Reconstruction of density field for BAO

Mariana Vargas-Magaña

Xiaoying.Xu ,Shirley.Ho, Hy. Trac, Yu. Feng,+A.Cuesta, N. Padmanabham, A. Burden, W. Percival, A. Sanchez+ Ashley. Ross+Beth. Reid, M. White, M. Manera,Cameron, Jeremy Tinker, +**BOSS collaborators**

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Outline

Introduction

- * Realistic mocks: PTHALOS
- Towards improvement.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Baryonic Acoustic Oscillations

The measurement of distances between between objects on cosmic scales over a range of redshift provides a map of the expansion history. BAO are used as standard rulers for learning about cosmology.

Dominant effect of **non linear evolution** of density is BAO **smoothing**. Smoothing reduce contrast BAO, increasing error distance measurement.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon University

Reconstruction sharpens the BAO feature in the angle averaged galaxy correlation function, this traduces to better constrains on the distance measurement.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

DPF, UC Santa Cruz, 13-17 August 2013

Density field maps the structure that generates these bulk flows, this information is used to reverse smoothing

DPF, UC Santa Cruz, 13-17 August 2013

Density field maps the structure that generates these bulk flows, this information is used to reverse smoothing

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

 $W_G = exp(-\Sigma^2 k^2/2)$

$$\delta_s = \delta[\vec{x}_p - d(\vec{q}_p, \eta)](\vec{x}) \longleftarrow d(\vec{x}_p) \longleftarrow \nabla \cdot d(\vec{q}_p, \eta) = -\delta_1(\vec{q}, \eta)$$

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

First Reconstruction with SDSS I-II Galaxy samples DR7

Reduces error from 3.5% to 1.9% in the measurement of the distance to z=0.35 equivalent to a survey with three times the volume of SDSS.
Improves significance of the BAO feature from 3.3 sigma to 4.2 sigma.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Reconstruction on BOSS DR9

CMASS DR9, reconstruction has not significantly improved our measurement of the acoustic scale. Shift in the acoustic scale from the CMASS DR9 data $\alpha = 1.016 \pm 0.017$ before reconstruction and $\alpha = 1.024 \pm 0.016$ after reconstruction.

DPF, UC Santa Cruz, 13-17 August 2013

Reconstruction on BOSS DR10/ DR11 CMASS Galaxies coming soon !!

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

- Reconstruction have proven to be successful in decreasing the error in distance measurement!!
- Still a technique that needs to be explored, specially the analysis need to be extended to the anisotropic clustering as currently these studies are focus on isotropic clustering.
- Exploring reconstruction have important implications for current and future surveys as all of these surveys have assumed some level of reconstruction for their projected constraints.

DPF, UC Santa Cruz, 13-17 August 2013

Outline

Introduction

- * Results with simulations.
- * Towards improvement.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

 $W_G = exp(-\Sigma^2 k^2/2)$

$$\delta_s = \delta[\vec{x}_p - d(\vec{q}_p, \eta)](\vec{x}) \longleftarrow d(\vec{x}_p) \longleftarrow \nabla \cdot d(\vec{q}_p, \eta) = -\delta_1(\vec{q}, \eta)$$

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Edges and masks(radial and angular)

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

smooth Displacement continue New Mariana; Dx=2

PTHALOS Simulations

- * Based on the 2LPT theory matter field and halo occupation function.
- * 610 realizations.
- * Cosmology: h=0.7, Ω m=0.274, Ω _{A}=0.726, Ω bh2=0.0224, σ 8=0.8, and ns=0.97.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Tests

I. Displacement Field.II. Multipoles.III. Anisotropic Clustering.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

I. Displacements Maps & distributions

$$\begin{split} \hat{r} &= sin\theta cos\phi \hat{x} + sin\theta sin\phi \hat{y} + cos\theta \hat{z} \\ \hat{\theta} &= cos\theta cos\phi \hat{x} + cos\theta sin\phi \hat{y} - sin\theta \hat{z} \\ \hat{\phi} &= -sin\phi \hat{x} + cos\phi \hat{y} \end{split}$$

Carnegie Mellon Univesity

Real space

We expect gaussian distributions centered in zero (not preferred direction)

Redshift space

When correcting for redshift distortions, there is a larger displacement correction along one of the axes, making the overall distribution wider.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Real space

We expect gaussian distributions centered in zero (not preferred direction)

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Redshift space

 $\frac{d\theta}{d\phi}$ When correcting for redshift distortions there is a preferred direction.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Mock 0 (real space) $d\theta$

~2.0

dr

They should all center at 0, with similar width in all directions (no preferred directions).

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

 $d\phi$

~4.1 ~2.2

For redshift space distortion, we correct for it also, so there is a larger displacement correction along one of the axes, making the overall distribution wider.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

 $d\phi$

Tests

I. Displacement Field.II. Multipoles.III. Anisotropic Clustering.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Correlation Function definitions

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Monopole

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Cubic Mocks

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

with reconstruction, the solid black line gives a sharper peak than the (no recon) dashed black line. This however only corrects for non-linearities.

DPF, UC Santa Cruz, 13-17 August 2013

Redshift Space

with reconstruction, the solid **red** line gives a sharper peak than the (no recon) **dashed red line**. This however only corrects for non-linearities.

DPF, UC Santa Cruz, 13-17 August 2013

If we included correction for redshift space distortions: with reconstruction, the **solid green line** gives a sharper peak than the (no recon) **red line** approaching to the reconstructed real space correlation function **black solid line**.

Realistic Mocks

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

with reconstruction, the **solid red line** gives a sharper peak than the (no recon) black line. This however only corrects for non-linearities, not redshift space distortions itself.

DPF, UC Santa Cruz, 13-17 August 2013

If we included correction for redshift space distortions: with reconstruction, the solid **green line** gives a sharper peak than the (no recon) black line approaching to the <u>real space correlation function</u>

DPF, UC Santa Cruz, 13-17 August 2013

Quadrupole

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Cubic Mocks

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Real Space

DPF, UC Santa Cruz, 13-17 August 2013

With reconstruction, the **solid green line** (reconstructed redshift space quadrupole) approach the black solid line(real space with reconstruction).

Realistic Mocks

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Black: No reconstruction

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

DPF, UC Santa Cruz, 13-17 August 2013

with reconstruction, the **solid green line** (reconstructed redshift space quadrupole) will approach the real space reconstructed quadrupole.

DPF, UC Santa Cruz, 13-17 August 2013

Tests

I. Displacement Field.II. Multipoles.III. Anisotropic Clustering.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Fitting Multipoles

Following X. Xu, N.P et al 2013, where it is defined and isotropic shift α and an anisotropic shift ε .

$$lpha = lpha_{\perp}^{2/3} lpha_{||}^{1/3} \qquad 1 + \epsilon = \left(rac{lpha_{||}}{lpha_{\perp}}
ight)^{1/3}.$$

Shift in transverse direction constraints the angular diameter distance relative to the sound horizon and the radial direction constraints the relative Hubble parameter

$$lpha_{\perp} = rac{D_A(z) r_s^{
m fid}}{D_A^{
m fid} r_s}\,,$$

$$lpha_{||} = rac{H^{
m fid}(z)r^{
m fid}_s}{H(z)r_s}\,.$$

 $\epsilon = 0.1$

For the fiducial cosmological model:

$$lpha=lpha_{\perp}=lpha_{\parallel}=1$$

DPF, UC Santa Cruz, 13-17 August 2013

PTHALOS DR11

DPF, UC Santa Cruz, 13-17 August 2013

PTHALOS DR11

DPF, UC Santa Cruz, 13-17 August 2013

PTHALOS DR11

DPF, UC Santa Cruz, 13-17 August 2013

DPF, UC Santa Cruz, 13-17 August 2013

Tests

I. Displacement Field. II. Multipoles. III. Anisotropic Clustering.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Outline

Introduction

* Results with simulations.

* Towards improvement.

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Optimal Reconstruction.

2 stage reconstruction , considering a **model for the mildly non linear regime** (LPT inspired)

Svetlin Tassev and Matias Zaldarriaga, "Towards an Optimal Reconstruction of Baryon Oscillations", 2012, arXiv:1203.6066

DPF, UC Santa Cruz, 13-17 August 2013

In which directions we can improve?

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Search for an optimal Filter

SR: Gaussian Filter

Wiener Filter from MNL model for density*

$$W_G = exp(-\Sigma^2 k^2/2)$$

$$W_{\delta}(k) = \frac{\langle \delta(\vec{k})\delta_1^*(\vec{k}) \rangle}{\langle |\delta(\vec{k})|^2 \rangle}$$

*Svetlin Tassev and Matias Zaldarriaga, "Towards an Optimal Reconstruction of Baryon Oscillations", 2012, arXiv:1203.6066

DPF, UC Santa Cruz, 13-17 August 2013

Carnegie Mellon Univesity

Model for non linear density in the mildly non linear regime*

$$\delta(\vec{k}) = R_{\delta}(k)\delta_{1}(\vec{k}) + \delta_{MC}(\vec{k})$$
$$\delta_{1} \equiv \delta[\vec{x}_{p} = \vec{q_{p}} + (R_{z} * s_{z})(\vec{q_{p}})]$$
$$R_{\delta}(k) = \frac{\delta(\vec{k})\delta_{1}^{*}(\vec{k})}{\langle |\delta_{1}(\vec{k})|^{2} \rangle} \qquad R_{z}(\kappa) = \frac{s_{\bullet}(\vec{\kappa}) \cdot s_{z}^{*}(\vec{\kappa})}{\langle |s_{z}(\vec{\kappa})|^{2} \rangle}$$

Svetlin Tassev and Matias Zaldarriaga, "Towards an Optimal Reconstruction of Baryon Oscillations", 2012, arXiv:1203.6066

DPF, UC Santa Cruz, 13-17 August 2013

Filter Calibration

 $R_{\delta}(k) = \frac{\delta(\vec{k})\delta_1^*(\vec{k})}{<|\delta_1(\vec{k})|^2 > \delta_{\text{sity}}}$

DPF, UC Santa Cruz, 13-17 August 2013

Conclusions

- Reconstruction has shown to make significative improvement in the precision of the BAO distance measurements
- Reconstruction has become a **standard tool clustering analysis**. Exploring reconstruction have important implications for current and **future surveys** as all of these surveys have **assumed some level of reconstruction** for their projected constraints.
- We are exploring **different "metrics" to study performance** of reconstruction. We are also extending the current studies mostly focus on **isotropic clustering to the anisotropic** BAO signal.
- Now, testing with simulations and real data. Reconstruction is also being applied to the next data release SDSS-III/BOSS (DR10/DR11) coming very soon!!
- Ongoing work on improving standard reconstruction, testing filters, iterative reconstruction and a different method for filling empty space.

DPF, UC Santa Cruz, 13-17 August 2013