Flavor Physics Highlights

Selection of Recent Physics results with a view on the search for footprints of New Physics

Brookhaven Forum

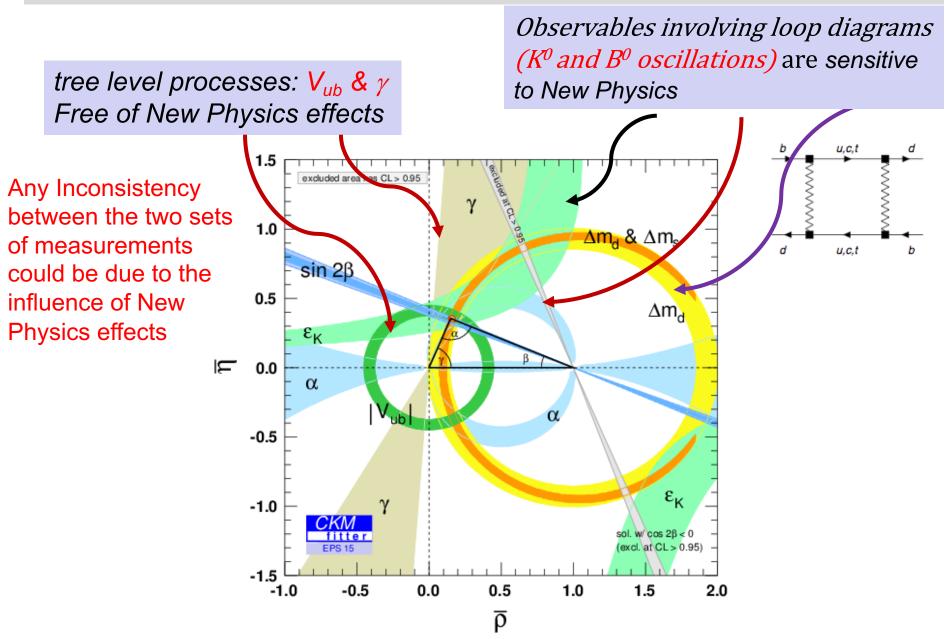
September 26, 2019 Hassan Jawahery University of Maryland

Much of the Flavor Physics today is focused on the search for footprints of New Physics (NP):

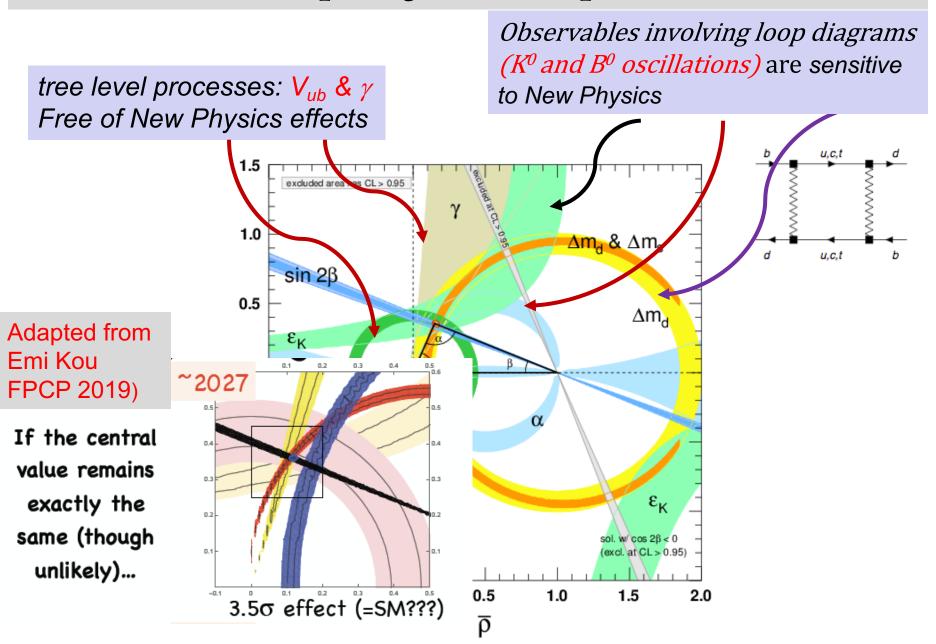
- > It is (so far) our sole source of observed CP Violation effects
- Provides access to very high energy scales through Flavor Changing Neutral Current processes (FCNC)

Flavor puzzle: Interpreting the current data in the language of effective field theory,

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda_i^2} + \cdots$$

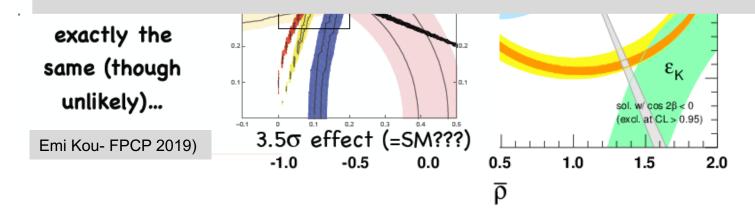

Isidori ,Nir, Perez

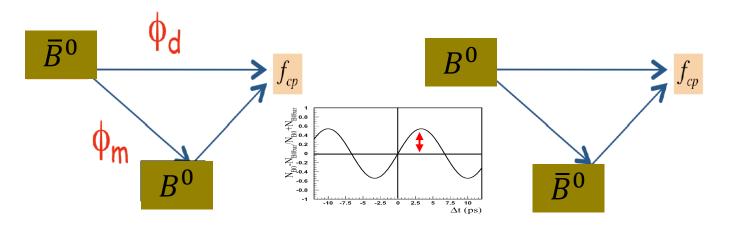
Operator	Bounds on Λ [TeV] $(C=1)$		Bounds on C ($\Lambda = 1 \text{TeV}$)		Observables	
	Re	${ m Im}$	Re	${ m Im}$	Observables	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$	
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	Δm_K ; ϵ_K	
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$	
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$	
$(\bar{b}_L \gamma^\mu d_L)^2$	6.6×10^{2}	9.3×10^{2}	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$	
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^{3}	3.6×10^3	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$	
$(\bar{b}_L \gamma^\mu s_L)^2$	1.4×10^{2}	2.5×10^2	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$	
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^{2}	8.3×10^{2}	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$	


Some of the Recent advances

- > The CKM picture continues to be sharpened:
 - \triangleright Improved precision of Unitarity angle γ
 - \triangleright Improved measurements of time-dependent CPV in B_s^0 : ϕ_s
- > B-Anomalies: a few measurements are in tension with SM
 - > Tests of Lepton Flavor Universality in B decays involving charged and neutral currents
- > A new source of CPV found: Charm Decays
 - > The quark sector (K, D, B hadrons) remains the sole source of CPV
- > Era of Super-Flavor Experiments has arrived:
 - Belle-II had its first physics run (March-June, 2019)
 - > LHCb upgrade I (50 fb-1) being installed: 2019-2020
 - \rightarrow LHCb upgrade II (300 fb⁻¹) in conception/design (\rightarrow 2030)

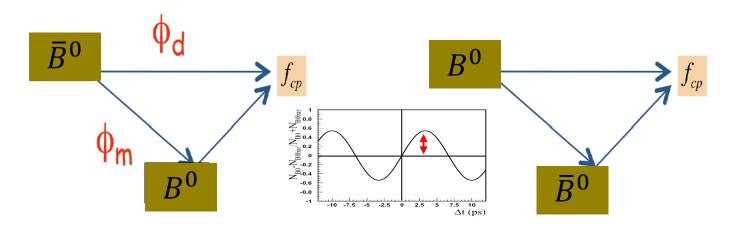
Sharpening the CKM picture


Sharpening the CKM picture


Sharpening the CKM picture

Recent progress:

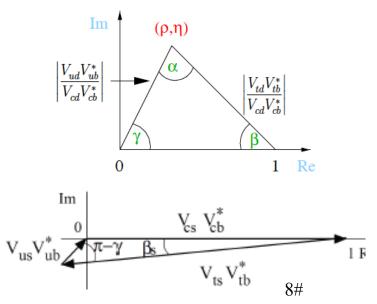
- \triangleright Improved measurements of γ at LHCb
- \succ Improved measurements of φ_s at ATLAS and LHCb
- Improved $|V_{cb}|$ and $|V_{ub}|$ measurements. Persistent tension between measurements using exclusive and inclusive decays. New measurements of $|V_{cb}|$ at Belle and BaBar. $|V_{ub}|$ measurement at LHCb using Λ_b decays



Reminder: How we access the CKM phase

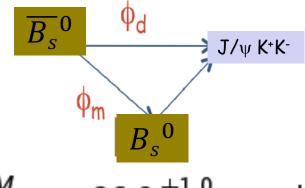
$$A_{cp(t)} = \frac{\Gamma(B^{0}(t) \to f_{cp}) - \Gamma((\bar{B}^{0}(t) \to f_{cp})}{\Gamma(B^{0}(t) \to f_{cp}) + \Gamma((\bar{B}^{0}(t) \to f_{cp})} = sin2(\varphi_{m} - \varphi_{d})sin\Delta mt$$

Reminder: How we access the CKM phase



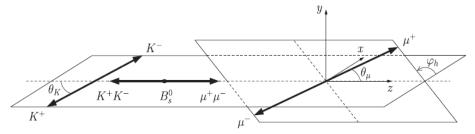
$$A_{cp(t)} = \frac{\Gamma(B^0(t) \to f_{cp}) - \Gamma((\bar{B}^0(t) \to f_{cp})}{\Gamma(B^0(t) \to f_{cp}) + \Gamma((\bar{B}^0(t) \to f_{cp})} = sin2(\varphi_m - \varphi_d)sin\Delta mt$$

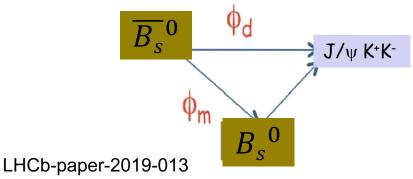
With careful set up of the initial and final states:

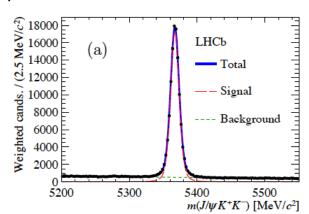

$$B_{d} \rightarrow J/\psi K^{0}_{s} :: \quad \beta \propto \arg(V_{td}^{*}) \sim 24^{o}$$

$$B_{s} \rightarrow J/\psi K^{+}K^{-} :: \quad \varphi_{s} (= -2\beta_{s}) \propto \arg(V_{ts}^{*}) \sim 1^{o}$$

Improved measurements of $\phi_s = -2\arg(-\frac{V_{ts} V_{tb}^*}{V_{cs} V_{cb}^*})$

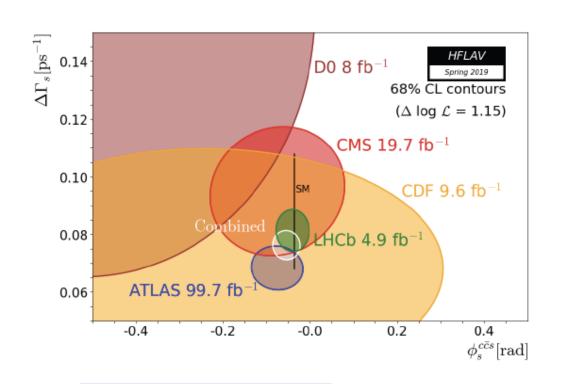

- · From Time-dependent CPV in:
- $B_S^0 \rightarrow J/\psi K^+K^- [\phi \rightarrow K+K-, s-wave (K+K-)]$
- $B_s^0 \rightarrow J/\psi K^+K^-$ -high-mass region
- $B_S^0 \rightarrow J/\psi \pi^+ \pi^-$
- $B_S^0 \rightarrow \psi(2s) \text{ K}^+\text{K}^-$


$$\phi_s^{SM} = -36.8^{\,+1.0}_{\,-0.8}$$
 mrad


Improved measurements of $\phi_s = -2\arg(-\frac{V_{ts} V_{tb}^*}{V_{cs} V_{ch}^*})$

- From Time-dependent CPV in:
- $B_s^0 \rightarrow J/\psi K^+K^- [\phi \rightarrow K+K-, s-wave (K+K-)]$
- $B_s^0 \rightarrow J/\psi K^+K^-$ -high-mass region
- $B_S^0 \rightarrow J/\psi \pi^+ \pi^-$
- $B_S^0 \rightarrow \psi(2s) \text{ K}^+\text{K}$
- Mixture of CP odd & CP even states-Angular analysis required to extract CPV info.

The decay is described in terms of four helicity amplitudes


>Observables:
$$\phi_s$$

$$\Delta\Gamma = \Gamma_H - \Gamma_{L,}$$

$$\Delta m = m_H - m_L$$

Improved measurements of $\phi_s = -2\arg(-\frac{V_{ts} V_{tb}^*}{V_{cs} V_{cb}^*})$

Recent major improvements from ATLAS and LHCb

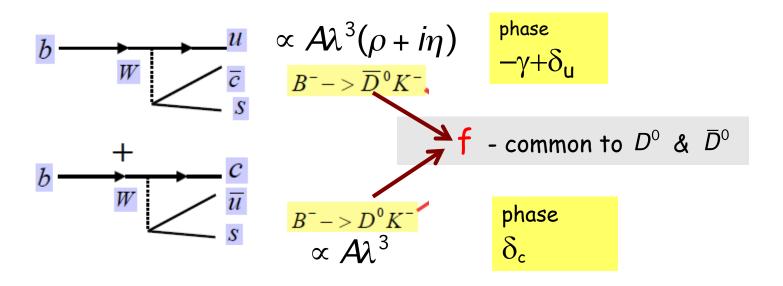
ATLAS
$$\phi_s$$
=-76±39 mrad $\Delta\Gamma_s$ =0.068±0.005 ps ⁻¹

LHCb

$$\phi_s$$
=-41 \pm 25 mrad
 $\Delta\Gamma_s$ =0.0816 \pm 0.0048 ps ⁻¹

HFLAV average

$$\phi_s\!=\!-55\pm21\,\mathrm{mrad}$$

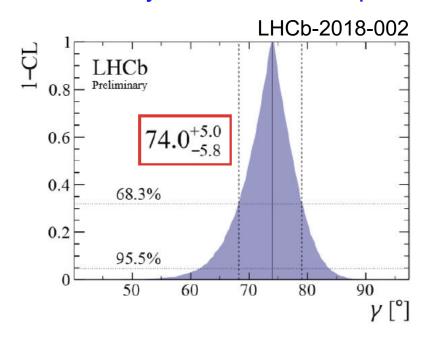

$$\Delta\Gamma_s = 0.0764 \pm 0.0024 \,\mathrm{ps}^{-1}$$

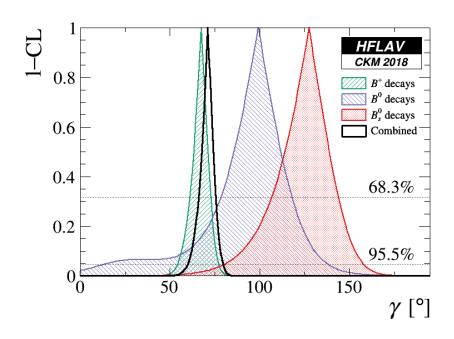
Consistent with SM- but a long way to reach the theory precision

$$\phi_s^{\it SM} = -36.8\,^{+1.0}_{-0.8}$$
 mrad

Improved Measurement of $\gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{ch}^*})$

Yet another interferometer but w/o mixing: Interference of tree level b->c & b->u amplitudes




$$A[B^- \to (D \to f)K^-] = A_c A_f e^{i(\delta_c + \delta_f)} + A_u A_{\bar{f}} e^{i(\delta_u + \delta_{\bar{f}} - \gamma)}$$

Improved Measurement of

$$\gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$$

Most significant recent advances have come from LHCb Analysis of Run 1 and part of Run 2 data.

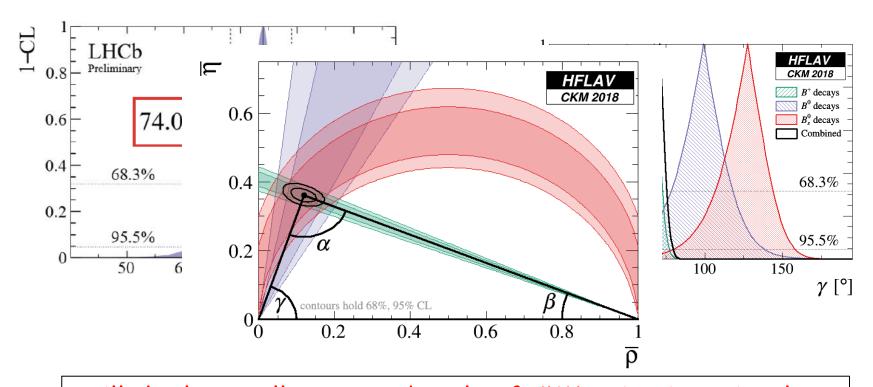
BaBar: $\gamma = (69^{+17}_{-16})^{\circ}$ $\gamma = (73^{+13}_{-15})^{\circ}$

Belle:

LHCb:

 $\gamma = (74.0^{+5.0}_{-5.8})^{o}$

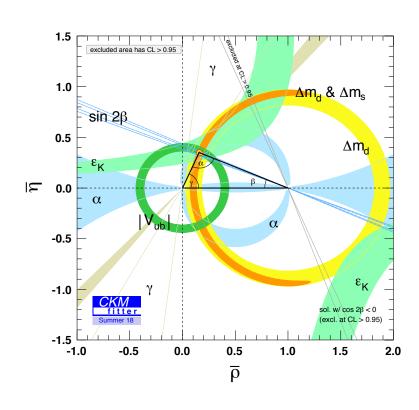
combined:

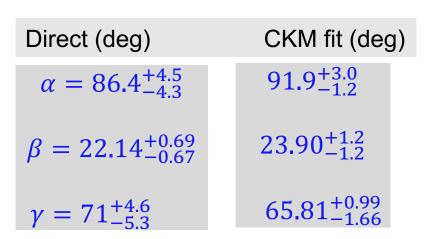

 $\gamma = (71.0^{+4.6}_{-5.3})^{\circ}$

Improved Measurement of

$$\gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{ch}^*})$$

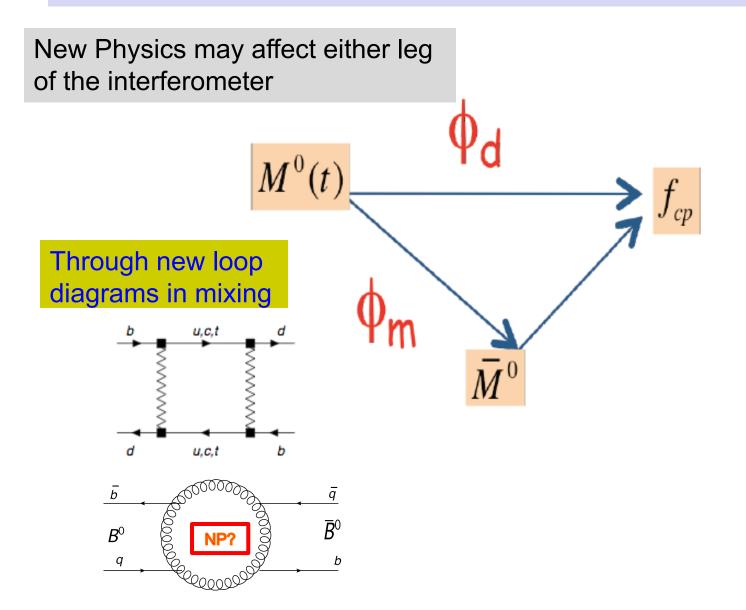
Most significant recent advances have come from LHCb Analysis of Run 1 and part of Run 2 data.


combined: $\gamma = (71.0^{+4.6}_{-5.3})^{o}$

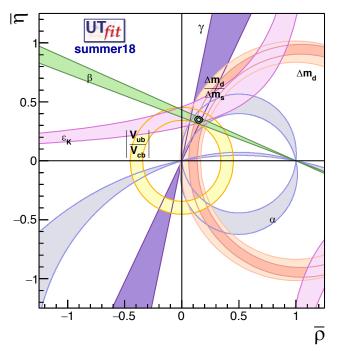


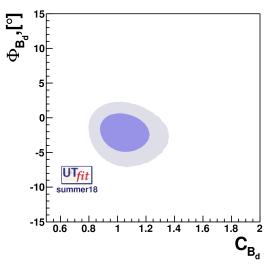
Still the less well measured angle of CKM unitarity triangle-Super-flavor experiments aim for <1° accuracy

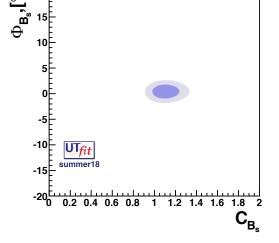
Status of CKM (2018)


The CKM picture in 2019: Still no major inconsistency

Implication for New Physics effects?


New Physics Through Mixing

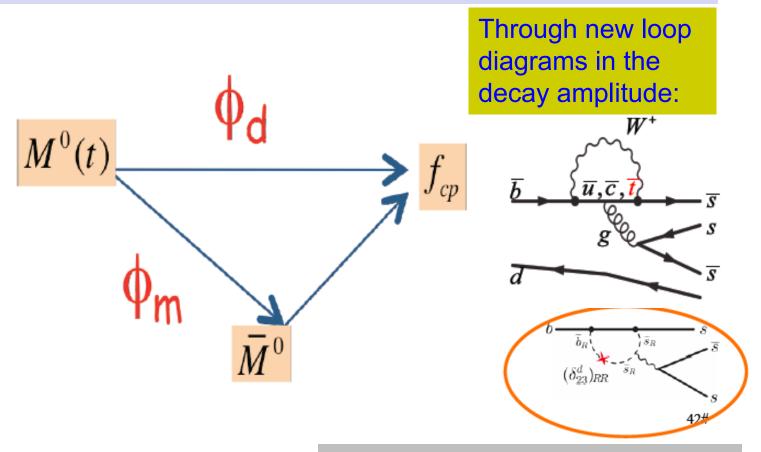



New Physics Through Mixing

Fit the data allowing departure from SM in B⁰ mixing amplitude

$$C_{B_q}\,e^{2i\phi_{B_q}} = \frac{\langle B_q^0|H_{\rm eff}^{\rm full}|\bar{B}_q^0\rangle}{\langle B_q^0|H_{\rm eff}^{\rm SM}|\bar{B}_q^0\rangle}\,,$$
 From the UT_{fit}

$$C_{Bd} = 1.05 \pm 0.11$$


$$\varphi_{Bd} = -2.0 \pm 1.8$$

$$C_{BS} = 1.110 \pm 0.090$$

$$\varphi_{BS} = 0.42 \pm 0.89$$

Consistent With SM

New Physics Through Decay

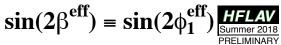
New Physics loops can lead to deviation of CPV from sin2β

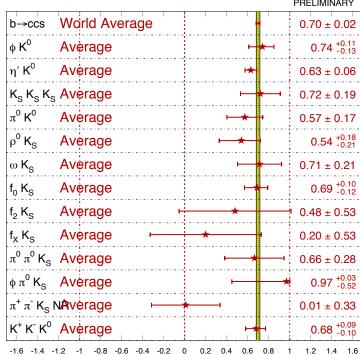
Penguin dominated B⁰ decays: Measurements of "sin2 β ", " ϕ_s "

New addition from B_s^0 to this program

$$\phi_s$$
 from $B_s^0 \rightarrow \phi \phi$ (penguin dominated process)-Analog of $B_d^0 \rightarrow \phi K_s$

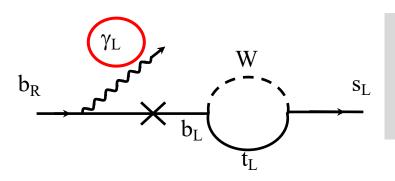
$$\phi_s$$
= -73 ± 115 ± 27 (mrad) λ =0.99 ± 0.05 ± 0.01

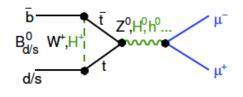

Consistent with SM:

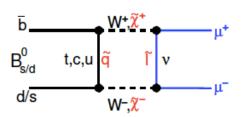

$$\phi_s^{SM} = -36.8^{\,+1.0}_{\,-0.8}$$
 mrad

Naïve average of "sin2β"_pnguins:

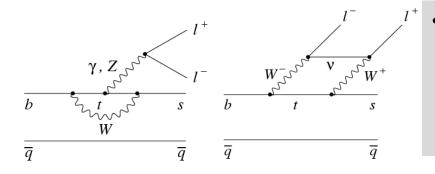
 0.648 ± 0.038


From (b \rightarrow ccs): 0.70 \pm 0.02




Current results are consistent with SM. Caution: theoretical uncertainties are not well defined.

Footprint of New Physics in FCNC Processes


- Offers several observables sensitive to NP: Rate, CPV, polarization of photon(Soni et al)
- All measurements consistent with SM- Precision measurements expected from Belle-II and LHCb

SM:
$$Br(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$$

PRL 112, 101801

Finally seen (LHCb, CMS & ATLAS) – consistent with SM – sets severe constraints on BSM

- Precision of observables significantly improved with the LHCb data
 - Angular distributions & Lepton Flavor
 Universality tests are in tension with SM

Tests of Lepton Flavor Universality (LFU)

Lepton Flavor Universality (LFU) is enshrined in the SM:

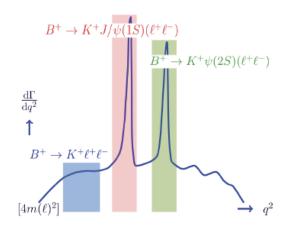
The three lepton flavors couple with equal strength to gauge bosons. Interaction outcomes differ only due to the effects of lepton masses.

✓ Current Data – some very precise- is mostly consistent with LFU.

Observable	Measurement	Expected
$\frac{B(Z \to \mu^+ \mu^-)}{B(Z \to e^+ e^-)}$	1.0009 ± 0.0028	1.0
$\frac{B(Z \to \tau^+ \tau^-)}{B(Z \to e^+ e^-)}$	1.0019 ± 0.0032	1.0
$R^{W}(\tau\mu e) = \frac{2\times B(W^{\pm} \to \tau^{\pm}\bar{\nu}_{\tau})}{B(W^{\pm} \to e^{\pm}\bar{\nu}_{e}) + B(W^{\pm} \to \mu^{\pm}\bar{\nu}_{\mu})}$	1.077 ± 0.026	0.999
$R(K_{\mu e}) = \frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)}$ $R(\pi_{\mu e}) = \frac{\Gamma(\pi^+ \to e^+ \nu)}{\Gamma(\pi^+ \to \mu^+ \nu)}$	$(2.488 \pm 0.009) \times 10^{-5}$	$(2.472 \pm 0.001) \times 10^{-5}$
$R(\pi_{\mu e}) = \frac{\Gamma(\pi^+ \to e^+ \nu)}{\Gamma(\pi^+ \to \mu^+ \nu)}$	$(1.230 \pm 0.004) \times 10^{-4}$	$(1.2354 \pm 0.0002) \times 10^{-4}$
$(g_{\mu}/g_e)_{\pi}$	1.0021 ± 0.0015	1.0
$(g_{\mu}/g_e)_{\tau}$ (from $R(\tau_{\mu e}) = \frac{B(\tau^+ \to \mu^+ \nu_{\mu} \bar{\nu}_{\tau})}{B(\tau^+ \to e^+ \nu_e \bar{\nu}_{\tau})}$)	1.0018 ± 0.0014	1.0
(g_{τ}/g_{μ}) (from $R(\tau_{\mu e}) = \frac{B(\tau^+ \to \mu^+ \nu_{\mu} \bar{\nu}_{\tau})}{B(\mu^+ \to e^+ \nu_e \bar{\nu}_{\tau})}$)	1.0011 ± 0.0015	1.0
$(g_{\tau}/g_{\mu}) \text{ (from } R(\tau_{K\mu}) = \frac{B(\tau^{+} \to K^{+}\nu_{\tau})}{B(K^{+} \to \mu^{+}\nu_{\mu})})$	0.9850 ± 0.0054	1.0
$R(Ds_{\tau\mu}) = \frac{\Gamma(D_s^+ \to \tau^+ \nu_{\tau})}{\Gamma(D_s^+ \to \mu^+ \nu_{\mu})}$	$(10.9^{+1.3}_{-1.2}) \times 10^{-2}$	$(8.65^{+1.65}_{-1.43}) \times 10^{-2}$
$R(\Upsilon(1S)_{\tau\mu}) = \frac{\Gamma(\Upsilon(1S) \to \tau^+ \tau^-)}{\Gamma(\Upsilon(1S) \to \mu^+ \mu^-)}$	1.005 ± 0.0255	0.992
$R(D^*)_{e\mu} = \mathcal{B}(\bar{B}^0 \to D^{*-}e^-\bar{\nu}_e)/\mathcal{B}(\bar{B}^0 \to D^{*-}\mu^-\bar{\nu}_\mu)$	1.01 ± 0.03	1.0
$R(D) = \mathcal{B}(\bar{B}^0 \to D^0 \tau^- \bar{\nu}_{ au}) / \mathcal{B}(\bar{B}^0 \to D^0 \mu^- \bar{\nu}_{\mu})$	0.440 ± 0.42	0.299 ± 0.003
$R(D^*) = \mathcal{B}(\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu})$	0.332 ± 0.182	0.258 ± 0.003
$R(J/\psi) = \mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau) / \mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)$	0.71 ± 0.25	0.297 ± 0.007

Hints of non-LFU effects in the 3rd generation first emerged at BaBar

Tests of Lepton Flavor Universality in $B \rightarrow K^{(*)} \ell^+ \ell^-$


u vs e

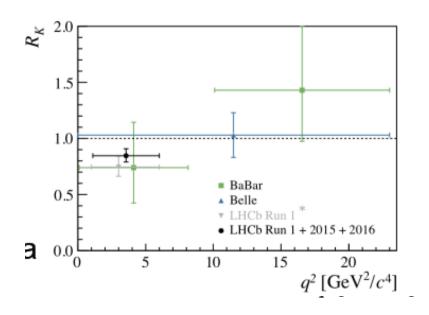
<u>Tests of Lepton Flavor Universality</u>: $B \rightarrow K^{(*)} \ell^+ \ell^-$

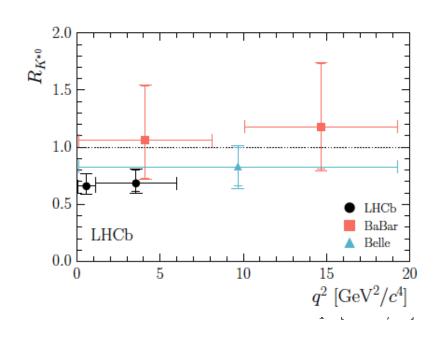
$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

Within SM: $R_{K^{(*)}} = 1 + O(<1\%)$

- Measurements performed in q² bins
- ➤ Region of q²<6 GeV² avoids charmonium resonances & has clean theoretical predictions
- Resonance regions provide powerful checks on the analysis

LHCb and recent Belle Measurements performed as

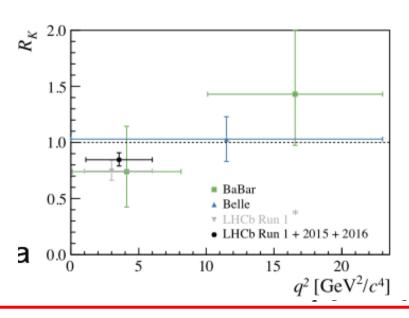

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to J/\psi \, (\to \mu^+ \mu^-) K^+)} / \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to J/\psi \, (\to e^+ e^-) K^+)} \,.$$

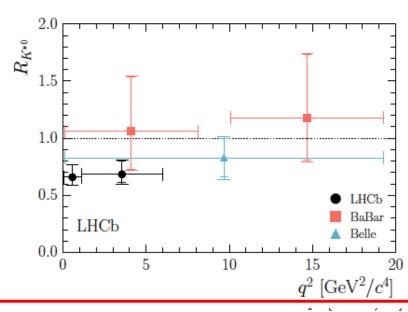

$$r_{J/\psi} = \mathcal{B}(B^+ \to J/\psi \, (\to \mu^+ \mu^-) K^+) / \mathcal{B}(B^+ \to J/\psi \, (\to e^+ e^-) K^+) = 1$$
• Check that
$$R_K^{\psi(2S)} = \frac{\mathcal{B}(B^+ \to \psi(2S)(\to \mu^+ \mu^-) K^+)}{\mathcal{B}(B^+ \to J/\psi \, (\to \mu^+ \mu^-) K^+)} / \frac{\mathcal{B}(B^+ \to \psi(2S)(\to e^+ e^-) K^+)}{\mathcal{B}(B^+ \to J/\psi \, (\to e^+ e^-) K^+)} = 1$$

Tests of Lepton Flavor Universality: $B \rightarrow K^{(*)} \ell^+ \ell^-$

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

Within SM: $R_{K(*)} = 1$





Tests of Lepton Flavor Universality: $B \rightarrow K^{(*)} \ell^+ \ell^-$

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

Within SM: $R_{K(*)} = 1$

Hints of departure from LFU in LHCb data

LHCb-PAPER-2019-009

LHCb: Run1+2015 &2016

$$R_K = 0.846^{+0.060}_{-0.054} \text{ (stat)} ^{+0.014}_{-0.016} \text{ (syst)}$$

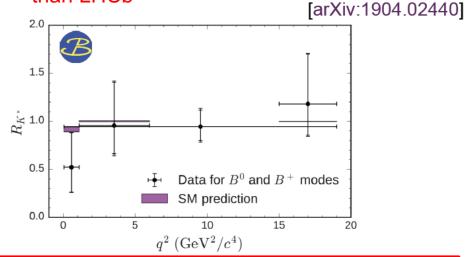
Within 2.5 σ of SM

$$R_{\kappa^*} = 0.660^{+0.110}_{-0.070} \pm 0.024 \ low - q^2$$

$$R_{\kappa^*} = 0.685^{+0.113}_{-0.009} \pm 0.047 \ high - q^2$$

Within 2.1-2.3 σ & 2.4-2.5 σ of SM JHEP 08(2017)055

25#


<u>Tests of Lepton Flavor Universality</u>: $B \rightarrow K^{(*)} \ell^+ \ell^-$

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

2.0 LHCb 1.5 1.0 0.5 BaBar Belle LHCb Run 1* LHCb Run 1 + 2015 + 2016 Q² [GeV²/c⁴]

Within SM: $R_{K(*)} = 1$

New **Belle** Measurement over full q² compatible with SM & LHCb- still precise than LHCb

Hints of departure from LFU in LHCb data

LHCb-PAPER-2019-009

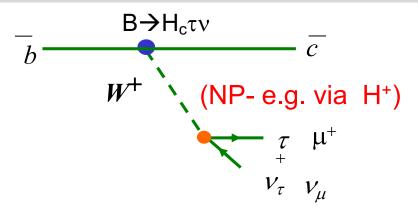
LHCb: Run1+2015 &2016

$$R_K = 0.846^{+0.060}_{-0.054} \text{ (stat)} ^{+0.014}_{-0.016} \text{ (syst)}$$

Within 2.5 σ of SM

$$R_{\kappa^*} = 0.660^{+0.110}_{-0.070} \pm 0.024 \ low - q^2$$

$$R_{\kappa^*} = 0.685^{+0.113}_{-0.069} \pm 0.047 \ high - q^2$$

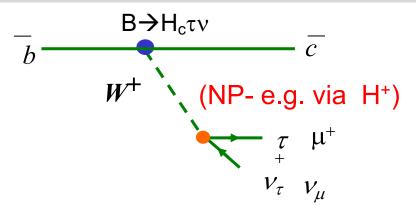

Within 2.1-2.3 σ & 2.4-2.5 σ of SM

JHEP 08(2017)055

Tests of Lepton Flavor Universality in Semileptonic decays: $B \rightarrow H_c \ell \nu$

$$\tau$$
 vs μ/e

Tests of Lepton Flavor Universality: τ vs μ

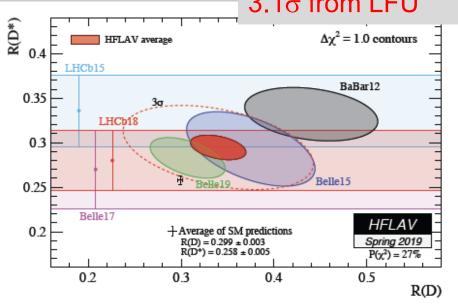

In SM, decays to $\mu \ \& \ \tau$ differ only due to the lepton mass differences

- •Ratio of Branching ratios are theoretically and experimentally very "clean" probes of LFU
 - Most hadronic uncertainties & CKM dependences cancel
 - Many experimental uncertainties also cancel

$$R(D^{(*)}) = \frac{B(\overline{B} \to D^{(*)} \tau \overline{\nu})}{B(\overline{B} \to D^{(*)} \mu \overline{\nu})}$$

$$R(J/\psi) = \frac{B(B_c^+ \to J/\psi \tau^+ \overline{\nu})}{B(B_c^+ \to J/\psi \mu^+ \overline{\nu})}$$

Tests of Lepton Flavor Universality: τ vs μ


In SM, decays to $\mu \& \tau$ differ only due to the lepton mass differences

- •Ratio of Branching ratios are theoretically and experimentally very "clean" probes of LFU
 - Most hadronic uncertainties & CKM dependences cancel
 - Many experimental uncertainties also cancel

$R(D^{(*)}) = \frac{B(\overline{B} \to D^{(*)} \tau \overline{\nu})}{B(\overline{B} \to D^{(*)} \mu \overline{\nu})}$

$$R(J/\psi) = \frac{B(B_c^+ \to J/\psi \tau^+ \overline{\nu})}{B(B_c^+ \to J/\psi \mu^+ \overline{\nu})}$$

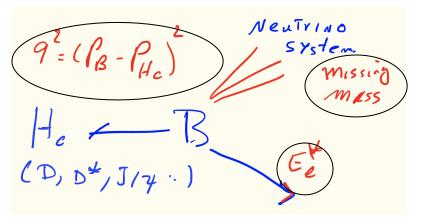
Current Status 3.1σ from LFU

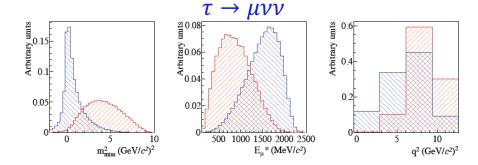
How well do we know the SM predictions?

Adopted from Dean Robinson (DPF2019)

Coll.	Approach	R(D)	$R(D^*)$	corr.
1607.00299 [FLAG]	Lattice	0.300 ± 0.008	_	_
1606.08030 [Bigi, Gambino]	Lattice + Belle/BaBar	0.299 ± 0.003	_	_
1203.2654 [Fajfer, Kamenik, Nisandzic]	Cont.+ Belle	_	0.252 ± 0.003	_
1703.05330 [Bernlochner, Ligeti, Papucci, & DR]	Lattice + Belle + HQET NLO	0.299 ± 0.003	0.257 ± 0.003	0.44
1707.09509 [Bigi, Gambino, Schacht]	${\sf BGL+BLPR+1/m_c^2}$ error estimate	_	0.260 ± 0.008	_
1707.09977 [Jaiswal, Nandi, Patra]	${\sf BGL/HQET} + 1/m_c^2$ parameter	0.299 ± 0.004	0.257 ± 0.005	~ 0.1
HFLAV	Arithmetic average	0.299 ± 0.003	$\boldsymbol{0.258 \pm 0.005}$	=

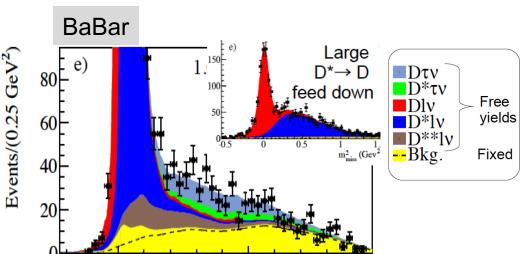
 $R(J/\psi)$: 0.290 \pm 0.007


Preliminary Lattice result


Uncertainties dominated by the scalar Form-Factor - significant only for the tau channel & unconstrained by data

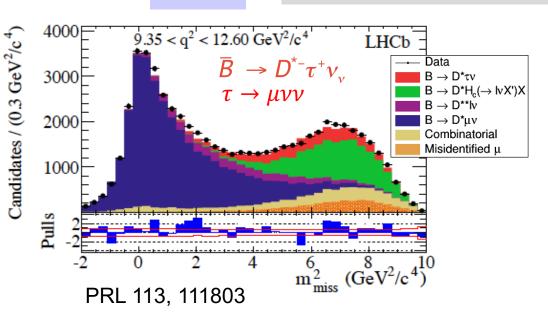
Experimental measurements

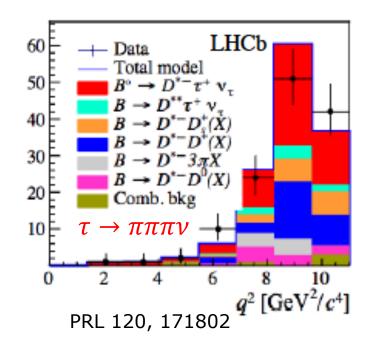
Semileptonic decays are usually analyzed in the B rest frame kinematic variables:

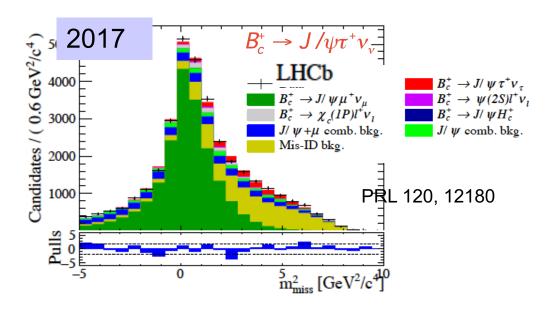

$$B \rightarrow H_c \ell \nu$$
, $[\ell = e, \mu, \tau \ (with \tau \rightarrow \mu \nu \nu, \tau \rightarrow 3\pi \nu, ...)]$

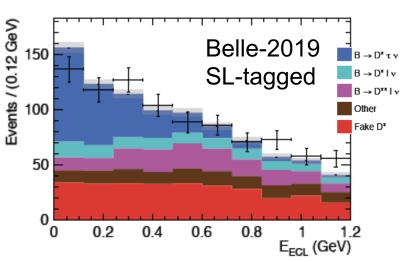
Equivalent/alternative kinematic variables for

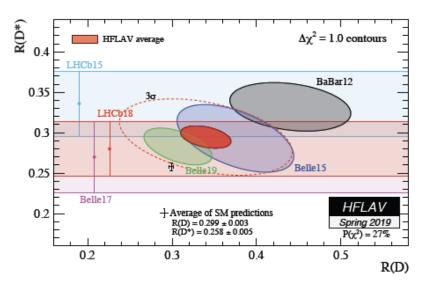
$$\tau \rightarrow 3\pi \nu$$

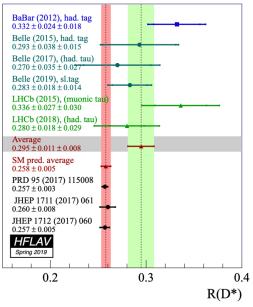


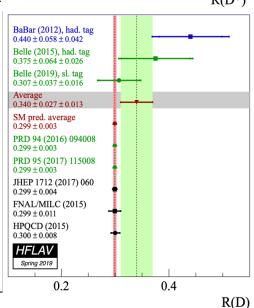

Note:many contributors to the distribution- some can be constrained/determined along with signal, others need theoretical input on Form Factors and rates.


2015

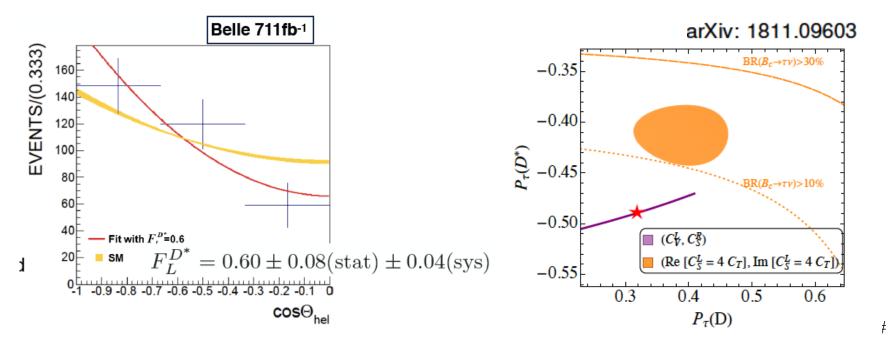

LHCb and Belle measurements


2017





Overall: 3.1 σ tension with LFU/SM

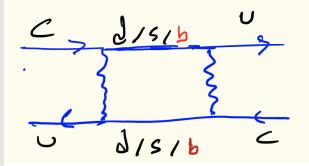

- ➤ All results exceed SM predictions
 - Latest Belle results consistent with SM & others
- ➤ No single measurement is yet at or beyond 3 sigma from SM
- >Extensive literature on theoretical interpretations:
 - ➤ New Spin-1 states, W', Z', or leptoquarks are favored.
 - \triangleright New scalars (incl. charged Higgs) disfavored by constraints on B_c→τν

 $R(J/\psi) = 0.71 \pm 0.17 \pm 0.18$

Near Future:

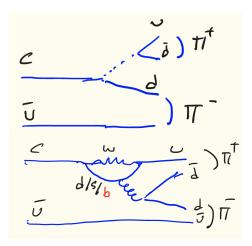
- Improved precision of measurements with Belle-II and LHCb data:
 - Simultaneous R(D) and R(D*) from LHCb
 - R(D*) (with hadronic tau decay), R(Ds), R(Λc), R(J/psi)
- Much Later: Additional observables that may help distinguish new physics sources of LFU:
 - D* polarization FL(D*)
 - Tau polarization: $P_{\tau}(D^*) = \frac{\Gamma(\tau^{\lambda=+1/2}) \Gamma(\tau^{\lambda=-1/2})}{\Gamma(\tau^{\lambda=+1/2}) + \Gamma(\tau^{\lambda=-1/2})}$ $P_{\tau}(D) = \frac{\Gamma(\tau^{\lambda=+1/2}) \Gamma(\tau^{\lambda=-1/2})}{\Gamma(\tau^{\lambda=+1/2}) + \Gamma(\tau^{\lambda=-1/2})}$
 - CPV in angular distributions of B→D*(→Dπ)τν

Search for new Sources of CP Violation:


CPV in charm decays

Within SM: CPV in charm decays is very small

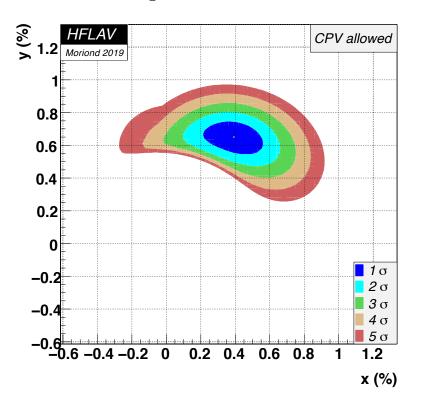
>CPV requires contribution from all three generations:

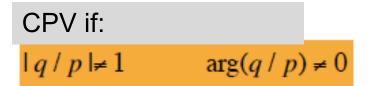

>CPV in DO mixing:

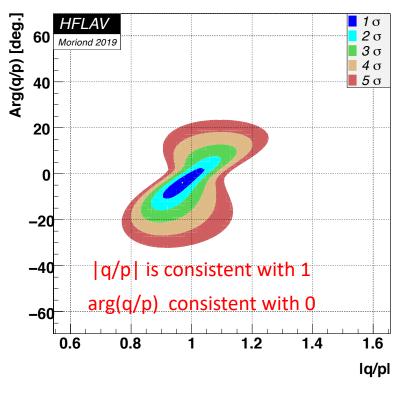
Dominant contributions are from the 1st two generations \rightarrow negligible CPV in DO mixing

Direct CPV from interference of Tree and penguin diagrams- also dominated by the 1st two generations; →negligible direct CPV

loops with some b-quark contributions can induce small CPV $\sim O(|V_{ub}V^*_{cb}/V_{ud}V^*_{cd}|) \sim \lambda^4 << 10^{-3}$




CP Violation in D^0 mixing


Mixing is firmly established but no evidence for CPV in mixing

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$$

$$X = \frac{\Delta m}{\Gamma} \qquad y = \frac{\Delta \Gamma}{\Gamma}$$

Direct CPV in the charm system

$$A_{cp} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

Searches performed in a large number of channels: No evidence for CPV Precision in some channels at $\sim O(10^{-3})$ level already:

Channel
$$A_{cp}$$
 (%) (From 2017 HFLAV averages)

D⁰→π⁺π⁻ +0.00 ± 0.15

D⁰→K⁰_sπ⁰ -0.20 ± 0.17

D⁰→K⁺K⁻ -0.16 ± 0.12

D⁺→K⁰_sπ⁺ -0.41 ± 0.09

D⁺→K⁰_sK⁺ -0.11 ± 0.25

D⁺_s→K⁰_sK⁺ +0.08 ± 0.26

D⁺_s→K⁰_sπ⁺ -0.38 ± 0.48

Direct CPV in the charm system

$$A_{cp} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

Searches performed in a large number of channels: No evidence for CPV Precision in some channels at $\sim O(10^{-3})$ level already:

 $>3\sigma$ Expect $A_{cp} \sim -0.33\%$ induced by indirect CPV in K⁰

The LHCb data (Runs I & II) enables yet another major step in precision $\rightarrow O(10^{-4})$

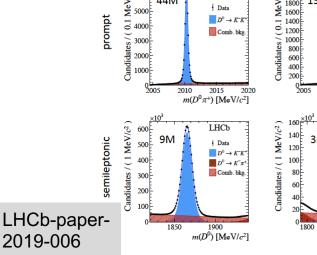
Observation of Direct CP violation in charm decays at LHCb

$$\Delta A_{cp} = A_{raw}(K^+K^-) - A_{raw}(\pi^+\pi^-) = A_{cp}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

The idea is that: $A_{raw}(D \rightarrow h+h-)=A_{cp}(h+h-)+A(det)+A(prod)$

2019-006

Common to both channels


Flavor of D⁰ is tagged via: $D^{*+} \rightarrow D^{0}\pi^{+}$ or from B $\rightarrow D \mu^{+} \vee X$

CP violation observed at 5.3 sigma

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

$$\Delta A_{CP} \simeq \Delta a_{CP}^{dir} \left(1 + \frac{\langle \bar{t} \rangle}{\tau_{D^0}} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau_{D^0}} a_{CP}^{ind}$$

$$\Delta a_{cp}^{dir} = (-15.6 \pm 2.9) \times 10^{-4}$$

LHCb

2015 $m(D^0\pi^+)$ [MeV/ c^2]

 $D^0 \rightarrow K^-\pi^-$

 $m(D^0)$ [MeV/ c^2]

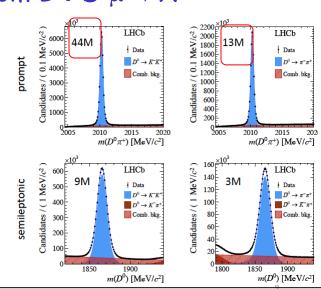
1850

Observation of Direct CP violation in charm decays at LHCb

$$\Delta A_{cp} = A_{raw}(K^+K^-) - A_{raw}(\pi^+\pi^-) = A_{cp}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

The idea is that: $A_{raw}(D \rightarrow h+h-)=A_{cp}(h+h-)+A(det)+A(prod)$

Common to both channels

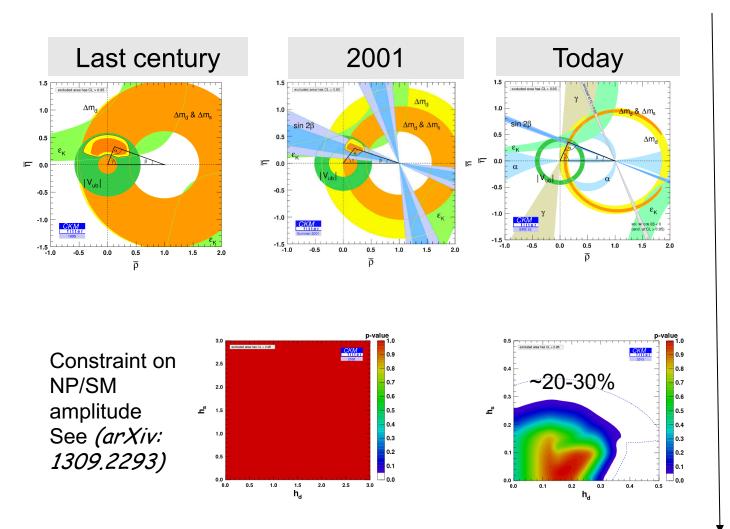

Flavor of D⁰ is tagged via: $D^{*+} \rightarrow D^{0}\pi^{+}$ or from B $\rightarrow D$ $\mu^{+} \vee X$

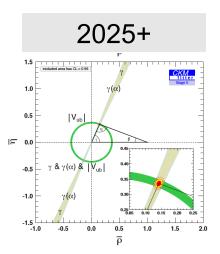
CP violation observed at 5.3 sigma

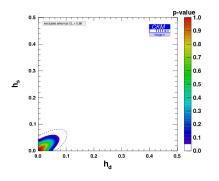
$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

$$\Delta A_{CP} \simeq \Delta a_{CP}^{dir} \left(1 + \frac{\langle \bar{t} \rangle}{\tau_{D^0}} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau_{D^0}} a_{CP}^{ind}$$

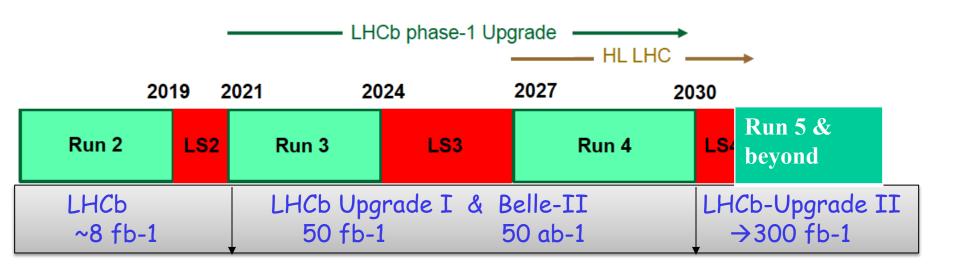
$$\Delta a_{cp}^{dir} = (-15.6 \pm 2.9) \times 10^{-4}$$



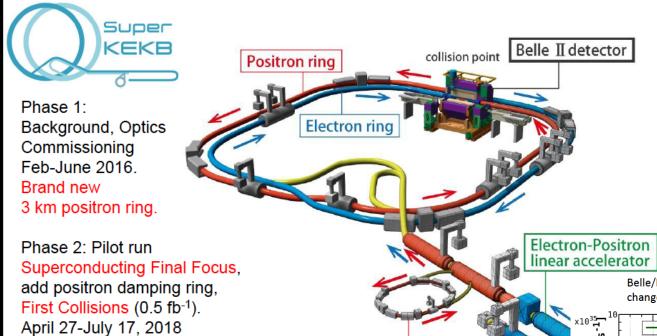

Not too far from SM (~10⁻³). Specific mechanism yet to be determined: (Soni 2019), (Silvestrini et al 2019), Grossman & Schacht. Too soon to invoke BSM observation.


41#

Future


Toward precision Flavor Physics-O(1%): CKM and Rare Decays & much more

Experimental Landscape

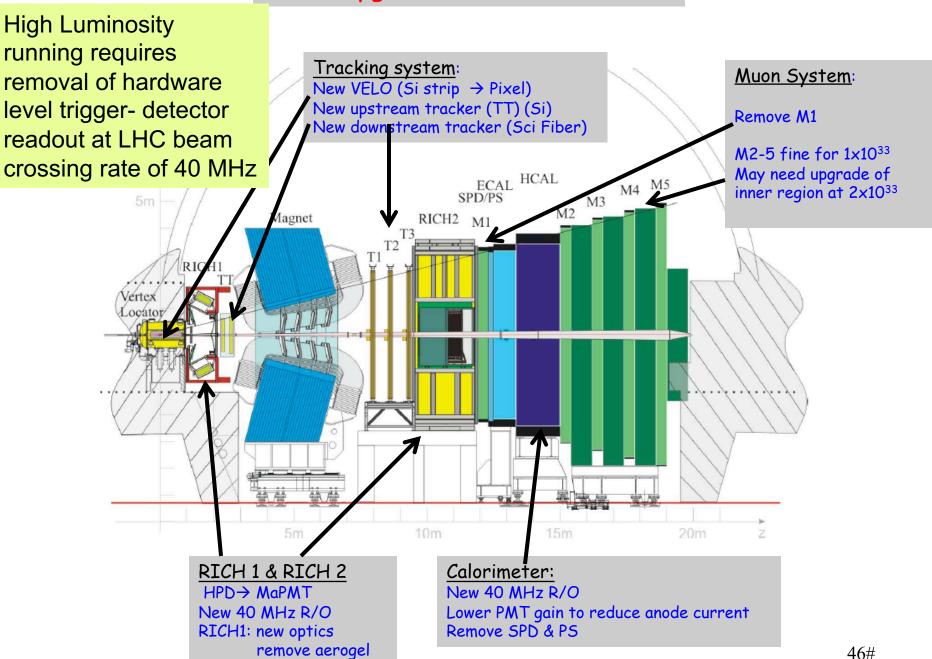

Belle-II at SuperKEKB

Tom Browder at Lepton – Photon 2019

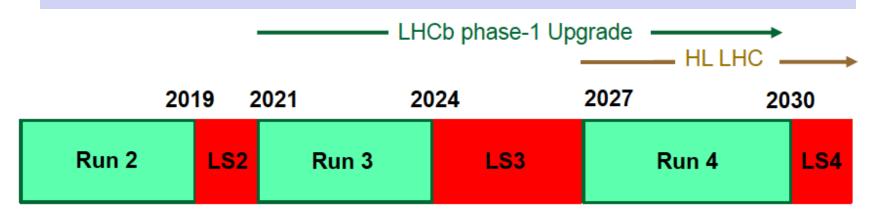
Phase 3: → Physics run (March

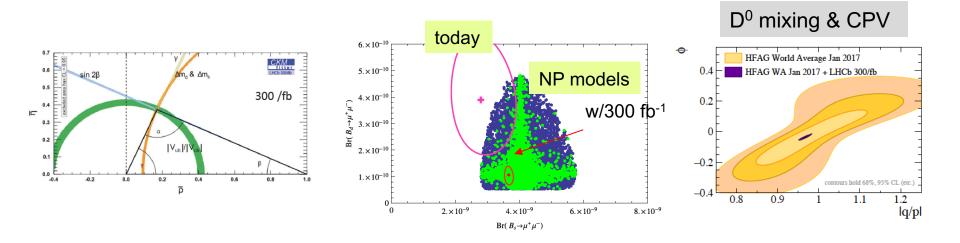
27-June 30th, 2019)

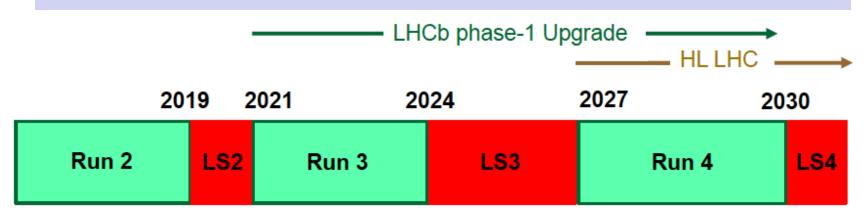
SuperKEKB, the first new collider in particle physics since the LHC in 2008 (electron-positron (e⁺e⁻) rather than proton-proton (pp))



Positron damping ring


Belle/KEKB recorded ~1000 fb⁻¹. Now have to change units on the y-axis to ab⁻¹


LHCb Upgrade-I in installation


LHCb Upgrade-II: Physics Goals

Expression-of-Interest & Physics Potential documents submitted for LHCb Upgrade-II

Upgrade-II: Challenges

Major challenges for LHC & LHCb at peak Luminosity of 2x10³⁴ /cm²/s:

- \triangleright Current studies indicate 2x10³⁴ is possible with changes to IP optics (β^* reduction) & shielding. Triplet lifetime may limit integ. Lum. to \sim 300 fb⁻¹
- ➤ At Int/crossing ~50 (vs 1.1 now) & Track Multiplicity as high as 3500:
 - ➤ Will need a new tracking system & thinner pixels with finer granularity & time measurements in VELO
 - ➤ Improved PID & Calorimetry (with fine granularity- e.g. SiW)
 - ➤ Will need innovative solutions to enormous increase in data rate (>>ATLAS & CMS)
- ➤ Next: narrow the space of solutions and develop TDR

Summary comments

- Flavor physics remains one of the primary drivers of the search for the physics beyond SM, as most scenarios of New Physics are expected to leave a footprint in flavor processes.
 - The current data is consistent with the Standard Model, setting severe constraints on scenarios of New Physics, but many stones remain unturned.
 - > There are some areas of tensions with SM, waiting for more precise measurements. Lepton Flavor Universality is under the microscope.
- The next phase of the flavor physics program with Belle-II and LHCb upgrades I & II will result in a much sharper picture of the physics of flavor- will resolve or solidify some of the current anomalies with potential to reveal solid evidence for new physics.