Vacuum Stability & Symmetry Breaking in Left-Right Symmetric Model

Garv Chauhan
Washington University in St. Louis, USA

BROOKHAVEN FORUM 2019
Particle Physics and Cosmology in the 2020s
Sept 26, 2019

GC [ArXiV: 1907.07153]
• The Standard Model (SM) has been highly successful but it leaves many unanswered questions such as tiny neutrino masses and asymmetric chiral structure of electroweak gauge group.
The Standard Model (SM) has been highly successful but it leaves many unanswered questions such as tiny neutrino masses and asymmetric chiral structure of electroweak gauge group.

A natural extension of the SM is Left-Right Symmetric model (LRSM), which treats left & right chiralities on equal footing at high-energies. Pati, Salam (PRD ’74) Mohapatra, Pati (PRD ’75) Senjanovic, Mohapatra (PRD ’75)
The Standard Model (SM) has been highly successful but it leaves many unanswered questions such as tiny neutrino masses and asymmetric chiral structure of electroweak gauge group.

A natural extension of the SM is Left-Right Symmetric model (LRSM), which treats left & right chiralities on equal footing at high-energies. Pati, Salam (PRD ’74) Mohapatra, Pati (PRD ’75) Senjanovic, Mohapatra (PRD ’75)

It also features heavy right-handed Majorana neutrinos, and thus explains small masses of neutrinos via see-saw mechanism.
An important problem with the SM is the stability of the scalar Higgs potential at high-energies.
• An important problem with the SM is the stability of the scalar Higgs potential at high-energies.
• For stability of the scalar potential in the SM, positivity of the Higgs quartic coupling λ_h is required.
An important problem with the SM is the stability of the scalar Higgs potential at high-energies.

For stability of the scalar potential in the SM, positivity of the Higgs quartic coupling λ_h is required.

λ_h becomes negative at a scale of around 10^{10} GeV, making the SM vacuum unstable. Isidori, Ridolfi, Strumia (Nucl.Phys ’01)
• An important problem with the SM is the stability of the scalar Higgs potential at high-energies.
• For stability of the scalar potential in the SM, positivity of the Higgs quartic coupling λ_h is required.
• λ_h becomes negative at a scale of around 10^{10} GeV, making the SM vacuum unstable. Isidori, Ridolfi, Strumia (Nucl.Phys ’01)
• This motivates us to ensure the stability of the scalar Higgs potential in LRSM as a candidate for beyond SM.
Particle Content of LRSM

<table>
<thead>
<tr>
<th></th>
<th>SU(2)$_L$</th>
<th>SU(2)$_R$</th>
<th>U(1)$_{B-L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_L</td>
<td>(u_L)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(d_L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_R</td>
<td>(u_R)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(d_R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_L</td>
<td>(ν_L)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(e_L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_R</td>
<td>(N)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(e_R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φ</td>
<td>(ϕ_0^0)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(ϕ_1^-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ϕ_2^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_L</td>
<td>($\frac{1}{\sqrt{2}}\Delta_L^0$)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Δ_L^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>($-\frac{1}{\sqrt{2}}\Delta_L^0$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_R</td>
<td>($\frac{1}{\sqrt{2}}\Delta_R^0$)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Δ_R^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>($-\frac{1}{\sqrt{2}}\Delta_R^0$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
V = -\mu_1^2 \text{Tr}[\phi^\dagger \phi] - \mu_2^2 \left(\text{Tr}[\bar{\phi}^\dagger \phi] + \text{Tr}[\bar{\phi}^\dagger \phi] \right) - \mu_3^2 \left(\text{Tr}[\Delta_L \Delta_L^\dagger] + \text{Tr}[\Delta_R \Delta_R^\dagger] \right) + \lambda_1 \text{Tr}[\phi^\dagger \phi]^2 \\
+ \lambda_2 \left(\text{Tr}[\bar{\phi}^\dagger \phi]^2 + \text{Tr}[\bar{\phi}^\dagger \phi]^2 \right) + \lambda_3 \text{Tr}[\bar{\phi}^\dagger \phi] \text{Tr}[\bar{\phi}^\dagger \phi] + \lambda_4 \text{Tr}[\phi^\dagger \phi] \left(\text{Tr}[\bar{\phi}^\dagger \phi] + \text{Tr}[\bar{\phi}^\dagger \phi] \right) \\
+ \rho_1 \left(\text{Tr}[\Delta_L \Delta_L^\dagger]^2 + \text{Tr}[\Delta_R \Delta_R^\dagger]^2 \right) + \rho_2 \left(\text{Tr}[\Delta_L \Delta_L] \text{Tr}[\Delta_L^\dagger \Delta_L^\dagger] + \text{Tr}[\Delta_R \Delta_R] \text{Tr}[\Delta_R^\dagger \Delta_R^\dagger] \right) \\
+ \rho_3 \text{Tr}[\Delta_L \Delta_L^\dagger] \text{Tr}[\Delta_R \Delta_R^\dagger] + \rho_4 \left(\text{Tr}[\Delta_L \Delta_L] \text{Tr}[\Delta_R^\dagger \Delta_R^\dagger] + \text{Tr}[\Delta_L^\dagger \Delta_L^\dagger] \text{Tr}[\Delta_R \Delta_R] \right) \\
+ \alpha_1 \text{Tr}[\phi^\dagger \phi] \left(\text{Tr}[\Delta_L \Delta_L^\dagger] + \text{Tr}[\Delta_R \Delta_R^\dagger] \right) + \alpha_3 \left(\text{Tr}[\bar{\phi}^\dagger \Delta_L \Delta_L^\dagger] + \text{Tr}[\phi^\dagger \phi \Delta_R \Delta_R^\dagger] \right) \\
+ \alpha_2 \left(\text{Tr}[\Delta_L \Delta_L^\dagger] \text{Tr}[\bar{\phi}^\dagger \phi] + \text{Tr}[\Delta_R \Delta_R^\dagger] \text{Tr}[\bar{\phi}^\dagger \phi] + \text{H.c.} \right) \\
+ \beta_1 \left(\text{Tr}[\phi \Delta_R \phi^\dagger \Delta_L^\dagger] + \text{Tr}[\phi^\dagger \Delta_L \phi \Delta_R^\dagger] \right) + \beta_2 \left(\text{Tr}[\bar{\phi} \Delta_R \phi^\dagger \Delta_L^\dagger] + \text{Tr}[\phi^\dagger \Delta_L \phi \Delta_R^\dagger] \right) \\
+ \beta_3 \left(\text{Tr}[\phi \Delta_R \phi^\dagger \Delta_L^\dagger] + \text{Tr}[\phi^\dagger \Delta_L \phi \Delta_R^\dagger] \right),
\]

Deshpande, Gunion, Kayser, Olness (PRD ’91)
Maiezza, Senjanovic, Vasquez (PRD ’17)
For the stability, the potential should be bounded in all field directions.
• For the stability, the potential should be bounded in all field directions.
• In the large-field limit, terms with dimension $d < 4$ can be ignored in comparison to the quartic terms.
• For the stability, the potential should be bounded in all field directions.
• In the large-field limit, terms with dimension $d < 4$ can be ignored in comparison to the quartic terms.
• Requiring $V_4(\phi_i) > 0$ as field values $\phi_i \rightarrow \infty$ is a strong condition for boundedness. (BFB)
Vacuum Stability

- For the stability, the potential should be bounded in all field directions.
- In the large-field limit, terms with dimension $d < 4$ can be ignored in comparison to the quartic terms.
- Requiring $V_4(\phi_i) > 0$ as field values $\phi_i \rightarrow \infty$ is a strong condition for boundedness. (BFB)
- For applying BFB criterion, concepts of copositivity criteria and gauge orbit spaces can help simplify the analysis.

Kim (JMP '84), Kannike (EPJC '12)
Consider the scalar potential of a theory with two Higgs fields ϕ and π charged under G and G' respectively:

\[
V(\phi, \pi) = -\mu_1^2 (\phi_i^* \phi_i) - \mu_2^2 (\pi_i^* \pi_i) + \lambda_1 (\phi_i^* \phi_i)^2 + \lambda_2 f_{ijkl} \phi_i^* \phi_j \phi_k^* \phi_l \\
+ \rho_1 (\pi_i^* \pi_i)^2 + \rho_2 g_{ijkl} \pi_i^* \pi_j \pi_k^* \pi_l + \cdots \\
+ \alpha_1 (\phi_i^* \phi_i)(\pi_j^* \pi_j) + \cdots (\text{other terms coupling } (\phi, \pi))
\]
• Consider the scalar potential of a theory with two Higgs fields ϕ and π charged under G and G' respectively:

$$V(\phi, \pi) = -\mu_1^2(\phi_i^* \phi_i) - \mu_2^2(\pi_i^* \pi_i) + \lambda_1(\phi_i^* \phi_i)^2 + \lambda_2 f_{ijkl} \phi_i^* \phi_j \phi_k^* \phi_l$$

$$+ \rho_1(\pi_i^* \pi_i)^2 + \rho_2 g_{ijkl} \pi_i^* \pi_j \pi_k^* \pi_l + \cdots$$

$$+ \alpha_1(\phi_i^* \phi_i)(\pi_j^* \pi_j) + \cdots \text{(other terms coupling } (\phi, \pi))$$

• The dimensionless ratios of invariants called orbit space parameters are defined:

$$A_n(\hat{\phi}) = \frac{f_{ijkl} \phi_i^* \phi_j \phi_k^* \phi_l}{(\phi_i^* \phi_i)^2} \quad B_n(\hat{\pi}) = \frac{g_{ijkl} \pi_i^* \pi_j \pi_k^* \pi_l}{(\pi_j^* \pi_j)^2}$$
Gauge Orbit Spaces

- Consider the scalar potential of a theory with two Higgs fields ϕ and π charged under G and G' respectively:

$$V(\phi, \pi) = -\mu_1^2(\phi_i^* \phi_i) - \mu_2^2(\pi_i^* \pi_i) + \lambda_1(\phi_i^* \phi_i)^2 + \lambda_2 f_{ijkl} \phi_i^* \phi_j^* \phi_k^* \phi_l$$

$$+ \rho_1(\pi_i^* \pi_i)^2 + \rho_2 g_{ijkl} \pi_i^* \pi_j^* \pi_k^* \pi_l + \cdots$$

$$+ \alpha_1(\phi_i^* \phi_i)(\pi_j^* \pi_j) + \cdots \text{(other terms coupling } (\phi, \pi))$$

- The dimensionless ratios of invariants called orbit space parameters are defined:

$$A_n(\hat{\phi}) = \frac{f_{ijkl} \phi_i^* \phi_j^* \phi_k^* \phi_l}{(\phi_i^* \phi_i)^2} \quad B_n(\hat{\pi}) = \frac{g_{ijkl} \pi_i^* \pi_j^* \pi_k^* \pi_l}{(\pi_j^* \pi_j)^2}$$

- Similarly, for coupled terms $C_n(\hat{\phi}, \hat{\pi})$ can be defined but normalized by $\phi_i^* \phi_i \pi_j^* \pi_j$.
• The potential can be written as:

\[
V(\phi, \pi) = -\mu_1^2|\phi|^2 - \mu_2^2|\pi|^2 + |\phi|^4A(\lambda, \phi) + |\pi|^4B(\rho, \hat{\pi})
+ |\phi|^2|\pi|^2C(\alpha, \hat{\phi}, \hat{\pi})
\]
Gauge Orbit Spaces

- The potential can be written as:

\[
V(\phi, \pi) = -\mu_1^2|\phi|^2 - \mu_2^2|\pi|^2 + |\phi|^4A(\lambda, \hat{\phi}) + |\pi|^4B(\rho, \hat{\pi}) \\
+|\phi|^2|\pi|^2C(\alpha, \hat{\phi}, \hat{\pi})
\]

- where,

\[
|\phi|^2 = \phi_i^*\phi_i, \quad |\pi|^2 = \pi_i^*\pi_i, \quad \hat{\phi} = \frac{\phi}{|\phi|}, \quad \hat{\pi} = \frac{\pi}{|\pi|}
\]

\[
A(\lambda, \hat{\phi}) = \lambda_1 + \lambda_2A_1(\hat{\phi}) + \lambda_3A_2(\hat{\phi}) + \cdots
\]

\[
B(\rho, \hat{\pi}) = \rho_1 + \rho_2B_1(\hat{\pi}) + \rho_3B_2(\hat{\pi}) + \cdots
\]

\[
C(\alpha, \hat{\phi}, \hat{\pi}) = \alpha_1 + \alpha_2C_1(\hat{\phi}, \hat{\pi}) + \cdots
\]
Copositivity

- Requiring boundedness $\forall A(\lambda, \phi), B(\rho, \pi), C(\alpha, \phi, \hat{\phi})$:

$$|\phi|^4 A(\lambda, \phi) + |\pi|^4 B(\rho, \pi) + |\phi|^2 |\pi|^2 C(\alpha, \phi, \hat{\phi}) > 0$$
Copositivity

- Requiring boundedness $\forall A(\lambda, \phi), B(\rho, \hat{\pi}), C(\alpha, \phi, \hat{\pi})$:
 \[|\phi|^4 A(\lambda, \phi) + |\pi|^4 B(\rho, \hat{\pi}) + |\phi|^2 |\pi|^2 C(\alpha, \phi, \hat{\pi}) > 0 \]

- Given a condition of this form, is termed as copositive:
 \[ax^2 + bx + c > 0 \quad x \in \mathbb{R}^+ \]
Copositivity

- Requiring boundedness $\forall A(\lambda, \hat{\phi}), B(\rho, \hat{\pi}), C(\alpha, \phi, \hat{\pi})$:
 \[|\phi|^4 A(\lambda, \hat{\phi}) + |\pi|^4 B(\rho, \hat{\pi}) + |\phi|^2 |\pi|^2 C(\alpha, \phi, \hat{\pi}) > 0 \]
- Given a condition of this form, is termed as copositive:
 \[ax^2 + bx + c > 0 \quad x \in \mathbb{R}^+ \]
- The conditions for copositivity are:
 \[a > 0, \ c > 0, \ b + 2\sqrt{ac} > 0 \]
Copositivity

- Requiring boundedness $\forall A(\lambda, \hat{\phi}), B(\rho, \hat{\pi}), C(\alpha, \hat{\phi}, \hat{\pi})$:

 $$\left|\phi\right|^4A(\lambda, \hat{\phi}) + \left|\pi\right|^4B(\rho, \hat{\pi}) + \left|\phi\right|^2\left|\pi\right|^2C(\alpha, \hat{\phi}, \hat{\pi}) > 0$$

- Given a condition of this form, is termed as copositive:

 $$ax^2 + bx + c > 0 \quad x \in \mathbb{R}^+$$

- The conditions for copositivity are:

 $$a > 0, c > 0, b + 2\sqrt{ac} > 0$$

 $$\implies A > 0, B > 0, C + 2\sqrt{AB} > 0$$
Scalar Potential: \(\lambda \) terms

\[
V \supset -\mu_1^2 \text{Tr}[\phi^\dagger \phi] - \mu_2^2 \left(\text{Tr}[\tilde{\phi} \phi^\dagger] + \text{Tr}[\tilde{\phi}^\dagger \phi] \right) \\
+ \lambda_1 \text{Tr}[\phi^\dagger \phi]^2 + \lambda_2 \left(\text{Tr}[\tilde{\phi} \phi^\dagger]^2 + \text{Tr}[\tilde{\phi}^\dagger \phi]^2 \right) + \lambda_3 \text{Tr}[\tilde{\phi} \phi^\dagger] \text{Tr}[\tilde{\phi}^\dagger \phi] \\
+ \lambda_4 \text{Tr}[\phi^\dagger \phi] \left(\text{Tr}[\tilde{\phi} \phi^\dagger] + \text{Tr}[\tilde{\phi}^\dagger \phi] \right)
\]
Scalar Potential: λ terms

$$V \supset -\mu_1^2 \text{Tr}[\phi^\dagger \phi] - \mu_2^2 \left(\text{Tr}[\tilde{\phi} \phi^\dagger] + \text{Tr}[\tilde{\phi}^\dagger \phi] \right)$$
$$+ \lambda_1 \text{Tr}[\phi^\dagger \phi]^2 + \lambda_2 \left(\text{Tr}[\tilde{\phi} \phi^\dagger]^2 + \text{Tr}[\tilde{\phi}^\dagger \phi]^2 \right) + \lambda_3 \text{Tr}[\tilde{\phi} \phi^\dagger] \text{Tr}[\tilde{\phi}^\dagger \phi]$$
$$+ \lambda_4 \text{Tr}[\phi^\dagger \phi] \left(\text{Tr}[\tilde{\phi} \phi^\dagger] + \text{Tr}[\tilde{\phi}^\dagger \phi] \right)$$

- we parametrize V_4^λ as follows:

$$\text{Tr}[\Phi^\dagger \Phi] \equiv r^2$$
$$\text{Tr}[\tilde{\Phi} \Phi^\dagger]/\text{Tr}[\Phi^\dagger \Phi] \equiv \xi e^{i\omega}$$
$$\text{Tr}[\tilde{\Phi}^\dagger \Phi]/\text{Tr}[\Phi^\dagger \Phi] \equiv \xi e^{-i\omega}$$

where $r > 0$, $\xi \in [0, 1]$ and $\omega \in [0, 2\pi]$.
Stability: λ terms

- Using parametrization,

$$V_4^\lambda = r^4 \left(\lambda_1 + 2\lambda_2 \xi^2 \cos 2\omega + \lambda_3 \xi^2 + 2\lambda_4 \xi \cos \omega \right) \equiv r^4 f(\lambda, \xi, \omega)$$
Stability : λ terms

- Using parametrization,

$$V^\lambda_4 = r^4 \left(\lambda_1 + 2\lambda_2 \xi^2 \cos 2\omega + \lambda_3 \xi^2 + 2\lambda_4 \xi \cos \omega \right) \equiv r^4 f(\lambda, \xi, \omega)$$

- By analyzing the boundedness of λ sector of the potential,

$$\lambda_1 > 0 \quad (1)$$

$$\lambda_1 - \frac{\lambda_4^2}{2\lambda_2 + \lambda_3} > 0 \quad (2)$$

$$\lambda_1 + \lambda_3 - 2\lambda_2 - \frac{\lambda_4^2}{4\lambda_2} > 0 \quad (3)$$

$$\lambda_1 + \lambda_3 + 2(\lambda_2 - |\lambda_4|) > 0 \quad (4)$$
Sample case: λ's

Values of set λ's are:

\[\lambda_2 = 1 \]
\[\lambda_4 = -2 \]
Sample case: λ’s

Values of set λ’s are:

\[
\lambda_2 = 1 \\
\lambda_4 = -2
\]

\[
\lambda_1 > 0 \\
\lambda_1 - \frac{4}{2 + \lambda_3} > 0 \\
\lambda_1 + \lambda_3 > 3 \\
\lambda_1 + \lambda_3 > 2
\]
Sample case: λ’s

Values of set λ’s are:

$\lambda_2 = 1$

$\lambda_4 = -2$

$\lambda_1 > 0$

$\lambda_1 - \frac{4}{2 + \lambda_3} > 0$

$\lambda_1 + \lambda_3 > 3$

$\lambda_1 + \lambda_3 > 2$
Dreaded case: $\alpha_{1,3} \neq 0$

\[
V_4 = \lambda_1 \text{Tr} [\Phi^\dagger \Phi]^2 + \lambda_2 \left(\text{Tr} [\Phi \Phi^\dagger]^2 + \text{Tr} [\Phi^\dagger \Phi]^2 \right) + \lambda_3 \text{Tr} [\Phi \Phi^\dagger] \text{Tr} [\Phi \Phi^\dagger] + \lambda_4 \text{Tr} [\Phi^\dagger \Phi] \left(\text{Tr} [\Phi \Phi^\dagger] + \text{Tr} [\Phi^\dagger \Phi] \right) \\
+ \rho_1 \left(\text{Tr} [\Delta_L \Delta_L^\dagger]^2 + \text{Tr} [\Delta_R \Delta_R^\dagger]^2 \right) + \rho_2 \left(\text{Tr} [\Delta_L \Delta_L] \text{Tr} [\Delta_L^\dagger \Delta_L^\dagger] + \text{Tr} [\Delta_R \Delta_R] \text{Tr} [\Delta_R^\dagger \Delta_R^\dagger] \right) \\
+ \rho_3 \text{Tr} [\Delta_L \Delta_L^\dagger] \text{Tr} [\Delta_R \Delta_R^\dagger] + \rho_4 \left(\text{Tr} [\Delta_L \Delta_L] \text{Tr} [\Delta_R^\dagger \Delta_R^\dagger] + \text{Tr} [\Delta_L^\dagger \Delta_L^\dagger] \text{Tr} [\Delta_R \Delta_R] \right) \\
+ \alpha_1 \text{Tr} [\Phi^\dagger \Phi] \left(\text{Tr} [\Delta_L \Delta_L^\dagger] + \text{Tr} [\Delta_R \Delta_R^\dagger] \right) + \alpha_3 \left(\text{Tr} [\Phi \Phi^\dagger \Delta_L \Delta_L^\dagger] + \text{Tr} [\Phi^\dagger \Phi \Delta_R \Delta_R^\dagger] \right)
\]
Dreaded case: $\alpha_{1,3} \neq 0$

\[
V_4 = \lambda_1 \text{Tr}[\Phi^\dagger \Phi]^2 + \lambda_2 \left(\text{Tr}[\Phi^\dagger \Phi]^2 + \text{Tr}[\Phi^\dagger \Phi]^2 \right) + \lambda_3 \text{Tr}[\Phi^\dagger \Phi] \text{Tr}[\Phi^\dagger \Phi] + \lambda_4 \text{Tr}[\Phi^\dagger \Phi] \left(\text{Tr}[\Phi^\dagger \Phi] + \text{Tr}[\Phi^\dagger \Phi] \right) \\
+ \rho_1 \left(\text{Tr}[\Delta_L \Delta_L^\dagger]^2 + \text{Tr}[\Delta_R \Delta_R^\dagger]^2 \right) + \rho_2 \left(\text{Tr}[\Delta_L \Delta_L] \text{Tr}[\Delta_L^\dagger \Delta_L^\dagger] + \text{Tr}[\Delta_R \Delta_R] \text{Tr}[\Delta_R^\dagger \Delta_R^\dagger] \right) \\
+ \rho_3 \text{Tr}[\Delta_L \Delta_L^\dagger] \text{Tr}[\Delta_R \Delta_R^\dagger] + \rho_4 \left(\text{Tr}[\Delta_L \Delta_L] \text{Tr}[\Delta_R^\dagger \Delta_R^\dagger] + \text{Tr}[\Delta_L^\dagger \Delta_L^\dagger] \text{Tr}[\Delta_R \Delta_R] \right) \\
+ \alpha_1 \text{Tr}[\Phi^\dagger \Phi] \left(\text{Tr}[\Delta_L \Delta_L^\dagger] + \text{Tr}[\Delta_R \Delta_R^\dagger] \right) + \alpha_3 \left(\text{Tr}[\Phi^\dagger \Phi \Delta_L \Delta_L^\dagger] + \text{Tr}[\Phi^\dagger \Phi \Delta_R \Delta_R^\dagger] \right)
\]

\[
\text{Tr}[\Phi^\dagger \Phi] + \text{Tr}[\Delta_L \Delta_L^\dagger] + \text{Tr}[\Delta_R \Delta_R^\dagger] = r^2 \\
\text{Tr}[\Phi^\dagger \Phi] = r^2 \cos^2 \theta \\
\text{Tr}[\Delta_L \Delta_L^\dagger] = r^2 \sin^2 \gamma \sin^2 \theta \\
\text{Tr}[\Delta_R \Delta_R^\dagger] = r^2 \cos^2 \gamma \sin^2 \theta \\
\text{Tr}[\Phi^\dagger \Phi]/\text{Tr}[\Phi^\dagger \Phi] = \xi e^{i\omega} \\
\text{Tr}[\Phi^\dagger \Phi]/\text{Tr}[\Phi^\dagger \Phi] = \xi e^{-i\omega} \\
\text{Tr}[\Delta_L \Delta_L^\dagger]/\text{Tr}[\Delta_L \Delta_L^\dagger] = \eta_1 e^{i\theta_1} \\
\text{Tr}[\Delta_L^\dagger \Delta_L^\dagger]/\text{Tr}[\Delta_L \Delta_L^\dagger] = \eta_1 e^{-i\theta_1} \\
\text{Tr}[\Delta_R \Delta_R^\dagger]/\text{Tr}[\Delta_R \Delta_R^\dagger] = \eta_2 e^{i\theta_2} \\
\text{Tr}[\Delta_R^\dagger \Delta_R^\dagger]/\text{Tr}[\Delta_R \Delta_R^\dagger] = \eta_2 e^{-i\theta_2} \\
\text{Tr}[\Phi^\dagger \Phi \Delta_L \Delta_L^\dagger]/\text{Tr}[\Phi^\dagger \Phi \Delta_L \Delta_L^\dagger] = \zeta_1 \\
\text{Tr}[\Phi^\dagger \Phi \Delta_R \Delta_R^\dagger]/\text{Tr}[\Phi^\dagger \Phi \Delta_R \Delta_R^\dagger] = \zeta_2
\]

with $r > 0$, $|\xi| \leq 1$, $\theta \in [0, \frac{\pi}{2}]$, $\gamma \in [0, \frac{\pi}{2}]$, $\eta_1, \eta_2 \in [0, 1]$, $\theta_1, \theta_2 \in [0, 2\pi]$ and $\zeta_1, \zeta_2 \in [0, 1]$.
Analytic Conditions for Vacuum Stability in LRSM

- $f > 0:\ \begin{cases} \lambda_1 \\ (\lambda_1 - \frac{\lambda_4^2}{2\lambda_2 + \lambda_3}) \iff 2\lambda_2 + \lambda_3 > |\lambda_4| \\ (\lambda_1 + \lambda_3 + 2(\lambda_2 - |\lambda_4|)) \\ (\lambda_1 + \lambda_3 - 2\lambda_2 - \frac{\lambda_4^2}{4\lambda_2}) \iff |4\lambda_2| > |\lambda_4| \end{cases}$
Analytic Conditions for Vacuum Stability in LRSM

- $f > 0$:
 \[
 \begin{aligned}
 \lambda_1 & \\
 \left(\lambda_1 - \frac{\lambda_4^2}{2\lambda_2 + \lambda_3} \right) & \iff 2\lambda_2 + \lambda_3 > |\lambda_4| \\
 (\lambda_1 + \lambda_3 + 2(\lambda_2 - |\lambda_4|)) & \\
 \left(\lambda_1 + \lambda_3 - 2\lambda_2 - \frac{\lambda_4^2}{4\lambda_2} \right) & \iff |4\lambda_2| > |\lambda_4|
 \end{aligned}
 \]

- $g > 0$:
 \[
 \left\{ \rho_1, \rho_1 + \rho_2, \frac{\rho_3 + 2\rho_1}{4}, \frac{\rho_3 - 2|\rho_4| + 2(\rho_1 + \rho_2)}{4} \right\}
 \]
Analytic Conditions for Vacuum Stability in LRSM

- $f > 0$:
 \[
 \begin{align*}
 \lambda_1 & \quad \left(\lambda_1 - \frac{\lambda_4^2}{2\lambda_2 + \lambda_3} \right) \iff 2\lambda_2 + \lambda_3 > |\lambda_4| \\
 (\lambda_1 + \lambda_3 + 2(\lambda_2 - |\lambda_4|)) & \quad \left(\lambda_1 + \lambda_3 - 2\lambda_2 - \frac{\lambda_4^2}{4\lambda_2} \right) \iff |4\lambda_2| > |\lambda_4|
 \end{align*}
 \]

- $g > 0$:
 \[
 \rho_1, \quad \rho_1 + \rho_2, \quad \frac{\rho_3 + 2\rho_1}{4}, \quad \frac{\rho_3 - 2|\rho_4| + 2(\rho_1 + \rho_2)}{4}
 \]

- \[
 \alpha_1 + 2\sqrt{\text{Min}(f) \text{ Min}(g)} > 0
 \]

- \[
 \alpha_1 + \alpha_3 + 2\sqrt{\text{Min}(f) \text{ Min}(g)} > 0
 \]
Symmetry Breaking in LRSM

- A BFB potential does not necessarily lead to correct symmetry breaking. *Dev, Mohapatra, Rodejohann, Xu (JHEP ’19)*
Symmetry Breaking in LRSM

- A BFB potential does not necessarily lead to correct symmetry breaking. Dev, Mohapatra, Rodejohann, Xu (JHEP '19)
- The desired VEV structure for LRSM vacuum is

\[
\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 e^{i\theta_2} \end{pmatrix}, \quad \Delta_L = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_L e^{i\theta_L} & 0 \end{pmatrix},
\]

\[
\Delta_R = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_R & 0 \end{pmatrix}
\]
Symmetry Breaking in LRSM

- A BFB potential does not necessarily lead to correct symmetry breaking. Dev, Mohapatra, Rodejohann, Xu (JHEP ’19)
- The desired VEV structure for LRSM vacuum is

\[\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 e^{i\theta_2} \end{pmatrix}, \quad \Delta_L = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_L e^{i\theta_L} & 0 \end{pmatrix}, \]

\[\Delta_R = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_R & 0 \end{pmatrix} \]

- We can generalize the gauge-independent conditions for correct vacuum in the LRSM as:

\[\text{Tr}[\langle \Phi \rangle \langle \Phi \rangle] \neq 0 \]

\[\text{Tr}[\langle \Delta_L \rangle \langle \Delta_L \rangle] = \text{Tr}[\langle \Delta_R \rangle \langle \Delta_R \rangle] = 0 \]

\[\text{Tr}[\langle \Delta_L \rangle \langle \Delta_L^\dagger \rangle] < \text{Tr}[\langle \Delta_R \rangle \langle \Delta_R^\dagger \rangle] \]
Symmetry Breaking in LRSM

- Plugging the VEV structure in the scalar potential, we get:

\[
V = -\frac{(\kappa_1^2 + \kappa_2^2)}{2} \mu_1^2 - 2\kappa_1\kappa_2\mu_2^2 \cos(\theta_2) - \mu_3^2 (v_L^2 + v_R^2) \\
+ \frac{(\kappa_1^2 + \kappa_2^2)^2}{4} \lambda_1 + 2\kappa_1^2\kappa_2^2 \lambda_2 \cos(2\theta_2) + \\
\kappa_1\kappa_2 (\kappa_1^2 + \kappa_2^2) \lambda_4 \cos(\theta_2) + \kappa_1^2\kappa_2^2 \lambda_3 + \rho_1 (v_L^4 + v_R^4) + \rho_3 v_L^2 v_R^2 \\
+ \alpha_1 \frac{(\kappa_1^2 + \kappa_2^2)}{2} (v_L^2 + v_R^2) + \alpha_3 \frac{\kappa_2^2}{2} (v_L^2 + v_R^2)
\]
Symmetry Breaking in LRSM

- Plugging the VEV structure in the scalar potential, we get:

\[
V = -\frac{(\kappa_1^2 + \kappa_2^2)}{2} \mu_1^2 - 2\kappa_1\kappa_2\mu_2^2 \cos(\theta_2) - \mu_3^2 (V_L^2 + V_R^2) \\
+ \frac{(\kappa_1^2 + \kappa_2^2)^2}{4} \lambda_1 + 2\kappa_1^2\kappa_2^2 \lambda_2 \cos(2\theta_2) + \\
\kappa_1\kappa_2 (\kappa_1^2 + \kappa_2^2) \lambda_4 \cos(\theta_2) + \kappa_1^2\kappa_2^2 \lambda_3 + \rho_1 (V_L^4 + V_R^4) + \rho_3 V_L^2 V_R^2 \\
+ \alpha_1 \frac{(\kappa_1^2 + \kappa_2^2)}{2} (V_L^2 + V_R^2) + \alpha_3 \frac{\kappa_2^2}{2} (V_L^2 + V_R^2)
\]

- Using earlier parametrization:

\[
V_4 \equiv r^4 \left(f_{SSB} \cos^4 \theta + g_{SSB} \sin^4 \theta + h_{SSB} \cos^2 \theta \sin^2 \theta \right)
\]
• Plugging the VEV structure in the scalar potential, we get:

\[
V = -\left(\frac{\kappa_1^2 + \kappa_2^2}{2}\right)\mu_1^2 - 2\kappa_1\kappa_2\mu_2^2\cos(\theta_2) - \mu_3^2 (v_L^2 + v_R^2) \\
+ \frac{(\kappa_1^2 + \kappa_2^2)^2}{4}\lambda_1 + 2\kappa_1^2\kappa_2^2\lambda_2 \cos(2\theta_2) + \\
\kappa_1\kappa_2 (\kappa_1^2 + \kappa_2^2) \lambda_4 \cos(\theta_2) + \kappa_1^2\kappa_2^2\lambda_3 + \rho_1 (v_L^4 + v_R^4) + \rho_3 v_L^2 v_R^2 \\
+ \alpha_1 \frac{(\kappa_1^2 + \kappa_2^2)}{2} (v_L^2 + v_R^2) + \alpha_3 \frac{\kappa_2^2}{2} (v_L^2 + v_R^2)
\]

• Using earlier parametrization:

\[
V_4 \equiv r^4 (f_{SSB}\cos^4\theta + g_{SSB}\sin^4\theta + h_{SSB}\cos^2\theta\sin^2\theta)
\]

• Requiring a deeper minima for \(V_{SSB}\)

\[
f \geq f_{SSB}, \quad g > g_{SSB} \\
h + 2\sqrt{fg} > h_{SSB} + 2\sqrt{f_{SSB} g_{SSB}}
\]
Analytic Conditions for Symmetry Breaking to Correct Vacuum

\[f_{SSB} > 0 : \begin{cases}
 \lambda_1 > 0, \quad \sigma = 0, \\
 \left(\lambda_1 - \frac{\lambda_4^2}{2\lambda_2 + \lambda_3} \right) > 0 \iff 2\lambda_2 + \lambda_3 > |\lambda_4|, \quad \sigma = -\frac{\lambda_4}{2\lambda_2 + \lambda_3}, \\
 (\lambda_1 + \lambda_3 + 2(\lambda_2 - |\lambda_4|)) > 0, \quad \sigma = -\text{sgn}(\lambda_4), \\
 (\lambda_1 + \lambda_3 - 2\lambda_2 - \frac{\lambda_4^2}{4\lambda_2}) > 0 \iff |4\lambda_2| > |\lambda_4|, \quad \sigma = -\frac{\lambda_4}{4\lambda_2},
\end{cases} \]

\[\rho_1 > 0, \quad \rho_2 > 0, \quad \rho_3 > 2\rho_1, \quad |\rho_4| < \frac{\rho_3 - 2\rho_1}{2} + \rho_2 \]

\[\alpha_1 + 2\sqrt{\text{Min}[f_{SSB}]\rho_1} > 0 \]

\[\alpha_1 + \alpha_3 + 2\sqrt{\text{Min}[f_{SSB}]\rho_1} > 0 \]

\[\bar{\mu}_1^2 = \mu_1^2 + 2\sigma \mu_2^2 \]

\[2\sqrt{\text{Min}[f_{SSB}]\rho_1} - ||\text{Min}[\alpha_1, \alpha_1 + \alpha_3]|| > 0 \]

\[2\rho_1\bar{\mu}_1^2 - \text{Min}[\alpha_1, \alpha_1 + \alpha_3]\mu_3^2 > 0 \]
Numerical Minimization
The scalar mass spectrum for LRSM:

\[M_{H_0}^2 = 2 \left(\lambda_1 - \frac{\alpha_1^2}{4\rho_1} \right) \kappa_+^2, \]

\[M_{H_0}^2 \sim M_{A_0}^2 \sim M_{H_1}^2 = \frac{1}{2} \alpha_3 v_R^2, \]

\[M_{H_2}^2 = 2\rho_1 v_R^2, \]

\[M_{H_1}^2 \sim M_{H_1}^2 \sim M_{A_2}^2 = M_{H_3}^2 = \frac{1}{2} (\rho_3 - 2\rho_1) v_R^2, \]

\[M_{H_2}^2 = 2\rho_2 v_R^2 + \frac{1}{2} \alpha_3 \kappa_+^2. \]

Renormalization Group Analysis

- The scalar mass spectrum for LRSM:

\[
M_{H_0}^2 = 2 \left(\lambda_1 - \frac{\alpha_1^2}{4\rho_1} \right) \kappa_+^2,
\]

\[
M_{H_\pm}^2 \sim M_{A_1}^2 \sim M_{H_1}^2 = \frac{1}{2} \alpha_3 v_R^2,
\]

\[
M_{H_2}^2 = 2\rho_1 v_R^2,
\]

\[
M_{H_{1\pm}}^2 \sim M_{H_1}^2 \sim M_{A_2}^2 = M_{H_3}^2 = \frac{1}{2} (\rho_3 - 2\rho_1) v_R^2,
\]

\[
M_{H_{2\pm}}^2 = 2\rho_2 v_R^2 + \frac{1}{2} \alpha_3 \kappa_+^2.
\]

- We have taken the best fit value of \(M_{H_0} = m_h = 125 \text{ GeV}\).
• There are strong experimental bounds on most scalar masses in LRSM. GC,Dev,Mohapatra,Zhang (JHEP ’19)
• There are strong experimental bounds on most scalar masses in LRSM. GC,Dev,Mohapatra,Zhang (JHEP ’19)
• Stringent limits on the heavy neutral scalars masses from the FCNC constraints: Zhang,An,Ji,Mohapatra (Nucl.Phys. ’08)

\[M_{H^0}, A^0_1 > 15 \text{ TeV} \]
• There are strong experimental bounds on most scalar masses in LRSM. GC,Dev,Mohapatra,Zhang (JHEP ’19)

• Stringent limits on the heavy neutral scalars masses from the FCNC constraints : Zhang,An,Ji,Mohapatra (Nucl.Phys. ’08)

\[M_{H_1^0,A_1^0} > 15 \text{ TeV} \]

• The current bounds on doubly charged Higgs masses are from LHC 13 TeV run data : ATLAS, CMS

\[M_{H_1^{\pm \pm}} \gtrsim (770 - 870) \text{ GeV} \quad M_{H_2^{\pm \pm}} \gtrsim (660 - 760) \text{ GeV} \]
This sample benchmark is in complete agreement with the current experimental bounds on the scalar masses.

\[
\begin{align*}
\mu_1^2, \mu_2^2, \mu_3^2 & \equiv (8.48^2, 0, (11.99)^2) \text{ TeV}^2 \\
\lambda_1, \lambda_2, \lambda_3, \lambda_4 & \equiv (0.0625, 0, 0, 0) \\
\rho_1, \rho_2, \rho_3, \rho_4 & \equiv (0.01, 0.0005, 0.0226, 0) \\
\alpha_1, \alpha_2, \alpha_3 & \equiv (0.01, 0, 0.64) \\
\beta_1, \beta_2, \beta_3 & \equiv (0, 0, 0)
\end{align*}
\]
Renormalization Group Analysis

• This sample benchmark is in complete agreement with the current experimental bounds on the scalar masses.

\[
\mu_1^2, \mu_2^2, \mu_3^2 \equiv ((8.48)^2, 0, (11.99)^2) \text{ TeV}^2
\]

\[
\lambda_1, \lambda_2, \lambda_3, \lambda_4 \equiv (0.0625, 0, 0, 0)
\]

\[
\rho_1, \rho_2, \rho_3, \rho_4 \equiv (0.01, 0.0005, 0.0226, 0)
\]

\[
\alpha_1, \alpha_2, \alpha_3 \equiv (0.01, 0, 0.64)
\]

\[
\beta_1, \beta_2, \beta_3 \equiv (0, 0, 0)
\]

• The VEVs for the Higgses are:

\[
\kappa_+ = \sqrt{\kappa_1^2 + \kappa_2^2} = 246 \text{ GeV}, \quad v_L = 0 \text{ TeV}, \quad v_R = 26.8 \text{ TeV}
\]
Renormalization Group Analysis

- **Quartic couplings**
 - λ_1, λ_2, λ_3, λ_4
 - ρ_1, ρ_2, ρ_3, ρ_4

- **Mass**
 - μ_1, μ_2, μ_3

Graphs show the evolution of quartic couplings and mass with respect to the scale μ (GeV) and μ (TeV), highlighting the perturbative limit.
Conclusions

- We obtained necessary and sufficient conditions for the stability of LRSM potential using copositivity and gauge orbit spaces.

- Only requiring vacuum stability does not ensure SSB to a vacuum which reproduces SM at low-energies.

- Extended the vacuum stability analysis to yield necessary and sufficient conditions to achieve SSB to the correct vacuum which should be charge conserving and also parity violating at low-energies.

- These analytic techniques can be extended to analyze metastability of the vacuum and one-loop effective potential.
Conclusions

- We obtained necessary and sufficient conditions for the stability of LRSM potential using copositivity and gauge orbit spaces.
- Only requiring vacuum stability does not ensure SSB to a vacuum which reproduces SM at low-energies.
Conclusions

• We obtained necessary and sufficient conditions for the stability of LRSM potential using copositivity and gauge orbit spaces.

• Only requiring vacuum stability does not ensure SSB to a vacuum which reproduces SM at low-energies.

• Extended the vacuum stability analysis to yield necessary and sufficient conditions to achieve SSB to the correct vacuum which should be charge conserving and also parity violating at low-energies.
Conclusions

- We obtained necessary and sufficient conditions for the stability of LRSM potential using copositivity and gauge orbit spaces.
- Only requiring vacuum stability does not ensure SSB to a vacuum which reproduces SM at low-energies.
- Extended the vacuum stability analysis to yield necessary and sufficient conditions to achieve SSB to the correct vacuum which should be charge conserving and also parity violating at low-energies.
- These analytic techniques can be extended to analyze metastability of the vacuum and one-loop effective potential.
Thank you !!