Supersymmetric Inflation from the Fifth Dimension

Kaustubh Deshpande
University of Maryland, College Park

with Raman Sundrum
JHEP 08 (2019) 029

Brookhaven Forum 2019
Sep 26th, 2019
Outline

❖ Introduction
 Inflation with axion(s), SUSY during inflation

❖ SUSY bi-axion inflation model
 Inflationary history, Fine-tunings

❖ Observable signals
 Primordial non-Gaussianities, CMB periodic modulations

❖ Conclusions
Introduction
Cosmic inflation:

- best known framework to explain early universe
- slowly rolling single real scalar field, inflaton
- $m_\phi^2 \sim \eta_V H_{inf}^2$, "hierarchy problem" for inflaton
 $\sim 10^{-2}$
Inflation with axion(s)

❖ Cosmic inflation:
 • best known framework to explain early universe
 • slowly rolling single real scalar field, inflaton
 • \(m_\phi^2 \sim \eta_V H_{inf}^2 \), “hierarchy problem” for inflaton
 \[\sim 10^{-2} \]

❖ Natural inflation: inflaton as Goldstone boson of global symmetry [Freese et al. (1990)]
 • \(V(\phi) = V_0 \left(1 - \cos\frac{\phi}{f}\right) \)
 • but requires \(f \gtrsim M_{Pl} \)!
 • no dynamical scale \(\gtrsim M_{Pl} \)
 • no fund. global symmetries in QG

Kallosh et al. (1995); Banks, Seiberg (2011); Harlow, Ooguri (2018)
Bi-axion inflation: Kim, Nilles, Peloso (2005)

- two Goldstone bosons \((\phi_A, \phi_B)\)
- multiple sources of explicit breaking below \(M_{Pl}\)

\[
V(\phi_A, \phi_B) = V_0^{(1)} \left(1 - \cos \frac{\phi_B}{f_B}\right) \\
+ V_0^{(2)} \left[1 - \cos \left(\frac{\phi_A}{f_A} + \frac{N\phi_B}{f_B}\right)\right]
\]
Inflation with multiple axions

❖ Bi-axion inflation: Kim, Nilles, Peloso (2005)
- two Goldstone bosons (ϕ_A, ϕ_B)
- multiple sources of explicit breaking below M_{Pl}
- $V(\phi_A, \phi_B) = V_0^{(1)} \left(1 - \cos \frac{\phi_B}{f_B} \right)$
 $+ V_0^{(2)} \left[1 - \cos \left(\frac{\phi_A}{f_A} + N\frac{\phi_B}{f_B}\right)\right]$

- hierarchical mass eigenstates (ϕ_h, ϕ_l)
 $V(\langle \phi_h \rangle, \phi_l) \approx V_0 \left(1 - \cos \frac{\phi_l}{f_{eff}}\right)$
 ; $f_{eff} = Nf > M_{Pl}$ with $f < M_{Pl}$

Ben-Dayan, Pedro, Westphal (2014)
4D accidental Goldstone bosons from 5D gauge symmetry

- Bi-axion extranatural inflation: Arkani-Hamed et al. (2003); Bai et al. (2015), de la Fuente et al. (2015)

 • axions from 5D gauge bosons

 \[\phi_A \equiv \int_0^L A_5 \, dx_5, \quad \phi_B \equiv \int_0^L B_5 \, dx_5 \]

 Charges under \(U(1)_A \times U(1)_B \):

 \[(0,1), (1,N) \]

 \[Q_1, Q_2 \]

 \[A_\mu, A_5 \]

 \[B_\mu, B_5 \]

 \[x_5 = 0 \]

 \[x_5 = L \]
4D accidental Goldstone bosons from 5D gauge symmetry

❖ Bi-axion extranatural inflation: Arkani-Hamed et al. (2003); Bai et al. (2015), de la Fuente et al. (2015)

- axions from 5D gauge bosons
 \[\phi_A \equiv \int_0^L A_5 \, dx_5, \quad \phi_B \equiv \int_0^L B_5 \, dx_5 \]

- integrating out charged matter loops in the bulk...
 \[
 V_{\text{eff}}(\phi_A, \phi_B) = V_0^{(1)} \left(1 - \cos \frac{\phi_B}{f_B} \right) \\
 + V_0^{(2)} \left[1 - \cos \left(\frac{\phi_A}{f_A} + \frac{N \phi_B}{f_B} \right) \right]
 \]

; \[V_0^{\text{loop}} \sim \frac{e^{-mL}}{L^4}, \quad f \sim \frac{1}{gL} \]

Charges under \(U(1)_A \times U(1)_B \):

\[(0, 1), (1, N) \]

\[Q_1, Q_2 \]

\[A_\mu, A_5 \]

\[B_\mu, B_5 \]

\[x_5 = 0 \]

\[x_5 = L \]
Bi-axion extranatural inflation:

- axions from 5D gauge bosons
 \[\phi_A \equiv \int_0^L A_5 \, d x_5, \quad \phi_B \equiv \int_0^L B_5 \, d x_5 \]

- integrating out charged matter loops in the bulk...
 \[
 V_{eff}(\phi_A, \phi_B) = V_0^{(1)} \left(1 - \cos \frac{\phi_B}{f_B} \right) \\
 + V_0^{(2)} \left[1 - \cos \left(\frac{\phi_A}{f_A} + \frac{N \phi_B}{f_B} \right) \right]
 \]
 \[V_0^{\text{loop}} \sim \frac{e^{-m L}}{L^4}, \quad f \sim \frac{1}{g L} \]

Charges under \(U(1)_A \times U(1)_B \):

- \((0, 1), (1, N)\)
- \(Q_1, Q_2\)
- \(A_\mu, A_5\)
- \(B_\mu, B_5\)

\(x_5 = 0 \) \quad \(x_5 = L \)

Compatibility with low-scale SUSY?
Motivation:

• compatibility of high-scale inflation with low-scale SUSY solution to EW hierarchy problem
• role of SUSY in fine-tuning (EW, CC, and inflation)
• new cosmological observables
SUSY during inflation

❖ Motivation:
 • compatibility of high-scale inflation with low-scale SUSY solution to EW hierarchy problem
 • role of SUSY in fine-tuning (EW, CC, and inflation)
 • new cosmological observables

❖ SUSY by itself can’t make inflaton light enough during inflation!
 broken during inflation, still need Goldstone boson shift symmetry for Φ_{inf}, $K(\Phi + \bar{\Phi})$

Kawasaki et al. (2000)
SUSY during inflation

❖ Motivation:
 • compatibility of high-scale inflation with low-scale SUSY solution to EW hierarchy problem
 • role of SUSY in fine-tuning (EW, CC, and inflation)
 • new cosmological observables

❖ SUSY by itself can’t make inflaton light enough during inflation!
 broken during inflation, still need Goldstone boson shift symmetry for \(\Phi_{\text{inf}} \), \(K(\Phi + \bar{\Phi}) \)

❖ Charged matter loops in extranatural inflation cancel with SUSY!
 but, we show \(V_{\text{eff}}^{\text{tree}}(A_5) \) possible from boundary VEVs of charged matter
SUSY bi-axion inflation model

KD, Sundrum (2019)
First for single axion...

\[\langle H \rangle = v' \quad H, H^c \quad \langle H \rangle = v \]

Hypermultiplet \(\ni Q \)

Gauge multiplet \(\ni A_M \)
\(\Phi \ni iA_5 \)

\[\mathcal{L}_{5}^{\text{SUSY}} + \delta \mathcal{L}_{5}^{\text{boundary}} \]

\[\int d^2 \theta \, \delta(x_5) \lambda (H - v)^2 + \ldots \]
First for single axion...

\[\langle H \rangle = v' \]

\[H, H^c \]

\[\langle H \rangle = v \]

\[V, \Phi \]

Hypermultiplet \(\exists Q \)

Gauge multiplet \(\exists A_M \)
\[\Phi \exists iA_5 \]

\[\mathcal{L}_{5}^{SUSY} + \delta \mathcal{L}_{5}^{boundary} \]

\[\int d^2 \theta \delta(x_5) \lambda (H - v)^2 + \ldots \]

Integrating out \(H, H^c \)

SUSY constraints: \(\partial_{H,H^c}W = 0 \)
First for single axion...

\[\langle H \rangle = v' \]

Hypermultiplet \(\ni Q \)

\(H, H^c \)

\(V, \Phi \)

Gauge multiplet \(\ni A_M \)

\(\Phi \ni iA_5 \)

\[\mathcal{L}_{5}^{SUSY} + \delta \mathcal{L}_{5}^{\text{boundary}} \]

\[\int d^2 \theta \, \delta(x_5) \, \lambda \, (H - v)^2 + \ldots \]

Integrating out \(H, H^c \)

SUSY constraints: \(\partial_{H,H^c} W = 0 \)

\[\mathcal{L}_{4,\text{eff}}(\Phi) = \int d^4 \theta \, \frac{1}{2} (\Phi + \bar{\Phi})^2 \]

\[+ \int d^2 \theta \, \left(W_0 + \lambda \, \frac{v^2 e^{-mL}}{e^{\sqrt{2} \Phi}} + v' \, e^{mL} \, e^{-\frac{gL}{\sqrt{2}} \Phi} - 2vv' \right) + \text{h.c.} \]
Bi-axion generalization

\[K = \frac{1}{2} (\Phi_A + \bar{\Phi}_A)^2 + \frac{1}{2} (\Phi_B + \bar{\Phi}_B)^2 \quad ; \quad W = W_0 + W_1 (\Phi_A + N \Phi_B) + W_2 (\Phi_B) \]

\[\Phi^{scalar} = \frac{1}{\sqrt{2}} (\eta + i\phi) \]

\[\phi_l \to \text{inflaton} \]

from charged matter

\((Q_A, Q_B) = (1, N) \text{ and } (0, 1)\)
Bi-axion generalization

- \(K = \frac{1}{2} (\Phi_A + \bar{\Phi}_A)^2 + \frac{1}{2} (\Phi_B + \bar{\Phi}_B)^2 \); \(W = W_0 + W_1 (\Phi_A + N \Phi_B) + W_2 (\Phi_B) \)

- Changing basis: \(\Phi_h = \Phi_B + \frac{1}{N} \Phi_A, \Phi_l = \Phi_A - \frac{1}{N} \Phi_B \)
 \[W(\Phi_A, \Phi_B) = W(N \Phi_h, \frac{\Phi_l}{N}) \]
 \[V_{\text{eff}}(\phi_l) = V_{\text{eff}}(\frac{\phi_l}{Nf}) \]

\(\Phi_{\text{scalar}} = \frac{1}{\sqrt{2}} (\eta + i\phi) \)

\(\phi_l \rightarrow \text{inflaton} \)

from charged matter \((Q_A, Q_B) = (1, N) \) and \((0,1)\)

\((f_{\text{eff}} = Nf) > M_{Pl} \)
Bi-axion generalization

- \(K = \frac{1}{2} (\Phi_A + \overline{\Phi}_A)^2 + \frac{1}{2} (\Phi_B + \overline{\Phi}_B)^2 \); \(W = W_0 + W_1 (\Phi_A + N \Phi_B) + W_2 (\Phi_B) \)

- Changing basis: \(\Phi_h = \Phi_B + \frac{1}{N} \Phi_A \), \(\Phi_l = \Phi_A - \frac{1}{N} \Phi_B \)
 \(\Rightarrow W(\Phi_A, \Phi_B) = W(N \Phi_h, \frac{\Phi_l}{N}) \Rightarrow V_{\text{eff}}(\phi_l) = V_{\text{eff}}(\frac{\phi_l}{Nf}) \)

- \(V_{\text{SUGRA}} = e^{K/M_{Pl}^2} \left[|D_{\Phi_A} W|^2 + |D_{\Phi_B} W|^2 - \frac{3|W|^2}{M_{Pl}^2} \right] ; D_{\Phi_i} W = \partial_{\Phi_i} W + \frac{\partial_{\Phi_i} K}{M_{Pl}^2} W \)
 - consistent with EFT, possibly missing only \(M_{Pl} \)-suppressed terms, e.g. \(K \ni (\Phi + \overline{\Phi})^4 \)
Inflationary history

• Inflation end @ SUSY vacuum \((D_{\phi_i} W = 0) \) with \(\sim \)zero CC \((W = 0) \)
Inflationary history

- Inflation end @ SUSY vacuum \((D\phi_i W = 0) \) with \(\sim \)zero CC \((W = 0) \)

- Inflationary trajectory: heavy fields stabilized, \(m_{\eta_h, \phi_h} \sim H_{inf} e^{2mL} \frac{N^2}{f} \), \(m_{\eta_l} \gtrsim \mathcal{O}(H_{inf}) \)

\[
V_{eff}(\phi_I) \sim \frac{3 H_{inf}^2 M_{Pl}^2}{2} \left(1 - \cos \frac{\phi_I}{Nf}\right) \quad ; \quad H_{inf} \sim \frac{v^2}{fM_{Pl}} e^{-2mL}
\]

neglect sub-dominant SUSY breaking needed today…
Inflationary history

• Inflation end @ SUSY vacuum \((D\phi_i W = 0)\) with \(\sim\) zero CC \((W = 0)\)

• Inflationary trajectory: heavy fields stabilized, \(m_{\eta h, \phi h} \sim H_{inf} e^{2mL} \frac{N^2}{f}, \frac{m_{\eta_l}}{v} \gtrsim O(H_{inf})\)

\[V_{eff}(\phi_l) \sim \frac{3}{2} \frac{H_{inf}^2 M_{Pl}^2}{2} \left(1 - \cos \frac{\phi_l}{Nf} \right) ; \quad H_{inf} \sim \frac{v^2}{f M_{Pl}} e^{-2mL} \]

• SUSY breaking *during* inflation...

\[\langle D_{\phi_l} W \rangle_{inf} \approx \frac{1}{N} \langle D_{\phi h} W \rangle_{inf} : \text{order parameter} \]

Goldstino \(\propto \langle D_{\phi_l} W \rangle \chi_i \approx \) heavy axino

... dominantly by heavy sector!
Fine-tunings

\[CC = -3 \frac{\Delta W_0^2}{M_{Pl}^2} + V_{SUSY}^{today} \approx m e V^4 \]

\[\Delta W_0 \sim O(v^2) \]

• Consider gravity-mediation to SM

\[i.e. \frac{V_{SUSY}^{today}}{M_{Pl}^2} \sim v_w^2 \]
Fine-tunings

... tied to the CC problem!

\[CC = -3 \frac{\Delta W_0^2}{M_{Pl}^2} + V_{SUSY}^{today} \approx meV^4 \]

\[\Delta W_0 \sim O(v^2) \]

consider gravity-mediation to SM
i.e. \(V_{SUSY}^{today} / M_{Pl}^2 \sim v_w^2 \)

\[T_{net} = T_{EW} \times T_{CC} \times T_{W_0} \]

\[\sim \frac{v_w^2 M_{Pl}^2}{V_{SUSY}} \times \frac{meV^4}{V_{SUSY}} \times \frac{V_{SUSY}^{1/2} M_{Pl}}{v^2} \]

net preference to low-scale SUSY!

prefers SUSY at: low-scale high-scale

SUSY Inflation from the 5th Dimension: Kaustubh Deshpande (UMD)
Observable signals
Primordial non-Gaussianities from sinflaton

need $m_X \approx H_{inf}$, tree-level contributions, $X(\partial \phi)^2$ coupling

Chen, Wang (2010), ...
Primordial non-Gaussianities from sinflaton

need $m_X \approx H_{inf}$, tree-level contributions, $X(\partial \phi)^2$ coupling

Chen, Wang (2010), ...

- sinflaton (η_l):

 \[m_{\eta_l} \approx \sqrt{6} H_{inf} \left(1 + \frac{c M_{Pl}^2}{\Lambda^2}\right) \frac{1}{2} \]

 \[K_5 \ni \delta(x_5) \frac{c}{\Lambda^2} (\Phi_A + \Phi_A)^2 (\Phi_B + \Phi_B)^2 \]

 loops of (1, N) charged matter $\Rightarrow \frac{c}{\Lambda^2} \sim \frac{g^2 N}{16\pi^2 m_{KK}^2}$
Primordial non-Gaussianities from sinflaton

need \(m_X \approx H_{inf} \), tree-level contributions, \(X(\partial \phi)^2 \) coupling

Chen, Wang (2010), ...

\[m_{\eta_l} \approx \sqrt{6} H_{inf} \left(1 + \frac{c M_{Pl}^2}{\Lambda^2} \right)^{\frac{1}{2}} \]

\[\sim H_{inf} \text{ possible with } g \lesssim 0.1 \]

\[K_5 \ni \delta(x_5) \frac{c}{\Lambda^2} (\Phi_A + \bar{\Phi}_A)^2 (\Phi_B + \bar{\Phi}_B)^2 \]

loops of \((1, N)\) charged matter \(\Rightarrow \frac{c}{\Lambda^2} \sim \frac{g^2 N}{16\pi^2 m_{KK}^2} \)
Primordial non-Gaussianities from sinflaton

- sinflaton-inflaton coupling:

\[K_5 \equiv \delta(x_5) \frac{c}{\Lambda^2} (\Phi_A + \bar{\Phi}_A)^4 \Rightarrow \mathcal{L}_4 \equiv \frac{c}{\Lambda^2} \eta_l^2 (\partial \phi_l)^2 \]
Primordial non-Gaussianities from sinflaton

- sinflaton-inflaton coupling:

\[K_5 \ni \delta(x_5) \frac{c}{\Lambda^2} (\Phi_A + \bar{\Phi}_A)^4 \Rightarrow \mathcal{L}_4 \ni \frac{c}{\Lambda^2} \eta_l^2 (\partial \phi_l)^2 \]

\[\Rightarrow f_{NL} \sim 10^{-6} \left(\frac{M_{Pl}}{\Lambda}\right)^4 \sim \mathcal{O}(10^{-2}) ; \Lambda \sim M_5 \sim 0.1 \, M_{Pl} \]

\[\sim \mathcal{O}(1) \quad ; \quad \Lambda \sim V_{inf}^{1/4} \lesssim 10^{-2} \, M_{Pl} \]

- Typical size of 3-pt. correlation function of curvature perturbations

- Observable at future 21-cm or possibly even earlier LSS surveys!
Periodic modulations in CMB

• Generic heavy hypermultiplet: $M, (n_A, n_B)$

\[
\Rightarrow \frac{\delta V}{V_{inf}} \approx n_B e^{2mL} e^{-ML} \cos \left[(Nn_B - n_A) \frac{\phi_l}{f_{eff}} \right]
\]
Periodic modulations in CMB

• Generic heavy hypermultiplet: $M, (n_A, n_B)$

$$\Rightarrow \frac{\delta V}{V_{inf}} \approx n_B e^{2mL} e^{-ML} \cos \left[(Nn_B - n_A) \frac{\phi_l}{f_{eff}} \right]$$

• Observational constraint: $\left| \frac{\delta V}{V_{inf}} \right| \lesssim 10^{-5}$ (also depending upon the “higher harmonic” frequency)

Choi, Kim (2016)

Flauger et al. (2014)
de la Fuente et al. (2015)
Periodic modulations in CMB

- Generic heavy hypermultiplet: \(M, (n_A, n_B) \)
 \[
 \delta V/V_{\text{inf}} \approx n_B \ e^{2mL} \ e^{-ML} \ \cos \left[(Nn_B - n_A) \frac{\phi_l}{f_{\text{eff}}} \right]
 \]

- Observational constraint: \(\left| \frac{\delta V}{V_{\text{inf}}} \right| \lesssim 10^{-5} \) (also depending upon the “higher harmonic” frequency)

- Charged matter with \(M \lesssim \frac{1}{5} \Lambda_{5D} \) lies within sensitivity!

\[\Lambda_{5D} \approx \frac{c}{g^2 L} \]

(Choi, Kim (2016))

Flauger et al. (2014)
de la Fuente et al. (2015)
Tension with Planck data and way out...

Planck (2018)
Tension with Planck data and way out...

Planck (2018)

“Multi-natural inflation”
higher harmonics in axionic inflation

Czerny, Takahashi (2014)
Tension with Planck data and way out...

Planck (2018)

"Multi-natural inflation" Czerny, Takahashi (2014)
highert harmonics in axionic inflation

work in progress w/ Kumar, Sundrum

“Hybrid axionic inflation” e.g. Peloso, Unal (2015)
Heavy field becomes tachyonic, i.e. waterfall transition, and ends inflation.
⇒ small-scale hybrid inflation
Conclusions
Conclusions

• **Axionic inflation**: one of the simplest, natural models of high-scale inflation
 - satisfies current CMB constraints

• **Compatible with low-scale SUSY** solution to EW hierarchy problem
 - fine-tuning considerations also prefer low SUSY breaking scale

• **Observable signals**
 - **primordial NG**: sinflaton, boundary-localized gauge singlets
 - **CMB periodic modulations**: charged matter close to 5D EFT cutoff
Thank you!