

EIC Detector Design

Alexander Kiselev

CFNS Summer School Stony Brook University August, 1-9 2019

Outline

- Introduction
- EIC detector concepts
- Tracking
- Calorimetry
- Particle identification
- Summary

Wednesday

Thursday

*Input from E.Aschenauer, M.Chiu, R.Erbacher, Y.Furletova, K.Gnanvo, T.Horn, U.Langenegger, V.Manzari, P.Nadel-Turonski, B.Page, D.Pitzl, J.Repond, L.Ruan, F.Sefkow, M.Stanitzki, B.Surrow, M.Vandenbroucke, H.Wennloef, P.Wintz, C.Woody, R.Yoshida and other colleagues used in this lecture

Calorimetry

Calorimetry basics

• Calorimeter measures energy of incoming particle

- Stopping the particle
- Converting the energy into something detectable (light, charge)
- Basic mechanism: e/m and hadronic showers
- The measured output is proportional to the particle energy

It also measures the location of energy deposit

- Showers are relatively well localized
- Calorimeter readout is segmented
- Therefore (provided primary vertex location is known) one can determine directional information for neutral particles (photons, neutrons)

Particles seen by calorimeters

e/m and hadronic showers

e/m showers: QED, clean & simple

Hadronic showers: nuclear interactions + e/m component

-> Note: event-to-event fluctuation of e/m component and different response to the e/m and hadronic components is the main reason of hadronic calorimeter performance degradation

Electron and y interaction with matter

- At higher energies dominated by bremsstrahlung (electrons) and pair production (photons) -> shower particle contents grows exponentially
- At lower energies ionization dominates and shower starts "dying out"
- Critical energy: E_c, where ionization and radiation processes have ~equal weights

Fractional energy loss per radiation length

e/m calorimetry cheat sheet

- Radiation length (X₀)
 - When the energy has been reduced to 1/e
 - Characterizes the shower depth
- Critical Energy (E_c)
 - Energy, where Ionization takes over
- Moliere Radius (r_{Moliere})
 - Radius which contains 90 % of the shower
 - Characterizes the width of the shower
- Shower Max(imum)
 - The peak of the shower

-> Note: shower depth only grows logarithmically with energy

 $X_{0} = \frac{716.4A}{Z(Z+1) \cdot \ln(287/\sqrt{Z})} \cdot \frac{1}{\rho}$

$$E_{C, solid/liquid} = \frac{610 MeV}{Z + 1.24}$$
$$E_{C, gas} = \frac{710 MeV}{Z + 0.92}$$

$$r_{Moliere} = 21.2 \, MeV \frac{X_0}{E_C}$$

$$S_{max} = \ln\left(\frac{E_{Incoming}}{E_C}\right)$$

takes over
$$E_{c}$$

X_0 (e/m) vs λ_1 (nuclear)

λ_{int} : mean free path between nuclear collisions

λ_{int} (g cm⁻²) \propto A^{1/3}

-> Note: apparently λ_1 >>X₀, therefore hadronic calorimeters are typically much bigger than the e/m ones in order to fully contain the hadronic shower

Material	Z	A	Z/A	X ₀ (cm)	λ _I (cm)	Density (g/cm³)
H ₂ (liquid)	1	1.008	0.992	866	718	0.0708
He	2	4.002	0.500	756	520	0.125
С	6	12.01	0.500	18.8	38.1	2.27
Al	13	26.98	0.482	8.9	39.4	2.70
Cu	29	63.55	0.456	1.43	15.1	8.96
Pb	82	207.2	0.396	0.56	17.1	11.4
W	74	183.8	0.403	0.35	9.58	19.3
U	92	238.0	0.387	0.32	10.5	19.0
Scint.			0.538	42.4	81.5	1.03

Sampling and homogeneous types

Two main calorimeter types:

Scintillators as active layer; signal readout via photo multipliers

Example sampling configurations

Calorimeter resolution

• Typically parameterized as

• Stochastic term:

Photon statistics, sampling fluctuations

• Constant term:

- Non-uniform detector response
- Channel-to-channel mis-calibration
- Longitudinal leakage (calorimeter too short to contain the shower)

-> Note: resolution improves with energy, as long as the constant term does not start dominating

EIC e/m calorimetry: use case & requirements

Regions and Physics Goals	Calorimeter Design			
Lepton/backward: EM Cal ○ Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement ○ Prefer 1.5%/√E + 0.5%	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy 			
Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Ability to withstand radiation down to at least 2-3 degree with respect to the beam line. Outer EM Cal for -2 < η < -1: Energy resolution to 7%/√E Compact readout without degrading energy resolution Readout segmentation depending on angle 			
Barrel/mid: EM Cal ○ Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV ○ To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%)	 Barrel EM Cal: Compact design as space is limited Energy resolution of order 8%/√E +1.5%, and likely better Hadron endcap EM Cal: EM energy resolution to < (12%/√E + 1%) 			

07/26/18 EIC R&D Meeting: the most complete "consensus" table at this time

Disclaimer

These "requirements" are a combination of

- Limited amount of modeling studies
- Past experience
- Present and/or near future state of the (calorimetry) art
- Progress within the EIC Detector R&D Program
- Common sense & educated guesses
- Trade-offs coming from budget constraints

-> We believe they are good enough as a guidance and as a starting point for various types of physics analyses

W/SciFi EIC calorimeter R&D: early days

- Scintillating fibers embedded in a composite absorber (tungsten power + epoxy)
- Round and square fibers tested

Detector	Fibers SCSF 78	Absorber
"Old" High sampling frequency	Round, 0.4mm	75% W 25% Sn
"Square" High sampling fraction	Square, 0.59 x 0.59 mm ²	100% W

- Several test beam campaigns in 2012 .. 2016
- Achieve 7-12%/√E (variable by design), with ~1% constant term at 10°, ~3% at 4°
- PMT and SiPM implementations
- Beam installation at RHIC in 2017

W/SciFi design: sPHENIX implementation

- Coverage: ± 0.85 in η , 2π in ϕ
- Segmentation: $\Delta \eta \propto \Delta \phi \approx 0.025 \times 0.025$
- Readout channels (towers): 72x256 = 18432
- Energy Resolution: $\sigma_{\rm E}/{\rm E} < 16\%/{\rm \sqrt{E} \oplus 5\%}$
- Provide an e/h separation > 100:1 at 4 GeV
- Approximately projective in η and ϕ
- Compact, works inside 1.4T magnetic field and reduces cost of HCAL

W/SciFi design: sPHENIX implementation

- The EMCAL has undergone 4 rounds of prototyping and beam tests at Fermilab and is in a very mature stage.
- Results have shown that the detector can meet the requirements for the sPHENIX physics program.
- A detailed engineering design has been developed for the complete detector.
- Construction of the first pre-production prototype sector (Sector 0) is under way. All blocks have been produced at UIUC and are being installed in the sector at BNL.

Blocks installed in Sector 0 at BNL

Readout End Scintillating Fibers

Light Guides 4 towers/block

W/SciFi Absorber Block

W/Cu/SciTile shashlik calorimeter

- Use W80/Cu20 alloy as absorber
- Read out each WLS fiber with an individual SiPM

- A viable alternative solution to W/SciFi calorimeter ...
- potentially with a better light collection uniformity in a compact design

W/Cu/SciTile shashlik calorimeter

Stack of seventy 38 x 38 x 1.5 mm W80Cu20 absorber plates and 1.5 mm scintillator plates

Readout consists of 16 WLS fibers each read out with its own 3x3mm² SiPM

- First module completed at UTFSM
- LED and cosmic tests are ongoing (light yield, uniformity, timing)
- A short stack is shipped to BNL for light collection uniformity studies

Scattered electron kinematics reconstruction

- $Purity = \frac{N_{gen} N_{out}}{N_{gen} N_{out} + N_{in}} \quad \bullet$
- Describes migration between kinematic bins
 - Important to keep it close to 1.0 for successful unfolding
 - A possible way to increase y range: use e/m calorimeter in addition to tracking
 - → ~2%/ \sqrt{E} energy resolution (and ~0 constant term) for η < -2 (PWO crystals)
 - ~7%/ \sqrt{E} energy resolution for -2 < η < 1 (W/SciFi sampling towers)

- Apparently, the high-resolution crystal EmCal at very backward rapidities can help increasing the available y range ...
- ... but only if it has a very small constant term and is "radiation hard"

New materials for EIC calorimetry

- Ceramic glass as active calorimeter material:
 - More cost effective that PWO
 - Easier to manufacture
 - Better optical properties (?)

 Technology: glass production combined with successive thermal annealing (800 – 900°C)

SEM image of recrystallized BaO*2SiO₂ at 950°C

Material/ Parameter	Density (g/cm³)	Rad. Length (cm)	Moliere Radius (cm)	Interact Length (cm)	Refr. Index	Emission peak	Decay time (ns)	Light Yield (γ/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
(PWO)PbWO ₄	8.30	0.89 0.92	2.00	20.7 18.0	2.20	560 420	50 10	40 240	>1000	.90 scint. .10 Č	75.6
(BaO*2SiO ₂):Ce glass	3.7	3.6	2-3	~20		440, 460	22 72 450	>100	10 (no tests >10krad yet)	Scint.	51
(BaO*2SiO ₂):Ce glass loaded with Gd	4.7-5.4	2.2		~20		440, 460	50 86-120 330-400	>100	10 (no tests >10krad vet)	Scint.	58

Also: (BaO*2SiO₂):Ce shows no temperature dependence

Glass ceramic: optical property tuning

100

80

60

40

Transmittance (%)

Optimized

Transmittance

550

600

 Uniformity remains a concern – manufacturing process requires optimization – progress with new method at CUA/VSL/Scintilex

Better transparency, less cracks, higher light yield

Hadronic calorimetry for EIC

- Hadronic energy resolution, especially in the forward endcap, is important for several EIC physics measurements
- **Requirements:**
 - Compactness
 - Immunity to the magnetic field
 - High (enough) energy resolution
 - Reasonable cost
 - Other (minimal neutron flux, etc)
- Pending questions:
 - Should one stick to the compensated calorimeter design (which by the way never showed high energy resolution for jets) or consider other options (dual-readout or dual-gate concepts, high-granularity calorimetry)?
 - How at all one can get a decent performance out of a 5-7 λ deep HCal?

Jet kinematics for various MC processes

Hadronic calorimeter in the barrel

Jet study for BeAST: ep-events, 20 x 250 GeV, $10 < Q^2 < 100 \text{ GeV}^2$

eic-smear pass in a PFA-like fashion (check P_t reconstruction quality)

- Here Hi-Res HCal is $\sim 35\%/\sqrt{E} + 2\%$ (ZEUS) ...
- ... and Lo-Res HCal is ~85%/ \sqrt{E} + 7% (CMS)

-> So it does make a difference

sPHENIX Hadron Calorimeter

- Outer HCAL ≈3.5λ
- Magnet $\approx 1.4X_0$
- Frame $\approx 0.25\lambda_{\rm I}$
- EMCAL $\approx 18X_0 \approx 0.7\lambda_1$

wavelength shifting fiber
 Outer HCal (outside the solenoid)

- Δη x Δφ ≈ 0.1 x 0.1
- 1,536 readout channels

SiPM Readout

Uniform fiducial acceptance $-1 < \eta < 1$ and $0 < \phi < 2\pi$; extended coverage $-1.1 < \eta < 1.1$ to account for jet cone

HCAL steel and scintillating tiles with

Pb/SciTile EIC calorimeter R&D: early days

- Scintillating tiles interleaved with Pb plates (compensated)
- WLS
- SiPM readout
- Achieve ~60%/√E energy resolution, with ~6% constant term

Dual readout hadronic calorimetry?

The idea:

- Abandon built-in compensation (and raise sampling fraction)
- Use two types of fibers as active media (scintillating and clear ones)
- Measure Cherenkov light in addition to the scintillation one and use the ratio of two to correct for the $\rm f_{em}$ fluctuations on event-by-event basis

Performance attained so far:

- DREAM (Cu/fiber): ~65%/√E + 0.6%
- RD52 (Pb/fiber): ~70%/√E

Applicability at EIC is problematic:

- Cumbersome construction process
- So far only a PMT configuration (although a small prototype with SiPMs was tried out already)

Dual-gate hadronic calorimetry?

- Large fluctuations in 'invisible' energy (nuclear binding energy) main cause of poor resolution
- Main mechanism of production of n is spallation (except for U), can be thought as evaporating nucleons from excited nuclei
- Kinetic energy of **n** correlated with 'invisible' energy

0.95

0.85

0.8

0.75

0.7

0.65

0.9

vs dual gate

0.8

E^{t < 1.25 ns} / E_{obs}

First measurements by ZEUS in the 90-th; Recently repeated by

- DREAM
- RD52 Collaboration
- CALICE Collaboration

High granularity calorimetry?

-> active community; rapidly developing field; large-scale prototypes

SiW ECAL

ScintW ECAL

Scint AHCAL, Fe & W

RPC DHCAL, Fe & W

plus tests with small numbers of layers:

- ECAL, AHCAL with integrated electronics
- Micromegas and GEMs

High granularity calorimetry & PFA

Attempt to measure the energy/momentum of each particle in a hadronic jet with the detector subsystem providing the best resolution

The idea

Replace the traditional tower structure with very fine granularity Few 1,000 channels \rightarrow few 10,000,000 channels Option to reduce resolution on single channels to 1 – 2 bits (digital readout)

Particles in jets	Fraction of energy	Measured with	Resolution [ס²] ר		
Charged	65 %	Tracker	Negligible		
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	- 18%	⁄₀/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet} -		
Confusion	If goal is to a $30\%/\sqrt{E} \rightarrow$	≤ 0.24 ² E	jet		

Factor ~2 better jet energy resolution than previously achieved EIC environment: particularly suited for PFAs, due to low particle multiplicity and low momenta

CMS forward calorimeter upgrade

- Use this technology in the hadron-going endcap only?
- **CE-E**: Si and Cu/CuW/Pb, 28 layers, 26 X_o (~1.7 λ)
- **CE-H**: Si+Scint and Steel, 24 layers, ~9.0 λ
- 1.5 < η < 3.0
- ▶ ~600 m² of Si,
- ~500 m² of scintillator
- ▶ ~6M Si channels

-> this would be pretty much the size of the EIC "ideal" endcap calorimeter!

Ε

~2.3

Auxiliary detector calorimeters

Particle Identification

Particle Identification (PID) objectives

In this talk focus on electron and charged hadron identification

In general, need to separate

- Electrons from photons
- Electrons from charged hadrons
- Charged pions, kaons and protons from each other
- Use any available physics process and detector arrangement to do so:
 - Energy loss dE/dx
 - Cerenkov radiation
 - Transition radiation
 - Time of flight measurement
 - Longitudinal segmentation of the calorimeter setup

Side remark on π^0 identification

A short-lived particle, so use $\pi^0 - \gamma\gamma$ decay channel and build invariant mass of the 2γ system

-> Note: decay photons are detected by e/m calorimeter, which provides not only energy, but also *location* measurement; therefore (using primary vertex location, reconstructed via charged particle tracks) one can build 4-momenta required for M_{inv} calculation

- But what if the 2γ opening angle too small?
 - Use high granularity preshower in front of e/m calorimeter

-> Note: preshower also helps to distinguish electrons from charged hadrons

Relative electron/photon/h-yields

<u>15x250 GeV configuration</u>; particle yields versus momentum in the 4 < η < 4 range:

Relative pion/kaon/proton yields

20x250 GeV configuration; yields versus momentum in the 4 < η < 4 range:

- $\pi/K/p$ distributions at the same η look similar
- π/K ratio is about 3:1 -> depending on the desired efficiency and contamination this defines the required suppression factors

Energy loss dE/dx

Elementary calculation of energy loss:
 Charged particles traversing material give impulse to atomic electrons

Energy loss dE/dx: STAR TPC

- $p = mv = m_0 \beta \gamma c$ $\frac{dE}{dx} \propto \frac{1}{\beta^2} ln(\beta^2 \gamma^2)$ Simultaneous measurement of p and dE/dx defines mass m₀ \Rightarrow particle ID
 - But: real detector (limited granularity) can not measure <dE/dx> !
 - It measures the energy ΔE deposited in a layer of finite thickness δx
 - Thin layers or low density materials: few collisions, some with high energy transfer
 - Energy loss distributions show large fluctuations towards high losses: "Landau tails"

Time of Flight

Simplified scheme:

 For a given momentum a more massive particle has smaller velocity, therefore it will spend more time to travel a given distance L between two detectors

So in the experiment: assuming that particle momentum is known from tracking, derive particle *mass* by measuring its velocity

 Mass resolution depends on the momentum, path length and timing resolution

-> Note: the technique works best for large detectors and low momenta

• Caveats

- For a compact detector need very high timing resolution for this to work above few GeV/c
- Providing a high resolution T_{start} measurement is not trivial at an EIC (electron bunches have finite, ~1cm length; installing ~10ps timing detectors around IP adds material, etc)

Time of Flight for EIC

mRPCs Interaction Beam pipe **GEANT4 simulation of sPHENIX**

Multi-ap Resistive Plate Chamber (MRPC) R&D: achieved ~18 ps resolution with 36-105 µm gaps

&

a charged particle passing through causes local discharge which induces signals in the readout strips

Transition radiation

- Transition radiation(TR) is produced by a charged particles when they cross the interface of two media of different dielectric constants
- The probability to emit one TR photon per boundary is of order α~1/137, therefore multilayer dielectric radiators are used to increase the transition radiation yield, typically few hundreds of mylar foils or a fleece
- Energy of TR photons are in X-ray region (2 40 keV)

- The onset of TR starts at about γ ~ 1000 (so electrons will produce a measurable signal starting from ~1-2 GeV/c momenta while pions will not emit TR up to a few hundred GeV/c) -> this is the basis for electron/pion separation
- Total TR Energy is proportional to the γ factor of the charged particle

HERMES TRD

Six flat modules; Xe-based mixture; MWPC readout

- Perhaps the first routinely working TRD in a NP experiment
- Pion rejection factor of ~130 for HERMES electron energy range (27.5 GeV HERA beam)

ATLAS Transition Radiation Tracker

- Built of straw tubes
- Radiator foils are placed between the straws
- In addition to TR: spatial resolution ~130μm

Straw gas mixture Xe(70%) CO2(27%) O2(3%)

Combination: time of flight & dE/dx @ STAR

\$500 400 300 1/B 1.2<p_<1.4 GeV/c 200 1.6 100 -0.5 0 0.5 1 Mass²(GeV/c²)² 1.4 1.2 0.8 0.6 3.5 0.5 2.5 1.5 p (GeV/c)

Time of Flight alone

dE/dx alone

STAR Preliminary

-> Note: combining information from several independent PID detectors can drastically improve the selection quality (in this example provides clear electronhadron separation up to ~3 GeV/c

Combination: electron ID @ HERMES

-> Note: overall suppression up to ~10⁵

Cerenkov radiation

 Cherenkov radiation arises when a charged particle in a material moves faster than the speed of light in that same medium:

$$\beta c = v = c/n$$

- It is emitted at an angle θ_c , defined by particle velocity β and medium refractive inde $\cos \theta_c = \frac{1}{\beta n}$
- Condition for Cherenkov radiation to occur: β > c/n
- Energy emitted per unit path length:

$$\frac{dE}{dx} = 4\pi^2 e^2 \int_{\beta n > 1} \frac{1}{\lambda^3} \left(1 - \frac{1}{\beta^2 n^2} \right) d\lambda$$

 Two main types of Cerenkov detectors: threshold and ring-imaging ones

-> Note: Ring-Imaging CHerenkov (RICH) detectors are assumed to be the main tool for hadron PID for an EIC detector

Illustration: COMPASS RICH#1

- A single-radiator design with the relatively heavy C₄F₁₀ radiator
- After upgrade: UV range, CsI-coated THGEM-based photon detectors
- A detector like this would fit EIC needs provided a lighter radiator (with the π/K separation up to ~50 GeV/c) is used

Barrel: DIRC with high resolution timing

-> Note: modeling shows that by using high-resolution timing one can extend π/K 3 σ separation range to up to ~6 GeV/c, sufficient for EIC needs

Hadron endcap: dual radiator RICH

dRICH: use very successful HERMES-like configuration with two radiators (here: n=1.02 aerogel and C₂F₆ gas) in order to provide continuous coverage with >3 σ π /K separation in the whole required EIC hadron-going endcap momentum range, so from lowest momenta up to ~50 GeV/c

-> Note: one can also consider a pair of independent RICH detectors, where gaseous RICH may also work in UV range

-> In any case the biggest problem for gaseous RICH with ~1m long radiator is to work at all in the strong solenoid fringe field (tracks are bent!)

Lower momenta: modular RICH

mRICH: use aerogel (low density transparent radiator with n \sim 1.2 .. 1.5) in a configuration with a Fresnel lense rather than Belle II – like proximity focusing configuration

-> allows to extend the momentum range, save linear space as well as minimize the size of the photosensor assembly

Expected particle ID performance

-> Note: electron/pion separation will be mostly provided by e/m calorimetry (and possibly Transition Radiation Detectors)

Hadron PID solution for EIC

- h-endcap: a RICH with two radiators (gas + aerogel) is needed for π/K separation up to ~50 GeV/c
- e-endcap: A compact aerogel
 RICH which can be projective
 π/K separation up to ~10 GeV/c
- barrel: A high-performance DIRC provides a compact and cost-effective way to cover the area π/K separation up to ~6-7 GeV/c
- TOF and/or dE/dx in a TPC can cover lower momenta

That's all, guys!