

Revisiting the AGS Heavy Ion Program and Looking Forward to the Fixed-Target Program at STAR

Daniel Cebra University of California, Davis

Daniel Cebra 30/Apr/2019

Seminar Brookhaven National Laboratory

Slide 1 of 48

Abstract

In the 1980's and 90's the AGS initiated a heavy-ion beam program with both silicon and gold beams. A suite of dedicated experiments established the systematics for production of light charged particles, strangeness, light nuclei, and anti-particles, as well as systematics for flow and femtoscopy. Those experiments established the design of the RHIC detectors and trained the personnel who would become leaders in the RHIC program. Recently, there has been renewed interest in the energy region covered by the AGS heavy-ion program. New facilities are being built Germany and Russia and proposed in Japan and China. And a conclusion of the first beam energy scan at RHIC was that it would be necessary to revisit the AGS energy range by installing a fixed-target within the STAR experiment. This talk will review key results from the AGS heavy-ion program, and compare those to results from the STAR fixed-target test runs, and outline the proposed physics program.

Outline

- The AGS heavy-ion program
 - History and overview of AGS heavy-ion program
 - Particle spectra and yields
 - Collective Behavior
 - HBT
- The fixed-target program at STAR
 - History and overview
 - Review of test run results
 - Preview of 2018 first physics run at 3.0 GeV
 - Plans for runs in 2019, 2020, and 2021
- Perspective and Conclusions

Alternating Gradient Synchrotron

- The first proton accelerator utilizing strong-focusing principle
- July 29, 1960: First beam, 33 GeV
- Three Nobel Prizes:
 - 1962: L. Lederman, M. Schwartz and J.
 Steinberger
 muon neutrino

- 1988 Nobel Prize
- 1964: J. Cronin and V. Fitch
 CP violation in Kaon decay
 1980 Nobel Prize
- 1974: S. C.C. Ting discovery of J/ψ
 1976 Nobel Prize
- 1988-92: Silicon beams at 14.6 AGeV/c
- 1993-96: Gold beams, 2.8-11.7 AGeV/c
- 1999-present: Injector for RHIC

Daniel Cebra 30/Apr/2019 Slide 4 of 48

E802/E859/E866/E917 Experiment

- E802 Spokesperson: Chellis Chasman, Shoji Nagamiya
- E859 -- Spokesperson: Ledoux, Robert J.; Remsberg, Louis P.; Zajc, William A.
- E866 -- Spokesperson: Chasman, Chellis; Hamagaki, Hideki; Steadman, Steve G.
- E917 -- Spokesperson: Mignerey, Alice; Seto, R.K.

E802/E866/E917

Brian Cole

Eleanor Judd

Alan Wuosmaa

Edmundo Garcia-Solis

James Dunlop

Brookhaven National Laboratory

Tapan Nayak

Vince Cianciolo

Jack Engelage

Dave Morrison

JH Lee Robert Pak

Slide 6 of 48

E810/E891 Experiment

E810 – **Spokesperson:** Lindenbaum, S.J.; Platner, E.D. E891 – **Spokesperson:** Platner, E.D.

Time Projection
 Chamber

Main Results: K⁰s (Si+Au) Lambda (Si+Au)

E810 – Tim Hallman (PhD 82 Johns Hopkins)

Daniel Cebra 30/Apr/2019 Slide 7 of 48

E814/E877 Experimental Setup

E814 – **Spokesperson:** Braun-Munzinger, Peter E877 – **Spokesperson:** Braun-Munzinger, Peter

- Forward spectrometer
- TOF & Calorimetry

Pions Protons Light nuclei Lambda Anti-lambda Directed flow Elliptic flow HBT

Main Results:

Slide 8 of 48

Daniel Cebra 30/Apr/2019

Daniel Cebra 30/Apr/2019 Seminar Brookhaven National Laboratory Slide 9 of 48

E864 Experiment

E864 – **Spokesperson:** Majka, Richard D.; Sandweiss, Jack E941 – **Spokesperson:** Huan Huang

- Forward spectrometer
- TOF & Calorimetry

Main Results:

Protons Light nuclei Anti-proton Anti-deuteron

Found no strangelets

Daniel Cebra 30/Apr/2019 Seminar Brookhaven National Laboratory Slide 10 of 48

E864

Daniel Cebra	
30/Apr/2019	

Slide 11 of 48

E895/E910 Experiment

E895 – **Spokesperson**: Gulshan Rai E910 -- **Spokesperson:** Cole, Brian A.

• Time Projection Chamber

Main Results:

Pions Protons Lambdas Directed flow Elliptic flow HBT

E895/E910

Daniel Cebra	
30/Apr/2019	

Slide 13 of 48

E896 Experiment

E896 -- Spokesperson: Crawford, Henry J.; Hallman, Tim J

BNL-AGS E896 EXPERIMENTAL LAYOUT

Daniel Cebra
30/Apr/2019

Slide 14 of 48

AGS Results: pion, kaon, proton spectra

Spectra – pions:

- E895_PRC68(2003)054905 π^+ and π^- spectra and dN/dy at 2, 4, 6, 8 AGeV
- E802_PRC57(1998)R466 π^+ and π^- spectra and dN/dy at 10.5 AGeV
- E877_PRC62(2000)024901 -- π^+ and π^- high rapidity spectra and dN/dy at 10.5 AGeV
- E917_PLB476(2000)1 π^+ mid-rapidity spectra at 2, 4, 6, 8 AGeV

Spectra – Kaons:

- E866_PLB490(2000)53 K⁺ and K⁻ mid-rapidity spectra at 2, 4, 6, 8, 10.5 AGeV
- E866_NPA630(1998)571c K⁺ and K⁻ dN/dy at 10.5 AGeV
- → Need Charged kaon dN/dy for AGS scan energies

Spectra – Protons:

- E895_PRL88(2002)102301 proton spectra and dN/dy at 2, 4, 6, 8 AGeV
- E917_PRL86(2001)1970 proton spectra and dN/dy at 6, 8, 10.5 AGev
- E802_PRC57(1998)R466 proton spectra and dN/dy at 10.5 AGeV
- E802_PRC60(1999)064901 proton spectra and dN/dy at 10.5 AGeV
- E877_PRC56(1997)3254 forward rapidity proton spectra at 10.5 AGeV
- E877_PRC62(2000)024901 forward rapidity proton spectra at 10.5 AGeV

AGS Results: pion and kaon spectra

- pion ratio comes from initial n:p ratio as low p_T pions are produced primarily through the Δ channel → accounted for by µ₀ is statistical models related to stopping
- Pion ratios provide another way to 'image' the size of the source

• Kaon ratios come from associated production, which feeds K⁺ only

Daniel Cebra	
30/Apr/2019	

AGS Results: proton spectra

Daniel Cebra	
30/Apr/2019	

AGS Results: anti-protons and light nuclei

Spectra – Other:

- E864_PRC60(2000)064903 neutron spectra and dN/dy at 10.5 AGeV
- E864_PRC61(2000)064908 p, d, t, ³He, ⁴He spectra and yields at 10.5 AGeV
- E864_PRL85(2000)2685 anti-deuteron yields at 10.5 AGeV
- E864_PRL79(1997)3351 anti-proton yields at 10.5 AGeV
- E917_PRL(2001)242301 anti-proton spectra at 10.5 AGeV
- E802_PRL81(1998)2650 anti-proton spectra t 10.5 AGeV
- E814_PRC61(2000)044906 deuteron spectra at 10.5 AGeV
- E802_PRC60(1990)064901 deuteron spectra and dN/dy at 10.5 AGeV
- E814_PRC61(2000)044906 t and ³He yields at 10.5 AGeV

Need to map these out across the AGS energy scan range

AGS Results: Strangeness (V⁰'s)

Daniel Cebra

30/Apr/2019

AGS Results: Directed Flow

Directed Flow – pions:		
• E877_PRC56(1997)3254 -	$\cdot \pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ at 10.5 AGeV	🗲 Need energy scan
	Influenced by shadowing an	d Coulomb
Directed Flow – Kaons:		
 E895_PRL85(2000)940 – F 	< ⁰ s at 6 AGeV	🗲 Need charged kaons
Directed Flow – Protons:	Influenced by shadowing	
• E895_PRL84(2000)5488 -	at 2, 4, 6, 8 AGeV	0.3
• E8//_PRC56(1997)3254 -	 at 10.5 AGeV No anticipated minimum -> 	0.25
Directed Flow – Anti-protons	S:	0.2
• E877_PLB485(2000)319 -	at 10.5 AGeV	0.15
	Need energy scan	0.1 -
Directed Flow – Lambdas:	07	0.05 =BEM (hard, p-dep)
• E895_PRL86(2001)2533 -	at 2, 4, 6 AGeV	0 BEM (cascade)
• E877_PRC63(2001)014902	2 – at 10.5 AGeV	1 10
		E _{lab} (AGeV)

Follow protons

Daniel Cebra	
30/Apr/2019	

AGS Results: Elliptic Flow

Elliptic Flow – Protons:

- E895_PRL83(1999)1295 at 2, 4, 6, 8 AGeV
- E877_PRC56(1997)3254 at 10.5 AGeV
- E895_PRC66(2002)021901 at 2, 4, 6 AGeV with centrality cuts

- Crossover from squeeze-out to inplane at 4 AGeV
- Relevance to the change of stiffness of EoS?

Need other particle species

AGS Results: HBT

HBT – Pions:

- E895_PRL84(2000)2798 R_{out}, R_{side}, R_{long} at 2, 4, 6, 8 AGeV
- E802_PRC66(2002)054096 R_{out}, R_{side}, R_{long} at 10.5 AGeV
- E877_PRL78(1997)2916 R_{out}, R_{side}, R_{long} at 10.5 AGeV

HBT – protons:

• E814_PRC60(1999)054905 – correlation functions for protons

Across the AGS energy range, the source radii are falling

- Need to do negative pion positive pions separately
- Need to get the "tilt" angle
- Need more pp HBT

Daniel Cebra
30/Apr/2019

Fixed-Target Program

The Fixed-Target Program will extend the reach of the RHIC BES to higher μ_B .

Goals:

1) Search for evidence of the first entrance into the mixed phase

 Control measurements for BES collider program searches for Onset of Deconfinement

 Control measurements for Critical Point searches

Baryon Chemical Potential μ_B

Slide 23 of 48

History of Low Energy Running at RHIC

RHIC Runs at or Below Nominal Injection Energy:

STAR and RHIC recognized the importance to run at energies down to and below 7.7 GeV

Studies using Beam Halo Background

2010 - 2014

Goals:

- Understand the Beam Halo Background
- Determine the applicability of STAR for fixed-target
- First of FXT results → Au+Al

Daniel Cebra	
30/Apr/2019	

Beam Halo on Al Vacuum Pipe

Daniel Cebra 30/Apr/2019

Seminar Brookhaven National Laboratory

26

Slide 26 of 48

Pion Ratio Analysis

We conclude that there are gold nuclei in the beam halo

Daniel Cebra	
30/Apr/2019	

Seminar Brookhaven National Laboratory

Slide 27 of 48

Target Design 2014 and 2015

The success of the beam pipe studies motivated installing an internal gold target

Target design:

Gold foil 1 mm Thick (4%) ~1 cm High ~4 cm Wide ~2 cm below beam axis 210 cm from IR

Daniel Cebra 30/Apr/2019 Slide 28 of 48

2014 → Vs_{NN}=3.9 GeV Au halo + Au target

Daniel Cebra 30/Apr/2019

Seminar Brookhaven National Laboratory

Slide 29 of 48

Direct Beam Test Runs 2015

Goals:

- Check the conclusion that there are gold ions in the halo
- Determine if the direct beam is a better conduct of operations
- Acquire enough data for significant feasibility studies
- Physics Analyses → Reproduction of AGS results

Two test runs, one using gold beam the other using aluminum beam :

- → 4 PhD Theses (Kathryn Meehan, Yang Wu, Usman Ashraf, Todd Kinghorn)
- → 1 MS Thesis (Lukasz Kozyra)
- ➔ 1 Postdoctoral project (David Tlusty)

FXT Results: $Vs_{NN} = 4.9$ GeV Al+Au

Daniel Cebra 30/Apr/2019

Seminar Brookhaven National Laboratory

Slide 31 of 48

FXT Results: pion spectra

Daniel Cebra 30/Apr/2019 Seminar Brookhaven National Laboratory Slide 32 of 48

FXT Results: proton spectra

Brookhaven National Laboratory

Slide 33 of 48

Daniel Cebra 30/Apr/2019

FXT Results: V⁰ yields

Daniel Cebra	
30/Apr/2019	

Slide 34 of 48

FXT Results: spectra overview

 E896
 PRL 88 (2002) 062301

 NA44
 PRC 66 (2002) 044907

 NA49
 JPG 30 (2004) 5701

 NA49
 JPG 30 (2004) 022302

 NA57
 JPG:NPP 32 (2006) 2065

 WA58
 PRC 67 (2003) 014906

 E895
 RPC 68 (2003) 054905

 E895
 NPA 698 (2002) 495c

 E917
 PLB 476 (2000) 1

 E802
 NPA 610 (1996) 139c

 E877
 PRC 63 (2001) 014902

 E891
 PLB 382 (1996) 35

Daniel Cebra 30/Apr/2019 Seminar Brookhaven National Laboratory Slide 35 of 48

Daniel Cebra 30/Apr/2019 Seminar Brookhaven National Laboratory Slide 36 of 48

FXT Results: meson directed flow

Daniel Cebra 30/Apr/2019 Seminar Brookhaven National Laboratory Slide 37 of 48

FXT Results: proton elliptic flow

Daniel Cebra	
30/Apr/2019	

FXT Results: HBT

STAR PRC 92 (2015) 14904

2018 → 3.85 GeV Au+Au (Vs_{NN} = 3.0 GeV) Data Set

Data taking started: Thursday 31 May 2018 03:19 EDT with Run 19151029

Data taking completed: Monday 04 June 2018 07:48 EDT with Run 19155021

Total hours of beam: 60

Total physics triggers: 340 Million

Total good events: 309 Million

Tigger efficiency: 91%

First FXT Physics Run Result should be available soon

(Also, we took 7.2 GeV Au+Au FXT data for 72 hours, for a total of 237 M triggers)

Daniel Cebra 30/Apr/2019

Seminar Brookhaven National Laboratory

Slide 42 of 48

Well centered beam spot; no background

Daniel Cebra	
30/Apr/2019	

Seminar Brookhaven National Laboratory

Slide 43 of 48

Physics Goals of the FXT Program

The Onset of Deconfinement:

- •High p_⊤ suppression
- $\bullet N_{CO}$ scaling of Elliptic Flow
- •LPV through three particle correlators (CME)
- Balance Functions
- Strangeness Enhancement

Compressibility -> First Order Phase Transition

- Directed flow
- •Tilt angle of the HBT source
- The Volume of the HBT source
- •The width of the pion rapidity distributions (Dale)
- •The zero crossing of the elliptic flow (~6 AGeV)
- Volume measures from Coulomb Potential

Criticality:

- •Higher moments
- Particle Ratio Fluctuations

Chirality:

Dilepton studies

Hypernuclei: → Lifetime of the hypertriton

> two weeks of beam time

Seminar Brookhaven National Laboratory

No

Plans for the Future 2019-2021

- Full FXT proposal was included in the May 2018 Beam Use Request
- Approved to run three energies in 2019
- Additional energies will be scheduled in 2020 and 2021

FXT Program

Collider Energy	Fixed- Target Energy	Single beam AGeV	Center- of-mass Rapidity	μ _в (MeV)	Year to complete
62.4	7.7	30.3	2.10	420	2019
39	6.2	18.6	1.87	487	2021?
27	5.2	12.6	1.68	541	2021?
19.6	4.5	8.9	1.52	589	2019
14.5	3.9	6.3	1.37	633	2019
11.5	3.5	4.8	1.25	666	2020
9.1	3.2	3.6	1.13	699	2020
7.7	3.0	2.9	1.05	721	2018

• Data rate is DAQ limited • Would need 100 Million Events at each energy to make the sensitivity of BES-II • Roughly one to two days per energy

80 ps TK Limit η = 2.24 5.2 GeV 1.5 4.5 GeV 6.2 GeV 7.7 GeV 1.25 1 Limi π 0.75 0.5 **eTOF PID** 0.25 ow p_T for dE/dx PID 0 4 = 1.47 = 1.52 3.5 $\eta = 2.24$ 5.2 GeV 6.2 GeV 7.7 GeV 3 1.5 GeV SOps TIK Limit 2.5 2 p 1.5 1 0.5 Low pt for dE/dx 0 0.5 1 1.5 2 2.5 3 0

= 1.52 η = 1.47

Ľ

2

1.75

Daniel Cebra 30/Apr/2019

Seminar **Brookhaven National Laboratory**

Slide 46 of 48

Comparison of Facilities

Facilty	RHIC BESII	SPS	NICA	SIS-100 SIS-300	J-PARC HI	
Exp.:	STAR	NA61	MPD	CBM	JHITS	
	+FXT		+ BM@N			
Start:	2019-20	2009	2020	2022	2025	
	2018		2017			
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2	
√s _{NN} (GeV)	3.0-7.7		2.0-3.5			
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ	
At 8 GeV	2000 Hz					
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM	
	Collider	Fixed Target	Collider	Fixed Target	Fixed Target	
	Fixed Target	arget Lighter ion	Fixed Target	CP = Critical Point		
		collisions		OD = Onset of I DHM = Dense H	Deconfinement Iadronic Matter	
Daniel Cebra		Seminar Slide 47 of 48				

30/Apr/2019

Brookhaven National Laboratory

Conclusions

- AGS Program provided extensive results at the top energy, but left many observables unmeasured across the energy scan.
- FXT program will allow for comprehensive measurements below 7.7 GeV
- Acceptance and physics have been demonstrated in test runs and other studies