Conformal Freeze-In of Dark Matter

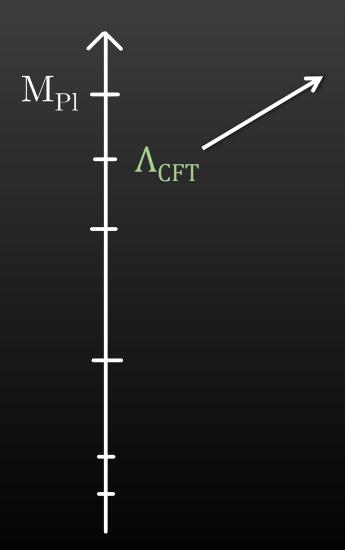
Gowri Kurup

(Work in progress with S. Hong, M. Perelstein)

Sept. 27th, Brookhaven Forum 2019

Why?

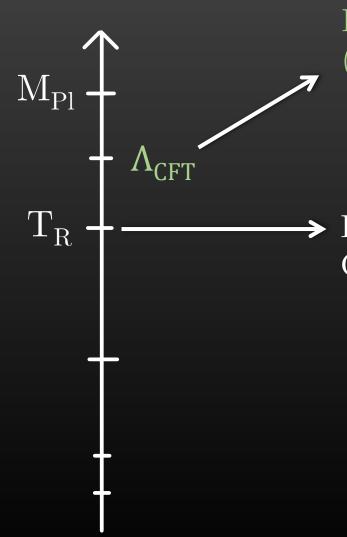
- We have quite a bit of evidence for the existence of dark matter, but no idea of its microscopic nature.
- ➤ Models so far based on assumption of particle nature of DM.


Why?

- We have quite a bit of evidence for the existence of dark matter, but no idea of its microscopic nature.
- ➤ Models so far based on assumption of particle nature of DM.
- ➤ What if the thermal history of DM was dominated by a conformal phase?

Why?

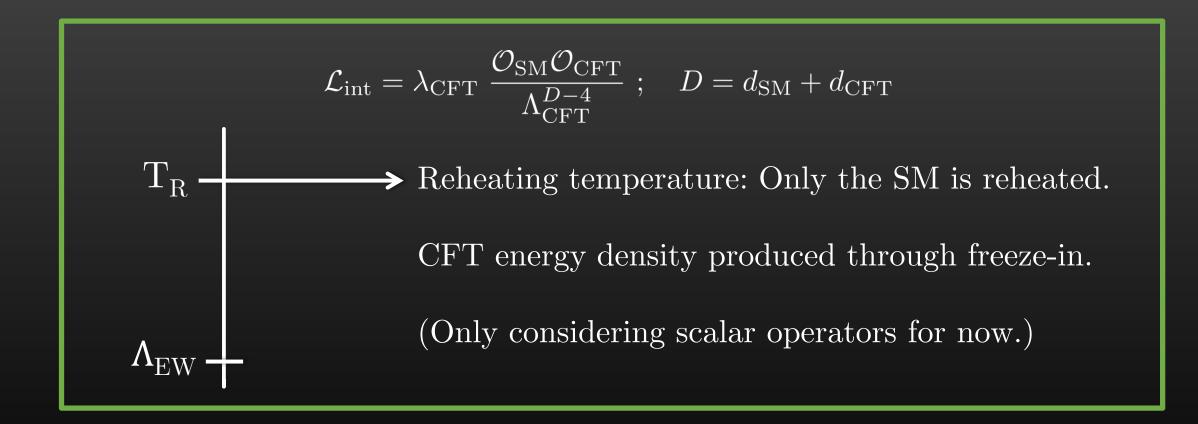
- >We have quite a bit of evidence for the existence of dark matter, but no idea of its microscopic nature.
- ➤ Models so far based on assumption of particle nature of DM.
- >What if the thermal history of DM was dominated by a conformal phase?
 - 1. CFT \Rightarrow No notion of particles possible
 - 2. Large anomalous dimensions \Rightarrow non-integer operator dimensions


How?

Dark sector phase transition from UV theory (e.g. Banks-Zaks theory) to CFT phase.

$$\mathcal{L}_{\mathrm{int}} = \lambda_{\mathrm{CFT}} \frac{\mathcal{O}_{\mathrm{SM}} \mathcal{O}_{\mathrm{CFT}}}{\Lambda_{\mathrm{CFT}}^{D-4}} \; ; \quad D = d_{\mathrm{SM}} + d_{\mathrm{CFT}}$$

How?


Dark sector phase transition from UV theory (e.g. Banks-Zaks theory) to CFT phase.

$$\mathcal{L}_{\mathrm{int}} = \lambda_{\mathrm{CFT}} \frac{\mathcal{O}_{\mathrm{SM}} \mathcal{O}_{\mathrm{CFT}}}{\Lambda_{\mathrm{CFT}}^{D-4}} \; ; \quad D = d_{\mathrm{SM}} + d_{\mathrm{CFT}}$$

➤ Reheating temperature: Only the SM is reheated. CFT energy density produced through freeze-in.

How?

➤ No particles or number densities ⇒ Use energy density instead!

$$T^{\mu}_{\mu} = 0 \Rightarrow P_{\text{CFT}} = \frac{1}{3}\rho_{\text{CFT}}$$

$$\Rightarrow \frac{\partial \rho_{\text{CFT}}}{\partial t} + 4H\rho_{\text{CFT}} = C$$

➤ No particles or number densities ⇒ Use energy density instead!

$$T^{\mu}_{\mu} = 0 \Rightarrow P_{\text{CFT}} = \frac{1}{3}\rho_{\text{CFT}}$$

$$\Rightarrow \frac{\partial \rho_{\text{CFT}}}{\partial t} + 4H\rho_{\text{CFT}} = C$$

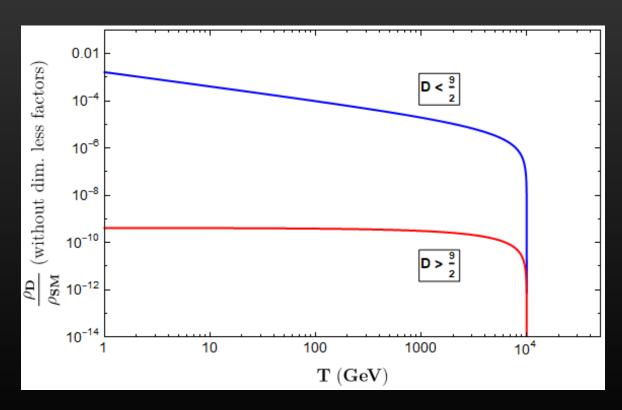
What is the collision term?

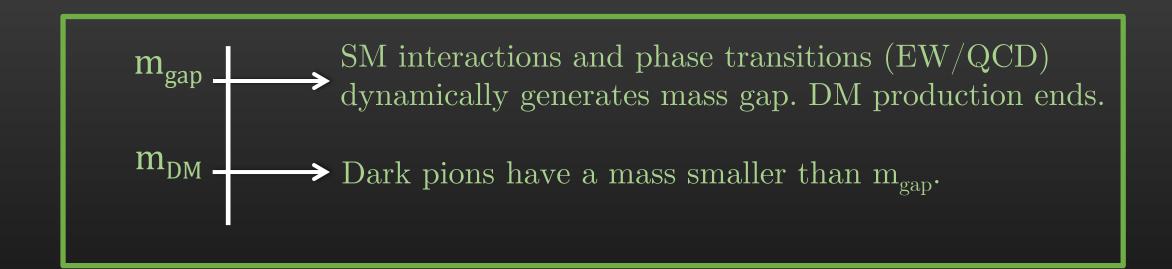
Can derive SM \rightarrow CFT term, but for CFT \rightarrow SM, need finite temperature

CFT correlators, $\langle \mathcal{O}_{\text{CFT}} \mathcal{O}_{\text{CFT}} \rangle_T$: unknown for D > 2!

- \triangleright To ignore backreaction, need $T_{\rm CFT} \ll T_{\rm SM}$
- > Weak coupling, CFT should not be in thermal equilibrium with the SM

- \triangleright To ignore backreaction, need $T_{\text{CFT}} \ll T_{\text{SM}}$
- > Weak coupling, CFT should not be in thermal equilibrium with the SM
 - > Solution: Freeze-In!
- > Boltzmann Equation with this assumption:

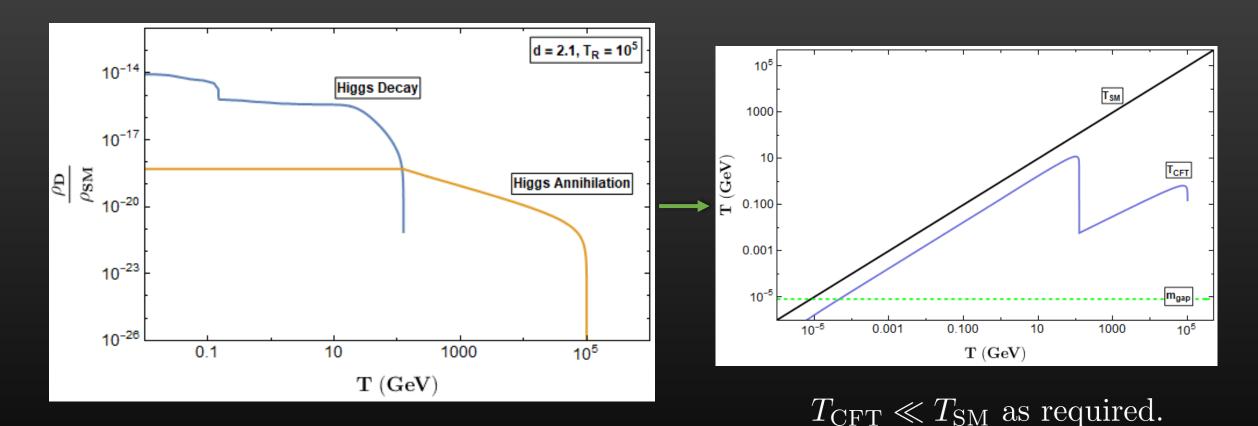

$$\Rightarrow \frac{\partial \rho_{\text{CFT}}}{\partial t} + 4H\rho_{\text{CFT}} = n_{\text{SM}}^2 \langle \sigma(\text{SM} \to \text{CFT}) \ v \ E_{tot} \rangle$$


Simple Dimensional Analysis

➤ Without calculating the actual collision term, we can predict how the energy density will grow:

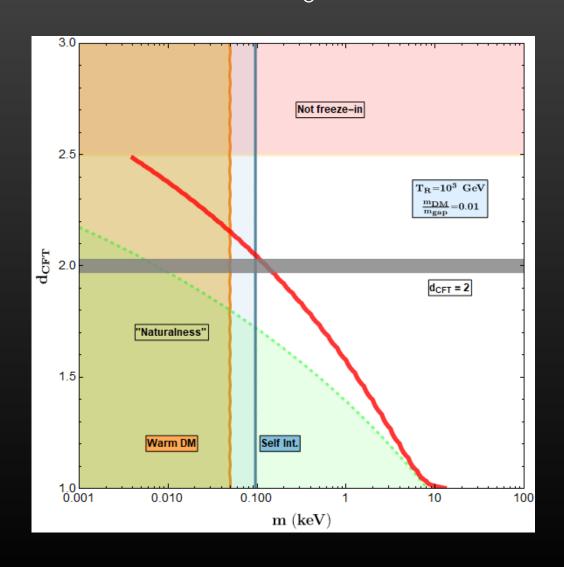
$$n_{\rm SM}^2 \sim T_{\rm SM}^6$$
; $\langle \sigma v E \rangle \sim \frac{T_{\rm SM}^{2D-9}}{\Lambda^{2(D-4)}}$
 $\Rightarrow C \sim \frac{T_{\rm SM}^{2D-3}}{\Lambda^{2D-8}}$
 $\Rightarrow \rho_{\rm CFT} \sim T^4 \times \frac{T_R^{2D-9} - T^{2D-9}}{2D-9}$

 $\triangleright \text{ NOT freeze-in for D} > 4.5$



Concrete Example: $\mathcal{O}_{SM} = H^{\dagger}H$

- > Production modes:
 - \rightarrow Above weak scale:
 - \square Annihilation (H H \rightarrow CFT)
 - \rightarrow Below weak scale:
 - \square Decay (H \rightarrow CFT)
 - ¤ Quark/gluon fusion through Higgs portal (Q Q / g g → CFT)
- > When SM scale becomes relevant/deformation to CFT is significant, conformality is lost and a mass gap is generated.


e.g. from simple dim. analysis, for
$$H^{\dagger}H$$
, $m_{\rm gap} = \left(\frac{v^2}{\Lambda^{(D-4)}}\right)^{\frac{1}{4-d}}$

Concrete Example: $\mathcal{O}_{SM} = H^{\dagger}H$

Higgs decay is the most important process in the Higgs scalar operator case.

Relic Density Plot for $\mathcal{O}_{SM} = H^{\dagger}H$

Light keV scale DM!

Note that the WDM bound is weaker for our case.

Typical Higgs portal constraints that are beyond this plot:

- Higgs invisible decay
- Supernova bounds
- Stellar Cooling
- Rare meson decays

Other Constraints

- > Direct Detection: DM is too light to be relevant.
- \triangleright BBN: No $\Delta N_{\rm eff}$ constraint, as energy in dark sector is very low at BBN.

Work in progress:

- 1. Beam dump experiments: Similar to rare meson decays; most likely not relevant (more careful check to be completed).
- 2. CMB distortions.

Conclusions

- > Possible to have naturally light dark matter candidate!
- > Non-integral operators in the dark sector's history
- > Dynamically generated mass gap: mass is linked to coupling.
- \triangleright Minimal model, with essentially 2 parameters: d, and $\frac{m_{\rm gap}}{m_{\rm DM}}$
- > Look out for our paper later this year!

Thank You!