

Depletion gives **faster** (drift mode) and **more uniform** charge collection compared to standard MAPS

N-well collection Incoming particle electrode Deep P-well, shielding electronics e ⁄h Depleted h/e⁻ N' region e/h e/h e /h h e⁻ Epitaxial layer, P Substrate, P⁺ Modified process (DMAPS)

Standard process (MAPS)

Why small pixels are required?

Open charm reconstruction

Particle	Decay	Branching	cτ [μm]
D ⁰	$K^{-}\pi^{+}$	3.9%	123
D+	$K^-\pi^+\pi^+$	9.5%	311
D*+	$D^0\pi^+_{slow}$	67.7%	

Signature: displaced Kπ vertex

Pointing resolution plots

Smaller pixels provide better pointing resolution ...

Central tracker: Drift Chamber

- MWPC: address of fired wire(s) give one dimensional information and $\sigma_x \approx d/\sqrt{12}$
- Drift chamber: use drift length time information, typical resolution \sim 200 μ m
- Resolution limits: drift and diffusion effects

Central tracker: Drift Chamber (issues)

Remember, error of momentum measurement:

⇒ L has to be large ⇒ detector has to be wide (small Rin, large Rout) Also: want large η coverage ⇒ z dimension has to be large ⇒ detector has to be long

-> a drift chamber with several thousand long wires-> problems with both construction and maintenance

Solution#1: encapsulate each anode wire in a separate cylindrical volume \Rightarrow straw tracker

Solution#2: let the electrons drift over long distances \Rightarrow TPC: essentially a huge gas filled box

Central tracker: Straw Tubes (PANDA)

- 4636 straw tubes in 2 separated semi-barrels
- 23-27 radial layers in 6 hexagonal sectors
 - 15-19 axial layers (green) in beam direction
 - 4 stereo double-layers: ±3° skew angle (blue/red)
- Volume: R_{in} / R_{outr} = 150 / 418 mm, L~ 1650 mm
 - Inner / outer protection skins (~ 1mm Rohacell/CF)
- Ar/CO₂ (10%), 2 bar, ~ 200ns drift time (2 T field)
- Time & amplitude readout
 - $\sigma_{r\phi} \sim 150 \ \mu m$, $\sigma_z \sim 2-3 \ mm$ (isochrone)
 - σ(dE/dx) < 10% for PID (p/K/π < 1 GeV/c)
- σ_p/p ~ 1-2% at B=2 Tesla (STT + MVD)
- X/X₀ ~ 1.25% (~ ²/₃ tube wall + ¹/₃ gas)

Central tracker: Straw Tubes (PANDA)

- Material budget at lowest limit (2.5 g per assembled straw)
- thinnest Al-mylar film, d=27µm, Ø=10mm, L=1400mm
- thin wall endcaps, wire fixation (crimp pins), radiation-hard
- self-supporting modules of pressurized straws (∆p=1bar)
 - close-packed (~20 µm gaps) and glued to planar multi-layers
 - replacement of single straws in module possible (glue dots)
- strong stretching (230kg wires, 3.2tons tubes)*, but no reinforcement needed

Central tracker: Time Projection Chamber

Pads = cathode (-): 1 pad samples 512 time bins

STAR TPC

- 140,000 electronics channels (pads)
- 512 time bins
- 140,000 x 512 = 72 million 3D "pixels"
- Inner sectors were instrumented in 2019

Gating Grid concept:

 Designed to reduce Ion Back Flow (IBF) from the amplification stage, and respective space charge of positive ions in the TPC volume (gate open by trigger only for the time needed to collect all electrons – several µs only)

STAR TPC, legacy pictures

"New generation" TPCs: attack IBF problem

MWPC-based TPC drawbacks

- No other means to suppress IBF other than gating grid
- This in particular excludes TPC usage in a continuous readout mode (and in a high luminosity environment)

Solution: replace MWPC amplification stage by either quadruple GEM (ALICE upgrade & sPHENIX TPC) or a GEM+µMegas hybrid; carefully tune gas mixture, GEM foil configuration & HV

Large (here 2D) planar detectors: GEM

Pitch 30,4% Pitch 30,1% Components of zebra connection Principle of double side zebra connection Zebra holders Zebra strips Top strip Top strip

Bottom strip

- 2D U-V strips readout a la COMPASS, very good spatial resolution
- No metallized vias to pick up bottom strips signal ⇔Thin Cu layer
- All FE electronics read out all on the outer radius of the chamber

•

EIC Detector R&D program

 Potential Difference across each GEM foil (300 V – 500 V)

- High energy particles ionize the gas inside the detector which drift to the GEM foil
- Electric field through the holes causes the electrons to cascade

- GEM: Gas Electron Multiplier
 - Primary ionization in a short (few mm) drift gap
- Multi-stage (3-5 50 μ m thick foils) amplification in a high field
- Direct coupling to readout strips (or pads)

Large (1D) planar detectors: GEM

- Low mass, stretched carbon fiber frames
- High spatial resolution & low channel count zigzag charge sharing readout

Large planar detectors: µMegas

ATLAS New Small Wheel

- 4 Types of detectors => 4 constructions sites
- Technology: 1200 m² of resistive Micromegas
- 2M channels

- Primary ionization in a short (few mm) drift gap
- Single-stage amplification in a high field 128μm gap
- Capacitive coupling to readout strips through the resistive layer

Medium-size cylindrical tracker: µMegas

CLAS12 vertex tracker upgrade

- Same technology: 4 m² of µMegas detectors
- Light-Weight Detectors (~0.5% of X₀ per layer)
- Limited space (~10 cm for 6 layers)
- High magnetic field (5T)
- Variable geometry (6 Layers with different R)
- High enough spatial resolution (~100μm)

µRWELL trackers

- Modern technology, competing with GEM & μMegas:
 - Simple, low mass, no stretching, low cost
 - ID & 2D configurations, flat & cylindrical

- Primary ionization in a short (few mm) drift gap
- Single-stage amplification in a high field 50μm gap (foil)
- Capacitive coupling to readout strips through the resistive layer

µRWELL in FNAL Test Beam

End of day one!