

Search for Exotic Top Partners

Saptaparna Bhattacharya, for the CMS collaboration DPF 2013, UC Santa Cruz August 13-17, 2013

Introduction

- Many extensions of physics beyond the standard model propose the existence of fermionic partners (top-partners) of the top quark.
- These quarks could be vector-like (T) or could originate in composite-Higgs models (T_{5/3}).
- Vector like T quark search includes T decaying to bW, tZ and tH. The newly discovered Higgs boson is used as a probe for new physics.
- T_{5/3} pair production does not contribute significantly to the Higgs cross section, hence these quarks are consistent with the existence of a Higgs boson with a mass of 125 GeV.
- Just like top-partners, bottom-partners, b¹, could exist, decaying to tW and bZ.
- CMS SUSY searches have been interpreted to set exclusion limits on the existence of b'.

- •Vector-like quarks appear in many extensions of physics beyond the standard model, in models such as the Little Higgs, Extra Dimensions and MSSM.
- •A vector-like quark, T is pair produced and decays to bW, tH and Zt.
- •Leads to busy final states with multiple bosons and b-tagged jets.

TT is pair produced through qq annihilation and gluon fusion.

Single lepton channel

- Tools used:
 - Jet substructure variables are utilized to tag "top" and "W" jets.
 - W tagging uses a jet-pruning algorithm which takes Cambridge-Aachen (CA) jets of distance parameter, R, of 0.8 as inputs.
 - Jets from highly boosted top quarks are merged into one jet using a top-tagging algorithm.
- Analysis strategy:
 - A boosted decision tree (BDT) is used to separate signal from SM background (96% of which originates from ttbar, W and Z boson production processes).
 - Two separate event categories constructed based on the presence of a W tagged jet.
 - The input variables to the BDT are: jet multiplicity, b-tag multiplicity, sum of the transverse momenta of the selected jets (H_T), missing E_T , lepton p_T , p_T of the 3rd and the 4th jet.
 - W tagged events also utilize the p_T of the W-jets and the number of top tagged jets.

BDT distributions

with W-jet, \geq 3 jets

Thursday, August 15, 2013

<u>Multi-lepton channel (≥ 2 leptons)</u>

Construct various categories:

•Opposite sign lepton final state: main backgrounds are ttbar and ZJets.

•OSI: Constructed to be sensitive to the bWbW mode.

•Require 2 or 3 jets, a Z-veto, I b-tagged jet, missing $E_T > 30$ GeV, H_T (sum of the p_Ts of all the selected jets) > 300 GeV, S_T (sum of the p_Ts of all the selected jets, sum of the p_Ts of all the selected leptons and MET) > 900 GeV and min(M_{lb}) > 170 GeV.

•OS2: Sensitive to modes with tH and tZ.

•Require at least 5 jets, 2 b-tagged jets, missing $E_T > 30$ GeV, $H_T > 300$ GeV and $S_T > 900$ GeV.

- min(M_{lb}) = smallest mass of lepton-bjet pairs. Sensitive to mass of the T.
- min(M_{lb}) > 170 GeV.

<u>Multi-lepton channel (≥ 2 leptons)</u>

7

•Same sign leptonic final state (SS): Backgrounds are from SM processes with diboson and triboson decays and instrumental backgrounds from jets faking as leptons.

- •Require \geq 3 jets, I b-tagged jet, missing E_T > 30 GeV, H_T
- > 500 GeV and S_T > 700 GeV.

•Multi-lepton/trilepton final state (≥ 3 leptons): Background processes include diboson and triboson decays and instrumental backgrounds from fake leptons.

•Require \geq 3 jets, I b-tagged jet, missing E_T > 30 GeV, H_T > 500 GeV and S_T > 700 GeV.

CMS preliminary $\sqrt{s} = 8 \text{ TeV} 19.6 \text{ fb}^{-1}$ \geq 3 leptons Events/100 GeV 10² 10 🗕 data tt+bosons multi-bosons non-prompt uncertainty T T (800 GeV) × 100 10 10⁻¹ Pull 200 400 1000 1200 1400 1600 1800 2000 800 600 S_{T} [GeV]

- H_T = sum of the p_Ts of all the selected jets.
- S_T = sum of the p_T s of all the selected jets, sum of the p_T s of all the selected leptons and MET.
- $S_T > 700 \text{ GeV}, H_T > 500 \text{ GeV}$
- Instrumental backgrounds or the non-prompt contribution determined directly from data.

Yields for single lepton and multi-lepton channels

lepton flavor		muon	electron							
tt 36700±5500		35900 ± 5400								
single top 2190±1101		2100 ± 1000	Single lepton channel, likelih							
w		19200 ± 9700	18200 ± 9200	Single lepton channel: likelihood						
Z		2170 ± 1100	2000 ± 1000	computed using BDT distributed and the second s						
multijets		0	1680 ± 620							
tŦ W		$144{\pm}72$	137 ± 68							
tī Z		109 ± 54	108 ± 54							
tī H		570 ± 280	570 ± 285							
WW/WZ/Z	Z	410 ± 205	400 ± 200							
total backgro	ound	61500±13700	61100±13500							
data		58478	57743							
			channel		OS1	OS2	SS	trileptons		
			tī		5.2±1.9	80 ±12	-	-		
			single top		2.5 ± 1.3	$2.0{\pm}1.0$	-	-		
			Z		9.7±2.9	2.5 ± 1.9	-	-		
<u>I I I I I I I I I I I I I I I I I I I </u>	<u>cnan</u>	<u>nel:</u> use	tīW		-	-	5.8 ± 1.9	0.25 ± 0.11		
prodicted ar	nd av	pactod	tīZ		-	-	$1.83 {\pm} 0.93$	$1.84{\pm}0.94$		
predicted ai		pected	WW		-	-	0.53 ± 0.29	-		
umber of eve	onts i	n 12 hins	WZ		-	-	$0.34{\pm}0.08$	$0.40 {\pm} 0.21$		
			ZZ		-	-	$0.03 {\pm} 0.00$	0.07 ± 0.01		
to compute likelihood.			WWW/WWZ/ZZZ	Z/WZZ	-	-	$0.13 {\pm} 0.07$	$0.08 {\pm} 0.04$		
			tĪWW		-	-	-	$0.05 {\pm} 0.03$		
			charge mis-ID		-	-	$0.01 {\pm} 0.00$	-		
			non-prompt		-	-	7.9 ±4.3	$0.99 {\pm} 0.90$		
			total background		174 ± 37	84 +12	165 ± 48	3.7 ± 1.3		
			total background		17.4±0.7	04 112	10.0 ±1.0	0.0 ±1.0		

Combined limit

Combined limit

Scanning 22 branching fraction scenarios

Search for top partners with charge 5/3 in the same sign dileptonic final state, CMS-B2G-12-012

•<u>Signal:</u>

 $\bullet T_{5/3}$ decaying to tW is assumed to have 100% branching fraction.

•Same signed dileptons arise from W decays.

• Background processes:

- •Same signed prompt leptons: from rare SM processes. Contribution is obtained from simulated events.
- •Opposite sign prompt leptons: from charge misidentification. Estimated from data.
- •Instrumental backgrounds: from jets misidentified as leptons arising from multi-jet or ttbar processes. Estimated from data.

Candidate signal event

Yields and exclusion limits

PSS: prompt same sign

_	PSS MC	Non-Prompt	Charge Mis-ID	Total Expected	Observed
ee	0.7 ± 0.2	1.9 ± 1.2	0.06 ± 0.02	2.6 ± 1.3	0
eμ	1.9 ± 0.4	0.6 ± 0.9	0.05 ± 0.01	2.5 ± 1.0	6
μμ	1.3 ± 0.3	0.2 ± 0.6	-	1.5 ± 0.7	5
All	3.9 ± 0.8	2.6 ± 1.8	0.1 ± 0.02	6.6 ± 2.0	11

Yields computed by requiring:

•2 SS leptons

•Z-veto

•Number of jet constituents (based on the presence of a "W" or "top" jet) ≥ 5

• H_T (sum of the p_Ts of all the

selected jets and leptons) > 900 GeV

Mass reconstruction

- Mass reconstruction allows one to ascertain the precise nature of the heavy top-partner.
- In the the case of the top-partner, T_{5/3}, m_{T5/3} is reconstructed in the following way:
 - If there exists a CA "top" jet (in 22% signal events), then is it combined with the hadronically decaying "W" jet or 2 AK5 jets with an invariant mass within 20 GeV of m_W.
 - In the absence of CA "top" jets, two Ws are reconstructed (from CA $_{??}$ "W" jets in 80% signal events or AK5 jets with an invariant mass within 20 GeV of m_W) and combined with a jet. The invariant mass of the "top" jet is required to be within 30 GeV of the top-quark mass.

<u>Reinterpretations from RPV SUSY search</u> (SUS-12-027) for b' searches

- •Dedicated b' search being carried out in CMS.
- •However, RPV SUSY searches can be interpreted as b'->tW and b'->bZ searches.
- •Events classified into 3 and 4 lepton categories.

 S_T distributions for 4 leptons and 3 leptons categories with requirements on opposite sign same flavor (OSSF) leptons.

Exclusion limits

Conclusion

Model considered	Branching fraction scenario	Exclusion limit			
Vector-like T quark	50% bW, 25% tH, 25% tZ	696 GeV			
T ^{5/3}	100% tW	770 GeV			
b	50% tW, 50% bZ	715 GeV			

- Several interesting searches for exotic top-parters have been carried out at CMS.
- These searches are relevant for a plethora of non-SUSY extensions of the Standard Model.
- More 8TeV results are in the pipeline.

Back-up Slides

		Branch	hing Frac	expected	observed	
	Scenario	T→bW	T→tH	T→tZ	limit	limit
	(0) Nominal	0.5	0.25	0.25	683 GeV	668 GeV
	(1) Full <i>tZ</i>	0.0	0.0	1.0	793 GeV	794 GeV
	(2)	0.0	0.2	0.8	779 GeV	782 GeV
	(3)	0.0	0.4	0.6	759 GeV	759 GeV
	(4)	0.0	0.6	0.4	728 GeV	727 GeV
	(5)	0.0	0.8	0.2	694 GeV	692 GeV
	(6) Full <i>tH</i>	0.0	1.0	0.0	673 GeV	668 GeV
	(7)	0.2 / /	0.0	0.8	775 GeV	775 GeV
	(8)	0.2	0.2	0.6	751 GeV	750 GeV
/	(9)	0.2	0.4	0.4	712 GeV	706 GeV
<	(10)	0.2	0.6	0.2	684 GeV	677 GeV
()	(11)	0.2	0.8	0.0	653 GeV	633 GeV
	(12)	0.4	0.0	0.6	744 GeV	742 GeV
	(13)	0.4	0.2	0.4	701 GeV	694 GeV
	(14)	0.4	0.4	0.2	677 GeV	660 GeV
	(15)	0.4	0.6	0.0	636 GeV	595 GeV
	(16)	0.6	0.0	0.4	699 GeV	692 GeV
	(17)	0.6	0.2	0.2	677 GeV	655 GeV
	(18)	0.6	0.4	0.0	645 GeV	592 GeV
	(19)	0.8	0.0	0.2	687 GeV	670 GeV
	(20)	0.8	0.2	0.0	675 GeV	632 GeV
	(21) Full bW	1.0	0.0	0.0	698 GeV	678 GeV

Table 17: Sets of branching fraction values and 95% confidence level lower limits for the T quark mass.

Figure 36: Limits (left to right): (4) 60% tH and 40% tZ, (5) 80% tH and 20% tZ.

Figure 37: Limits (left to right): (7) 20% bW and 80% tZ, (8) 20% bW, 20% tH and 60% tZ.

M_r [GeV] Figure 39: Limits (left to right): (11) 20% bW and 80% tH, (12) 40% bW and 60% tZ.

 10^{-2}

Mr [GeV]

Figure 40: Limits (left to right): (13) 40% bW, 20% tH and 40% tZ, (14) 40% bW, 40% tH and 20% tZ.

Figure 42: Limits (left to right): (17) 60% bW, 20% tH and 20% tZ, (18) 60% bW and 40% tH.

Search for top partners with charge 5/3 in the same sign dileptonic final state, CMS-B2G-12-012

l^+ l^{ν} h^{ν}					
	Sample	2SS leptons	$M(\ell \ell)$ Veto	$N(con) \ge 5$	$H_T \ge 900$
$W^+ \swarrow t \checkmark b$	WZ	1510	616	1.78	0.464 ± 0.0694
\mathcal{D}_{g}^{g}	ZZ	359	70.5	0.272	0.0426 ± 0.00567
$g T_{5/3}$	W^-W^-	18.7	18.1	0.127	0.0205 ± 0.0205
	W^+W^+	55.4	53.7	1.62	0.688 ± 0.191
$\overline{T_{5/3}}$	WWW	18.5	17.3	0.574	0.246 ± 0.0431
$(O g) = \sum W^{-} \sum \bar{h}$	tŦ W	61.3	57.4	8.86	1.72 ± 0.197
M^{-}	tŦ Z	39.5	16.9	4.18	0.607 ± 0.108
\overline{q} q' q'	tĪ WW	1.66	1.52	0.695	0.144 ± 0.00518
$ar{q}$					

Channel	2SS leptons	$M(\ell\ell)$ Veto	$N(con) \ge 5$	$H_T \ge 900$
ee	1882	513.1	7.748	1.859 ± 0.8333
μμ	1720	1696	13.02	0.1876 ± 0.5658
еµ	1058	975.5	21.5	0.5589 ± 0.8478
All	4659	3184	42.26	2.605 ± 1.317

Non-prompt contribution computed using data driven techniques.

<u>Reinterpretations from RPV SUSY search</u> (SUS-12-027) for b' searches

				0-τ, 0-b		$1-\tau, 0-b$ $0-\tau, 1+b$		$0-\tau, 1+b$	$1-\tau, 1+b$	
N _{OSSF}	onZ	S _T (GeV)	obs	exp	obs	exp	obs	exp	obs	exp
0	-	$S_{\rm T} > 2000 {\rm GeV}$	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009
0	-	$1500 < S_T < 2000 \text{ GeV}$	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009
0	-	$1000 < S_T < 1500 \text{ GeV}$	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009
0	-	$600 < S_T < 1000 \text{ GeV}$	0	0 ± 0.009	0	0.01 ± 0.01	0	0.01 ± 0.02	0	0 ± 0.009
0	-	$300 < S_T < 600 \text{ GeV}$	0	0.009 ± 0.01	0	0.6 ± 0.5	0	0.0007 ± 0.009	0	0.11 ± 0.07
0	-	$0 < S_{\rm T} < 300 {\rm GeV}$	0	0.004 ± 0.009	2	0.16 ± 0.08	0	0.0002 ± 0.009	0	0.14 ± 0.09
1	offZ	$S_{\rm T} > 2000 {\rm GeV}$	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009
1	onZ	$S_{\rm T} > 2000 {\rm GeV}$	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009	0	0 ± 0.009
1	offZ	$1500 < S_T < 2000 \text{ GeV}$	0	0 ± 0.009	0	0.007 ± 0.01	0	0 ± 0.009	0	0 ± 0.009
1	onZ	$1500 < S_T < 2000 \text{ GeV}$	0	0 ± 0.009	0	0.01 ± 0.01	0	0.009 ± 0.01	0	0 ± 0.009
1	offZ	$1000 < S_T < 1500 \text{ GeV}$	0	0.001 ± 0.009	0	0.06 ± 0.03	0	0.01 ± 0.01	0	0.001 ± 0.009
1	onZ	$1000 < S_{\rm T} < 1500 {\rm GeV}$	0	0.03 ± 0.02	0	0.05 ± 0.03	0	0.06 ± 0.04	0	0.02 ± 0.02
1	offZ	$600 < S_{\rm T} < 1000 {\rm GeV}$	0	0.02 ± 0.02	2	0.15 ± 0.05	0	0.03 ± 0.02	0	0.09 ± 0.05
1	onZ	$600 < S_{\rm T} < 1000 {\rm GeV}$	0	0.18 ± 0.06	0	0.7 ± 0.13	0	0.22 ± 0.13	0	0.32 ± 0.14
1	offZ	$300 < S_{\rm T} < 600 {\rm GeV}$	0	0.07 ± 0.02	1	0.7 ± 0.15	0	0.1 ± 0.06	0	0.47 ± 0.21
1	onZ	$300 < S_T < 600 \text{ GeV}$	2	0.6 ± 0.17	5	4.7 ± 0.7	0	0.47 ± 0.25	1	0.7 ± 0.23
1	offZ	$0 < S_{\rm T} < 300 {\rm GeV}$	1	0.17 ± 0.05	9	4 ± 1.2	0	0.009 ± 0.01	0	0.19 ± 0.11
1	onZ	$0 < S_{\rm T} < 300 {\rm GeV}$	0	1.2 ± 0.38	18	18 ± 5.2	2	0.02 ± 0.02	2	0.37 ± 0.17
2	offZ	$S_{\rm T} > 2000 {\rm GeV}$	0	0 ± 0.009	0	0 ± 0	0	0 ± 0.009	0	0 ± 0
2	onZ	$S_{\rm T} > 2000 {\rm GeV}$	0	0.001 ± 0.009	0	0 ± 0	0	0.01 ± 0.01	0	0 ± 0
2	offZ	$1500 < S_{\rm T} < 2000 {\rm GeV}$	0	0 ± 0.009	0	0 ± 0	0	0 ± 0.009	0	0 ± 0
2	onZ	$1500 < S_{\rm T} < 2000 {\rm GeV}$	0	0.02 ± 0.01	0	0 ± 0	0	0.002 ± 0.009	0	0 ± 0
2	offZ	$1000 < S_T < 1500 \text{ GeV}$	0	0.004 ± 0.01	0	0 ± 0	0	0 ± 0.009	0	0 ± 0
2	onZ	$1000 < S_{\rm T} < 1500 {\rm GeV}$	0	0.27 ± 0.06	0	0 ± 0	0	0.04 ± 0.02	0	0 ± 0
2	offZ	$600 < S_{\rm T} < 1000 {\rm GeV}$	0	0.04 ± 0.01	0	0 ± 0	0	0.04 ± 0.02	0	0 ± 0
2	onZ	$600 < S_{\rm T} < 1000 {\rm GeV}$	1	2.6 ± 0.5	0	0 ± 0	1	0.45 ± 0.14	0	0 ± 0
2	offZ	$300 < S_T < 600 \text{ GeV}$	1	0.46 ± 0.1	0	0 ± 0	1	0.1 ± 0.06	0	0 ± 0
2	onZ	$300 < S_{\rm T} < 600 {\rm GeV}$	10	19 ± 3.8	0	0 ± 0	2	1.4 ± 0.39	0	0 ± 0
2	offZ	$0 < S_{\rm T} < 300 {\rm GeV}$	4	3.4 ± 0.9	0	0 ± 0	0	0.07 ± 0.03	0	0 ± 0
2	onZ	$0 < S_{\rm T} < 300 {\rm GeV}$	68	56 ± 13	0	0 ± 0	1	0.44 ± 0.12	0	0 ± 0
Total4	All	All	87	84 ± 19	37	29 ± 6.9	7	3.6 ± 1.1	3	2.5 ± 0.7

Yields for 4_{24} lepton events

<u>Reinterpretations from RPV SUSY search</u> (SUS-12-027) for b' searches

				0-τ, 0-b		1-τ, 0-b	0)-τ, 1 + b	1-	$\tau, 1 + b$
NOSSF	OSSF Mass	$S_{\rm T}({\rm GeV})$	obs	exp	obs	exp	obs	exp	obs	exp
0	-	$S_T > 2000 \text{ GeV}$	0	0 ± 0.009	0	0 ± 0.2	0	0 ± 0.01	0	0 ± 0.2
0	-	$1500 < S_T < 2000 \text{ GeV}$	0	0.01 ± 0.01	0	0.003 ± 0.2	0	0 ± 0.01	0	0.5 ± 0.48
0	-	$1000 < S_T < 1500 \text{ GeV}$	0	0.07 ± 0.03	0	0.4 ± 0.22	0	0.6 ± 0.5	2	1.3 ± 0.9
0	-	$600 < S_{\rm T} < 1000 {\rm GeV}$	2	2.1 ± 1.2	17	9 ± 3.5	1	3.3 ± 1.6	23	20 ± 10
0	-	$300 < S_{\rm T} < 600 {\rm GeV}$	14	13 ± 5.7	129	134 ± 53	20	16 ± 6.5	206	186 ± 98
0	-	$0 < S_{\rm T} < 300 {\rm GeV}$	30	37 ± 10	555	581 ± 130	22	13 ± 5.9	150	150 ± 72
1	$m_{\ell^+\ell^-} > 105 \text{GeV}$	$S_{\rm T} > 2000 {\rm GeV}$	0	0.0005 ± 0.01	0	0 ± 0.2	0	0 ± 0.03	0	0 ± 0.2
1	$m_{\ell^+\ell^-} < 75 \text{GeV}$	$S_{\rm T} > 2000 {\rm GeV}$	0	0.002 ± 0.01	0	0 ± 0.2	0	0 ± 0.03	0	0 ± 0.2
1	onZ	$S_{\rm T} > 2000 {\rm GeV}$	0	0.12 ± 0.04	0	0.005 ± 0.2	0	0.01 ± 0.04	0	0 ± 0.2
1	$m_{\ell^+\ell^-} > 105 \text{GeV}$	$1500 < S_{\rm T} < 2000 {\rm GeV}$	0	0.08 ± 0.04	0	0.2 ± 0.2	0	0.06 ± 0.04	0	0.05 ± 0.05
1	$m_{\ell^+\ell^-} < 75 \text{GeV}$	$1500 < S_T < 2000 \text{ GeV}$	1	0.02 ± 0.03	0	0 ± 0.2	0	0.06 ± 0.04	0	0 ± 0.2
1	onZ	$1500 < S_T < 2000 \text{ GeV}$	2	0.5 ± 0.28	0	0.12 ± 0.08	0	0.11 ± 0.07	0	0.07 ± 0.05
1	$m_{\ell^+\ell^-} > 105 \text{GeV}$	$1000 < S_T < 1500 \text{ GeV}$	0	0.46 ± 0.11	0	0.6 ± 0.28	0	0.15 ± 0.07	1	0.9 ± 0.6
1	$m_{\ell+\ell-} < 75 \text{GeV}$	$1000 < S_{\rm T} < 1500 {\rm GeV}$	0	0.41 ± 0.08	0	0.2 ± 0.12	0	0.16 ± 0.08	0	0.6 ± 0.6
1	onZ	$1000 < S_T < 1500 \text{ GeV}$	6	7.6 ± 1.3	3	2.4 ± 0.5	1	1.6 ± 0.43	1	0.8 ± 0.6
1	$m_{\ell^+\ell^-} > 105 \text{ GeV}$	$600 < S_{\rm T} < 1000 {\rm GeV}$	6	5.2 ± 1.2	12	8.5 ± 2.6	3	3.9 ± 1.5	13	9.8 ± 5.4
1	$m_{\ell^+\ell^-} < 75 \text{GeV}$	$600 < S_{\rm T} < 1000 {\rm GeV}$	2	4.7 ± 0.9	11	6.8 ± 2.5	0	3.3 ± 1.1	5	5.1 ± 2.8
1	onZ	$600 < S_{\rm T} < 1000 {\rm GeV}$	42	56 ± 7.6	48	35 ± 7.2	7	10 ± 2.7	10	6.5 ± 1.9
1	$m_{\ell^+\ell^-} > 105 \text{GeV}$	$300 < S_{\rm T} < 600 {\rm GeV}$	34	31 ± 5.3	149	170 ± 39	12	17 ± 6.1	80	73 ± 35
1	$m_{\ell^+\ell^-} < 75 \text{GeV}$	$300 < S_T < 600 \text{ GeV}$	34	38 ± 6	139	128 ± 29	26	23 ± 9	87	81 ± 35
1	onZ	$300 < S_T < 600 \text{ GeV}$	314	356 ± 45	1023	1219 ± 290	63	44 ± 8.1	131	132 ± 31
1	$m_{\ell^+\ell^-} > 105 \text{GeV}$	$0 < S_{\rm T} < 300 {\rm GeV}$	81	97 ± 9.5	799	761 ± 182	11	11 ± 4.6	50	41 ± 17
1	$m_{\ell^+\ell^-} < 75 \text{GeV}$	$0 < S_{\rm T} < 300 {\rm GeV}$	308	325 ± 36	4933	4208 ± 1033	31	35 ± 13	146	129 ± 38
1	onZ	$0 < S_{\rm T} < 300 {\rm GeV}$	2054*	2260 ± 213	24078	22191 ± 5517	57	67 ± 9.3	391	369 ± 87
Total3	All	All	2930	3239 ± 308	31896	29460 ± 7204	254	252 ± 59	1296	1211 ± 351

Yields for 3 lepton events

<u>Combined search for the quarks of a sequential</u> <u>fourth generation (EXO-11-098).</u>

$$\begin{aligned} \mathcal{V}_{CKM}^{4 \times 4} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \end{pmatrix} \\ &= \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(0) & \mathcal{O}(0) & 0 \\ \mathcal{O}(0) & \mathcal{O}(1) & \mathcal{O}(0) & 0 \\ \mathcal{O}(0) & \mathcal{O}(0) & \sqrt{A} & \sqrt{1-A} \\ 0 & 0 & -\sqrt{1-A} & \sqrt{A} \end{pmatrix} \end{aligned}$$

- $t'b \rightarrow bWb$
- $t'\bar{t'} \rightarrow bWbW$
- $b't \rightarrow tWbW \rightarrow bWWbW$
- $b't' \rightarrow tWbW \rightarrow bWWbW$
- $b'\bar{b'} \rightarrow tWtW \rightarrow bWWbWW$

Combined search for the quarks of a sequential

fourth generation (EXO-11-098).

Figure 2: Top: Exclusion limit on $m_{t'} = m_{b'}$ as a function of the $V_{CKM}^{4\times4}$ parameter A. The parameter values below the line are excluded at 95% confidence level (CL). The slope indicates the sensitivity of the analysis to the t'b and tb' processes. Bottom: For a $V_{CKM}^{4\times4}$ parameter value A = 1, the exclusion limit on $m_{t'}$ versus $m_{t'} - m_{b'}$ is shown. The exclusion limit is calculated for mass differences up to 25 GeV. The existence of up-type fourth-generation quarks with mass values below the observed limit are excluded at the 95% confidence level.

<u>Search for a vector-like quark of charge -1/3 and</u> <u>decaying to bZ (EXO-11-066)</u>

b' -> bZ with 100% branching fraction

Process	Cross section (pb)	$Z \rightarrow e^+e^-$	$Z \rightarrow \mu^+ \mu^-$
Z +jets	2 9 3 9	557 ± 15	847 ± 25
tī +jets	168	80±4	137 ± 7
W^+W^-	43	$0.10{\pm}0.10$	0.17 ± 0.11
$W^{\pm} Z$	18	3.6 ± 0.3	6.1 ± 0.5
ZZ	5.9	5.9±0.2	9.2 ± 0.3
Total		648±15	999 ± 26
Data		604 ±24	928 ± 30

<u>Search for a vector-like quark of charge -1/3 and</u> <u>decaying to bZ (EXO-11-066)</u>

<u>Search for a vector-like quark of charge -1/3 and</u> <u>decaying to bZ (EXO-11-066)</u>

Figure 2: The 95% CL cross section exclusion limits as a function of the B' quark mass calculated using the combined $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ channels. The expected and observed limits are 510 GeV/ c^2 and 550 GeV/ c^2 , respectively.