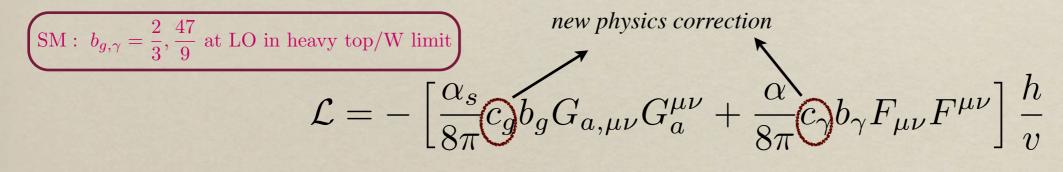
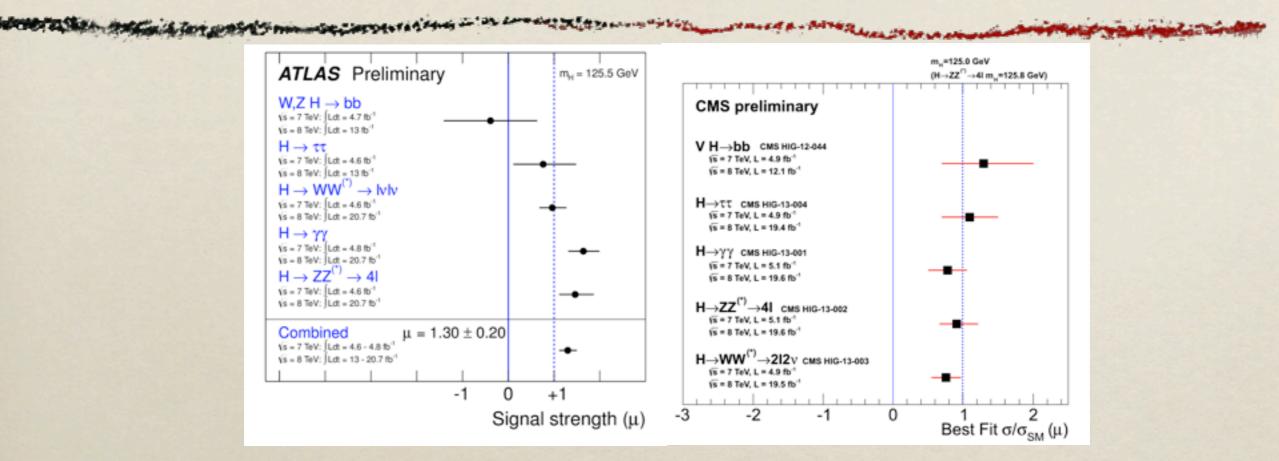
Bounding Higgs Width Through Interferometry

work with: Lance Dixon - 1305.3854 Lance Dixon and Stefan Höche - ongoing Ye Li

DPF 2013 Meeting University of California, Santa Cruz Aug 16, 2013


Outline

- Interference in $gg \rightarrow H \rightarrow \gamma \gamma$
- Real part interference: mass shift
- NLO corrections to interference
- Bounding Γ_H using mass shift
- Conclusion


Higgs Production

• Dominated by gluon fusion through a top quark loop $g = \frac{g}{t} - -H \Rightarrow g = -H$

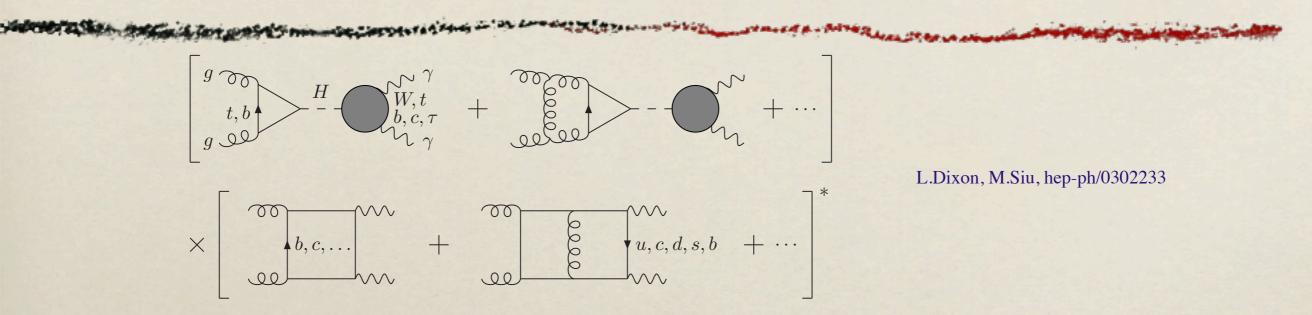
- To make higher order correction feasible, approximate top quark loop by effective ggH vertex
- Similarly, photon couples to Higgs through top quark and W boson loop, can also be approximated by effective γγH vertex

Higgs Decay

- For m_H ~ 125GeV, Higgs resonance is weak
- Diphoton decay
 - excellent experimental photon energy resolution $\Rightarrow \gamma \gamma$ signal visible even though $Br(H \rightarrow \gamma \gamma) \sim 0.0023$
 - fully reconstructed invariant mass

- large SM background
- data in reasonable agreement with SM prediction
- Additional invisible/ undetectable decay channels could increase Higgs total width and reduce γγ BR

Full Diphoton Amplitude


- Higgs signal appears as resonance in diphoton invariant mass $M_{\gamma\gamma}$ spectrum
- Finite detector resolution make direct measurement on Higgs width impossible
- The only observable: signal strength in narrow width approximation

 $S \sim |\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H}|^{2} \qquad \sigma^{sig} = \int dM_{\gamma\gamma} \frac{S}{(M_{\gamma\gamma}^{2} - m_{H}^{2})^{2} + m_{H}^{2} \Gamma_{H}^{2}} \sim \underbrace{\begin{pmatrix} c_{g}^{2} c_{\gamma}^{2} \\ \Gamma_{H} \end{pmatrix}}_{\text{as a combo!}} \xrightarrow{\text{Always appears}}_{\text{as a combo!}}$

- In SM, all Higgs properties dictated by m_H, how well can we test them at LHC?
- Need to decouple width from couplings

0

Interference

- Need to examine the width dependence of the interference
- The interference contribution

$$-2m_H\Gamma_H \frac{\mathrm{Im}(\mathcal{A}_{gg\to H}\mathcal{A}_{\gamma\gamma\to H}\mathcal{A}_{\mathrm{cont}}^*)}{(M_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2\Gamma_H^2} - 2(M_{\gamma\gamma}^2 - m_H^2) \frac{\mathrm{Re}(\mathcal{A}_{gg\to H}\mathcal{A}_{\gamma\gamma\to H}\mathcal{A}_{\mathrm{cont}}^*)}{(M_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2\Gamma_H^2}$$

• Integrated contribution of the interference term: suppressed by small Higgs width in size comparing to the pure signal

$$\sigma^{int} = \int dM_{\gamma\gamma} \frac{(M_{\gamma\gamma}^2 - m_H^2)R + m_H \Gamma_H I}{(M_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2} \sim c_g c_\gamma$$

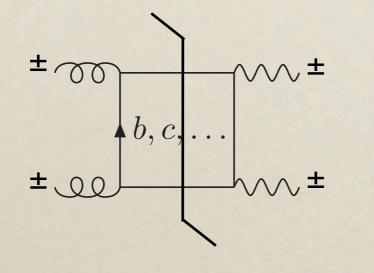
 $R \sim \operatorname{Re}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\operatorname{cont}}^{*})$ $I \sim \operatorname{Im}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\operatorname{cont}}^{*})$

Interference

• Interference has two pieces

$$R \sim \operatorname{Re}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\operatorname{cont}}^{*})$$
$$I \sim \operatorname{Im}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\operatorname{cont}}^{*})$$

$$\sigma^{int} = \int dM_{\gamma\gamma} \frac{(M_{\gamma\gamma}^2 - m_H^2)R + m_H \Gamma_H I}{(M_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2} \sim c_g c_\gamma$$

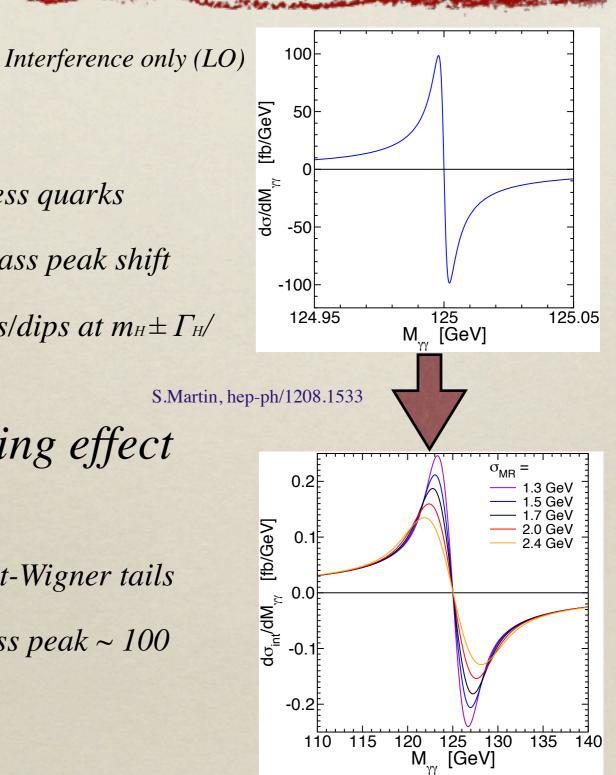

D.Dicus, S.Willenbrock, Phys.Rev.D37,1801

- Real part of Breit-Wigner: asymmetric around Higgs peak, negligible contribution to integrated cross section given that R doesn't vary too quickly
- Imaginary part of Breit-Wigner: constructive or destructive contribution depending on the relative phase between signal and background

Imaginary part of Interference

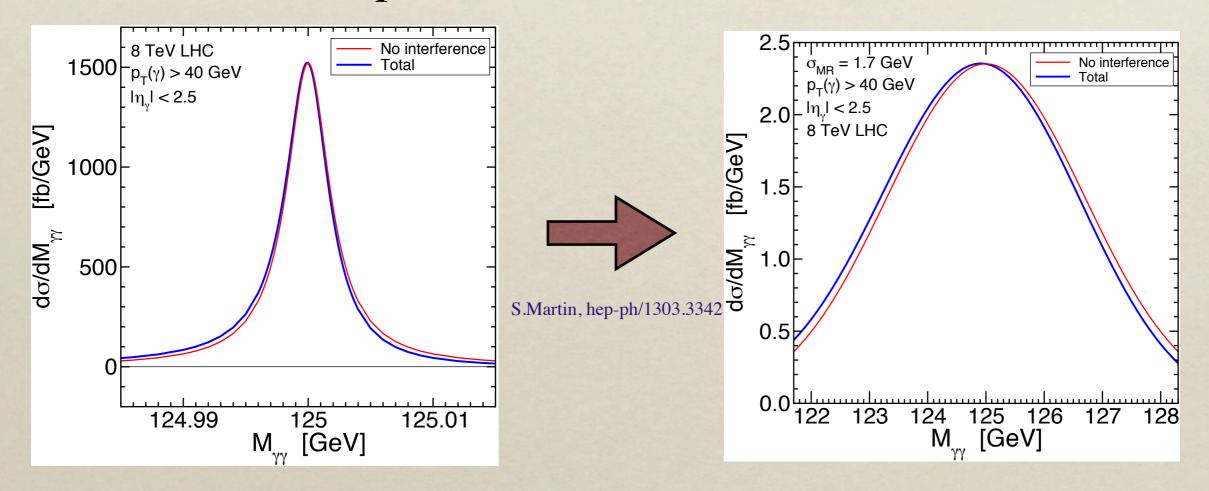
0

$${\cal A}^{
m tree}(g^\pm g^\pm o qar q) = {\cal A}^{
m tree}(qar q o \gamma^\pm \gamma^\pm) = 0 ext{ for } m_q = 0$$


$$I \sim \operatorname{Im}(\mathcal{A}_{gg \to H} \mathcal{A}_{\gamma\gamma \to H} \mathcal{A}_{\operatorname{cont}}^*)$$

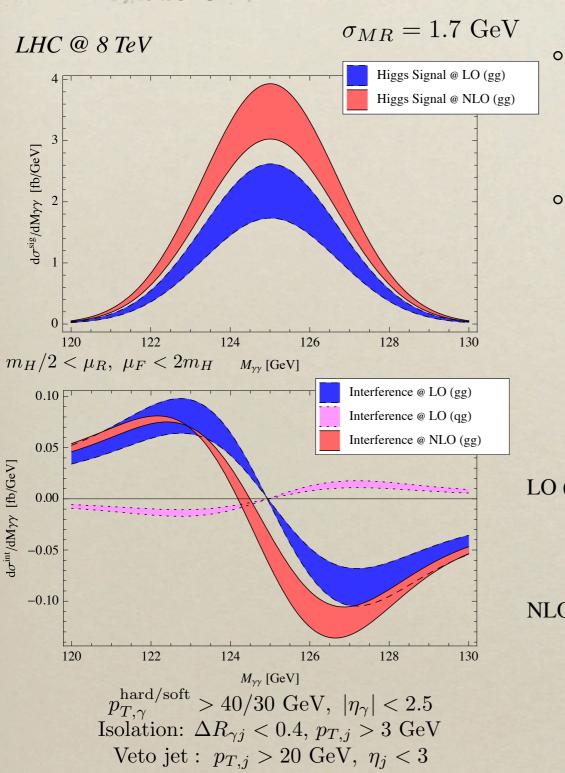
- The full $gg \rightarrow H \rightarrow \gamma \gamma$ signal amplitude is mainly real due to the dominant contribution from heavy top and W loops; contribution from light quark loops is suppressed by Yukawa couplings
- Need imaginary part from SM background for the relative phase 0
- SM continuum contribution starts at 1-loop 0
 - vanishing imaginary part in massless quark limit at LO 0
- Major imaginary part of SM background starts at 2-loop, leading to 1-2% 0 destructive interference
- Too small an effect to see ... 0

Theoretical uncertainty on signal~15%

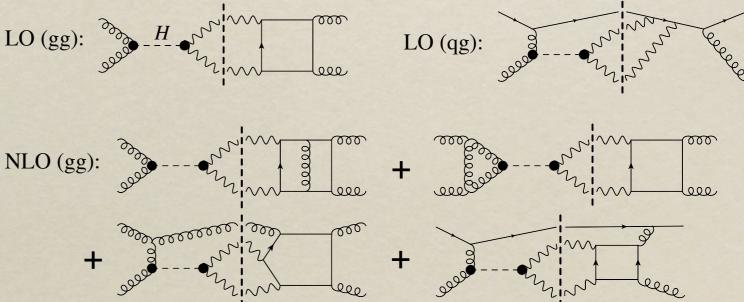

LO Mass Shift

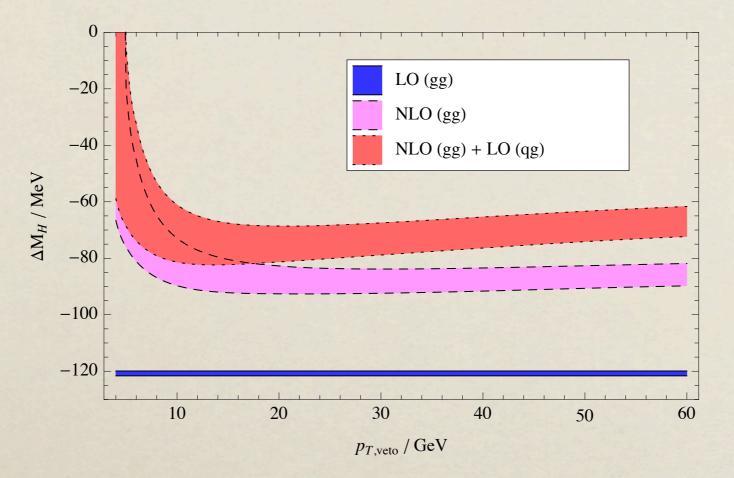
- Real-part interference
 - non-vanishing at 1-loop with massless quarks
 - odd around Higgs mass \Rightarrow Higgs mass peak shift
 - generically, asymmetric shape peaks/dips at $m_{\rm H} \pm \Gamma_{\rm H}/2 \Rightarrow$ mass shift ~ $\Gamma_{\rm H}$
- Different story when including effect of finite detector resolution
 - considerable contribution from Breit-Wigner tails
 - potentially visible shift of Higgs mass peak ~ 100 MeV

LO Mass Shift


illustration of how interference changes the diphoton invariant mass spectrum

diphoton spectrum in ideal detector


spectrum with detector mass resolution of 1.7 GeV


NLO QCD Correction

Known large K factor of Higgs production and SM background in QCD at NLO

- more uncertainty when pT veto is involved
- Complicated K factor dependence on $M_{\gamma\gamma}$ spectrum for interference due to interplay between the two parts
 - imaginary part interference starts at 2-loop and is small
 - real part interference receives a relative constant K factor (~2 for inclusive case) between that of pure signal (~2.5) and background (~1.5)

- smaller K factor compared to signal \Rightarrow reduced mass shift
- with radiation, the extra contribution from the interference with tree level diagram in quark gluon channel, LO(qg), partly cancels with interference of gluon gluon channel, (N)LO(gg) ⇒ further reduces mass shift
- mostly insensitive to pT veto choice because of large contribution from virtual correction

Bounding Higgs Width

 Mass shift sensitive to Higgs width due to modified couplings

-800

0

10

20

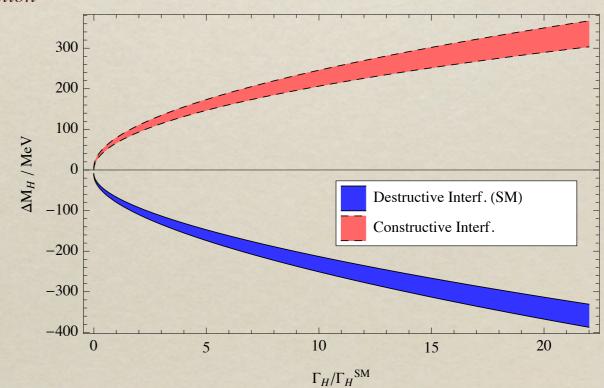
30

40

60

50

• must keep constant signal yields to be consistent with current experimental observation $c_{g\gamma} = c_g c_{\gamma}$.


 $\checkmark \frac{c_{g\gamma}^2 S}{m_H \Gamma_H} + c_{g\gamma} I = \left(\frac{S}{m_H \Gamma_H^{SM}} + I\right) \mu_{\gamma\gamma}$

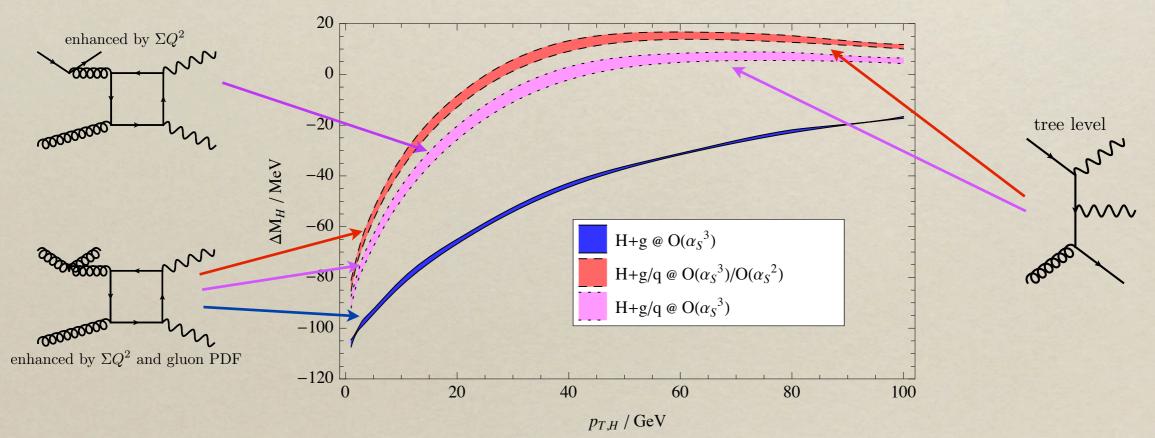
 simple solution if vanishing destructive (constructive) interference

$$|\Delta m_H| \sim |c_{g\gamma}| = \sqrt{\Gamma_H / \Gamma_H^{SM}}$$

for $\mu_{\gamma\gamma} = 1$

 In case NP flips the sign of Higgs amplitude ⇒ Constructive Interference

 Complement to ILC in constraining Higgs width!



Probing Mass Shift

- Need a reference channel to measure the shift:
 - ZZ* channel where interference near Higgs resonance is negligible
 - Possible large systematic errors as current ATLAS and CMS results incompatible $m_H^{\gamma\gamma} - m_H^{ZZ} = +2.3^{+0.6}_{-0.7} \pm 0.6 \text{ GeV} (\text{ATLAS})$ $= -0.4 \pm 0.7 \pm 0.6 \text{ GeV} (\text{CMS}),$ S.Martin, hep-ph/1303.3342

N.Kauer, G.Passarino, hep-ph/1206.4803

• Cancellation between qg and gg channels results in strong dependence on Higgs $pT \Rightarrow$ virtually no mass shift on high pT events

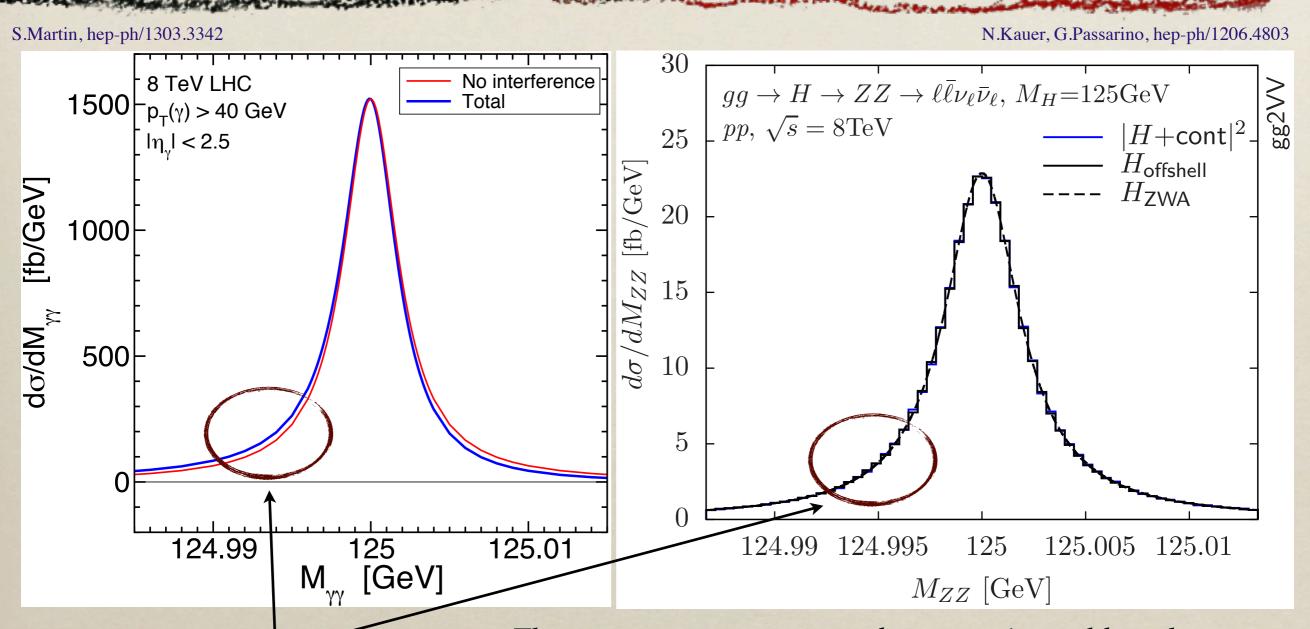
Constraining the Width

- Potentially able to measure mass shift using two Higgs pT bins
 - Better choice because experimental systematic uncertainty may cancel to some extent; still limited by statistics at present
 - At high luminosity LHC with 3 ab⁻¹ data, statistical error on mass shift should drop to below 50 MeV; while the extrapolation of systematic error is somewhat uncertain but should result in a total error of 100 MeV or less, corresponding to a bound of Higgs width of around 15 times that of SM value (4 MeV) at 95% C.L.

Conclusion

- Part of Higgs signal and background interference proportional to real part of BW propagator yields potentially observable mass shift with finite detector resolution
- The mass shift survives at NLO in QCD, allowing possibility to study the interference experimentally, and decouple the Higgs width and coupling measurements
- Increasing Higgs width leads to considerably larger mass shift which can be used to bound the width
- Strong dependence of mass shift on finite Higgs pT provides way of probing it without reference to ZZ* decay channel

Thank you !


A Beach

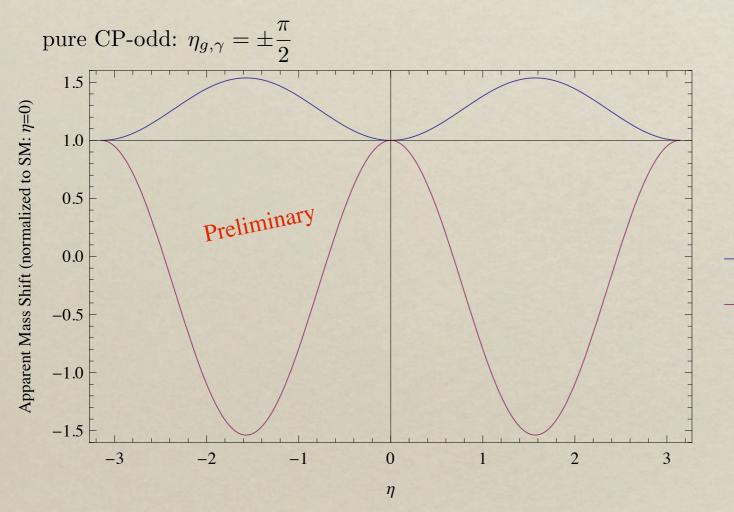
OT SUPPORT STREET STORE TAA FANS

Backup slides

Interference in ZZ and $\gamma\gamma$

interference in ZZ is very small The mass measurement can be approximated by a least square fit of the mass peak, which can be shown via likelihood analysis by assuming a relatively constant and well-modeled background in the mass range of consideration

Higgs in Mixed CP State


• New CP-odd couplings in the effective Lagrangian

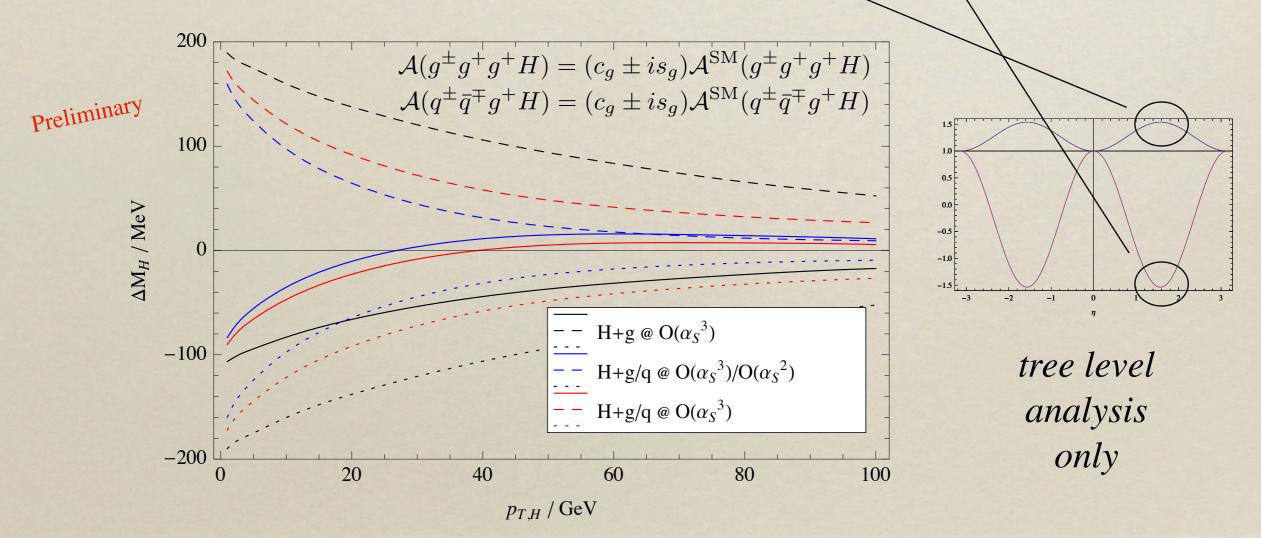
 $\mathcal{L} = -\left[\frac{\alpha_s}{8\pi}(c_g b_g G_{a,\mu\nu}G_a^{\mu\nu} + s_g d_g G_{a,\mu\nu}\tilde{G}_a^{\mu\nu}) + \frac{\alpha}{8\pi}(c_\gamma b_\gamma F_{\mu\nu}F^{\mu\nu} + s_\gamma d_\gamma F_{\mu\nu}\tilde{F}^{\mu\nu})\right]\frac{h}{v}$

- In SM, $c_{g/\gamma}=1$ is reserved for adjusting couplings for Higgs in mixed CP state; $b_{g/\gamma}$ is given via matching from full theory; $s_{g/\gamma}d_{g/\gamma}=0$ when Higgs is a CP-even scalar
- $S_{g/\gamma}$ is reserved for the same purpose as $C_{g/\gamma}$
- Define $d_{g/\gamma}$ so that when we turn off original CP-even coupling $(c_{g/\gamma}b_{g/\gamma}=0)$ and set $s_{g/\gamma}=1$, the total cross section of SM Higgs signal is reproduced $\Rightarrow d_{g/\gamma} = b_{g/\gamma}$ at LO

Higgs in CP Mixed State

- To keep constant signal yield, it's not hard to find the solution: $c_{g/\gamma}^2 + s_{g/\gamma}^2 = 1$, naturally parametrized as $c_{g/\gamma}$, $s_{g/\gamma} = cos(\eta_{g/\gamma})$, $sin(\eta_{g/\gamma})$
 - If we treat the two CP phases (η_g, η_γ) independently, the interference could change signs, resulting in positive mass shift
 - The mass shift is roughly 1.5 times stronger in pure CP-odd case compared to CP-even case at LO, though CP-odd case strongly disfavored experimentally

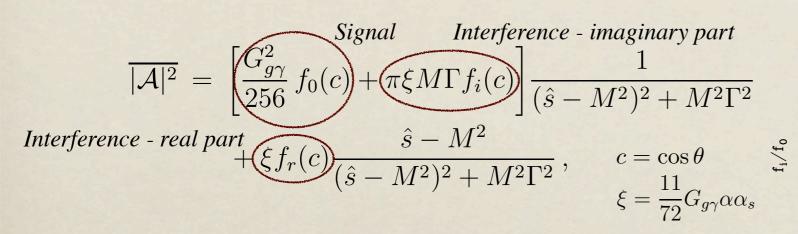
 NLO effect is hard to tell (depending on the full theory giving rise to the CP-odd couplings) but is expected to increase signal and interference both as in the SM case


$$- \eta = \eta_{\rm g} = \eta_{\gamma}$$

$$-\eta = \eta_{\rm g} = -\eta_{\gamma}$$

$$\mathcal{A}(g^{\pm}g^{\pm}H) = (c_g \pm is_g)\mathcal{A}^{\mathrm{SM}}(g^{\pm}g^{\pm}H)$$
$$\mathcal{A}(\gamma^{\pm}\gamma^{\pm}H) = (c_\gamma \pm is_\gamma)\mathcal{A}^{\mathrm{SM}}(\gamma^{\pm}\gamma^{\pm}H)$$

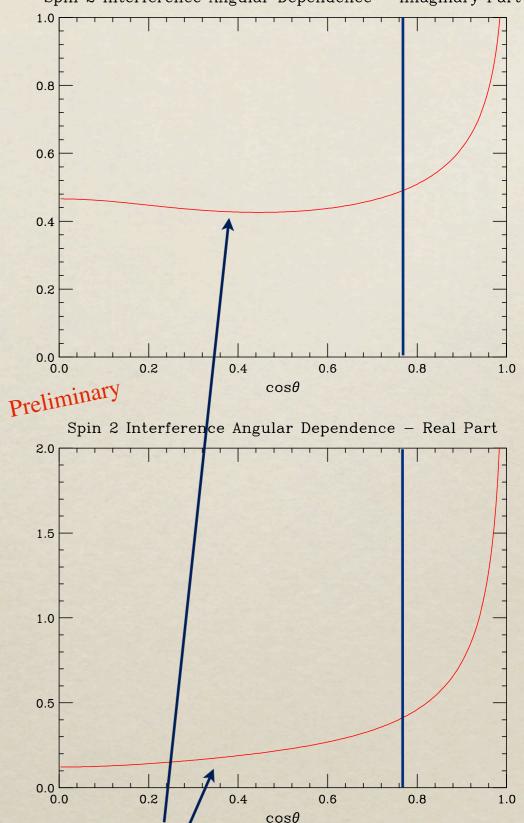
Higgs with Finite pT


- The mass shift dependence of finite pT as CP phases vary has similar behavior to the zero pT case
 - solid line is for SM; <u>dotted line</u> is for $c_{g/\gamma}=0$, $s_g=s_{\gamma}=1$; <u>dashed line</u> is for $c_{g/\gamma}=0$, $s_g=-s_{\gamma}=1$
 - mass shift no longer crosses 0 in pure CP-odd case

Higgs with Spin-2

- The interference btw signal and background occurs with different helicity configurations (compared to spin-0 case)
 - Gluon and photon pairs have opposite helicity due to spin conservation
 - Thus non-vanishing imaginary part of SM background amplitude in massless quark limit at LO
- Graviton-like: photon and gluon couples to spin-2 particle via stress energy tensor
 - Dictates couplings to photon and gluon with the same sign
 - Also discuss couplings with different signs here for completeness
 - Direct coupling of H to quarks not included as it's small for gravitonlike case

Signal vs. Interference

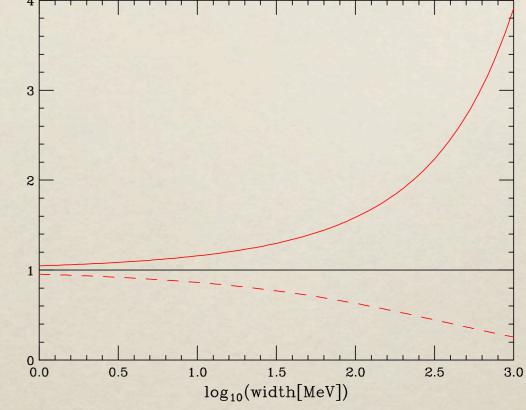

- Normalize the spin-2 coupling so that signal yield is the same as the SM Higgs
 - Need non-zero photon pT cut for finite interference contribution in spin-2 case
 - Choose $pT_{cut} = 40$ GeV to solve for $G_{g\gamma}$ by equating the yields for spin-0 and spin-2
 - Moderate pT cut (40 GeV) limits photon to central region where interference and signal has relatively similar angular dependence

$$\cos\theta_{max} = \sqrt{1 - 2(p_T^{cut}/M_{\gamma\gamma})^2} \xrightarrow{p_T^{cut} = 40 \text{GeV}} 0.77$$

• signal-only angular distribution analysis largely unaffected by interference contribution

 $G_{g\gamma} > 0$ for heavy graviton

Spin 2 Interference Angular Dependence - Imaginary Part



almost flat profile for small scattering angle

 r/f_0

Interference on Signal Yields (Spin-2)

Strong constructive/ Interference Correction to Event Rate 0 destructive interference at large width because *imaginary part interference* GeV) 40 starts at LO Preliminary (p_T^{γ}) gg \rightarrow G $\rightarrow \gamma \gamma$ Lineshape 2 total 15 - no interference Im(Breit-Wigner) Re(Breit-Wigner) 0.5 1.0 1.5 2.0 0.0 mass = 125 GeVlog₁₀(width[MeV]) 10 - width = 100 MeV $\theta = 45^{\circ}$ for $\Gamma = 100 \text{ MeV} : O(1)$ correction to 0 signal yields (~50%) 5 Affect the coupling measurement in 0 spin-2 interpretation 0 125.0 125.2 124.8 $\sqrt{s_{gg}}$ (GeV)

arbitrary units