

Tracker for the mu2e Experiment at Fermilab

Aseet Mukherjee Bob Wagner

Why µ→e?

See Rob Kutschke's talk for more

- Muons captured on a target to form a muonic atom
- 40% undergo the normal decay while in orbit (DIO) LOTS of electrons at $E < m_{\mu}/2 \dots$ with a small tail to higher *E*
- 60% capture on the nucleus, causing a nuclear breakup p, n, γ produced in the breakup
- We are looking for a small fraction of neutrinos-less conversions

 $\mu^-N \to e^-N \, \dots$

- Signature: Mono-energetic electrons 105MeV, depending slightly on nucleus
- Rate in standard model is very low (BR ~10⁻⁵⁴)
- A signal indicates physics beyond the standard model

Why mu2e?

Far from the first such search! So how do we do better?

- More intense beam
- Pulsed beam with excellent extinction (fraction of protons out of time)
- Expect 10⁴× better than previous limit

Cosmic Ray Veto (CRV, not shown) surrounds detector solenoid and much of the transport solenoid.

Tracker Design

- No mass at r<380mm
 - Ambient vacuum
 - \rightarrow Detector most handle ~15psi pressure differential
- Very light active region, 400<r<700mm
 Partial coverage for 380<r<400mm
- Light, inactive region for 700<r<720mm to reduce hits from photon conversion and stopped neutrons decaying
- Move mass out to r>720mm
- Selected Solution: Straw tracker
 - 18 Stations distributed along beam direction Optimization of number of stations in progress
 - A Station has 2 Planes.
 - A Plane has **Panels** with varying rotation for stereo reconstruction
 - Each Panel has 96 Straws of varying length

- 5mm OD, 15µm thick metalized Mylar tube as cathode
 - Metalized on inner & outer surface
 - 400Å Aluminum outer surface
 - 400Å Aluminum + 200Å Gold inner surface
 - 25µm gold-plated tungsten wire as anode

Leak Tests

Conventional methods

- In air, straw at 15psig
 - Test time: several days
- In vacuum, straw at 15psia
 - Measures exactly what we want
 - Test time >1day
 - Test setup too expensive to make many
- Can do large batches but lose sensitivity

Using CO2 sensor

- CO2 leaks through plastic faster than most gases
- Fill straw with Ar-CO2 (80:20), purge test vesel with N2, and monitor CO2 level
- Test time to required sensitivity: <1hour
- Test setup cost: <\$100, can have many setups
- Needs to be calibrated against vacuum method

CO₂ Leak Test

Container for CO₂ sensor and circulation fan

Copper pipe for straw Another in back (not seen) for circulation

CO₂ Leak Tests

- Sample results for straws with and without being pressurized
- Leak rates well below limit of 3.5e-4 ccm

- Like all plastics, the Mylar straws creep: loose tension over time
- Our best fit, extrapolated to several years, shows detector is fine (over 200g) indefinitely if we install at 700g tension

- Extrapolation from <1year to many years is tricky
- Alternative fits indicate a lifetime of >6years
- Fine for mu2e ... maybe not mu2e-II
- Alternative: Add a stiffening carbon fiber line radially across the panel

- All electronics are in drift gas to simplify cooling
- Preamps to be tested for gas contamination, and may need coating
- Digitizers are in the exhaust gas \rightarrow don't need to worry about outgassing
- Digitizer region can be accessed while operating straws (not in the vacuum, of course)

Gas Manifold

• Gas tight while allowing access to electronics

- Prototype had <0.24ccm leak rate
- Small compared to allowed total of 7ccm

• 96 straws/panel ×6 panels/plane × 36 planes \rightarrow ~20K straws \rightarrow 40K precision holes

Gas Manifold Inner Ring

• Alternative: Mold the holes in carbon fiber

O-ring groove

• Self-supporting panels assemble into a plane

• Switch to simpler representation

• Two planes back-to-back

Station

Optimal Stereo order still under study

• 18 stations

tentative ... optimal number being studied

Tracker

• 18 stations + Support Structure

Tracker

• 18 stations + Support Structure

Tracker

- 18 stations + Support Structure
- Support beams also serve as cable trays

Front End Electronics MU2E e ASIC⁽¹⁾ **FPGA** Discrete ⁽¹⁾ Baseline Preamp/ PCB transmission line TDC ᄂ Straw DAQ TDC

Time Division

- Use difference in signal arrival time at straw ends to estimate position along wire
- Resolution much worse than stereo (<1mm)
- Needed for stand-alone pattern recognition (not using calorimeter for timing)

Difference caused by noise and large pulses from ⁵⁵Fe, while ⁹⁰Sr pulses are close to what we expect.

Continuing to work on reducing noise to bring the two closer together

Mu2e Tracker & Project X

- Mu2e-II: 10× rate increase
 - 3× instantaneous rate
 - Affects performance directly (higher occupancy)
 - Can study via simulations Already studied up to ×4 background rates as part of understanding mu2e robustness
 - 3× duty factor
 - No direct affect on performance
 - Concern is radiation damage (aging)
- Mu2e-III: 100× rate increase
 - Unlikely this tracker can survive

Loose cuts ... **not** resolution used for most analysis Key point: **No significant change**

Rebuild

- Thinner walls
 - 8µm instead of 15µm
 - Less scattering
 - Fewer conversions
 & δ-rays

- Run sub-atmospheric
 - 8µm unsafe for 15psid
 - Fine for 8psid
- Side benefit: shorter ion drift time
 - Less space charge
- Cannot operate at nominal gas density in air
- Harder to test
- But ... by then we'll have more experience

- Mu2e has a tracker design well suited for operation starting ~2019
- For mu2e-II, the detector is expected to continue to operate adequately, but rebuilding with thinner straws may be better
- Mu2e-III will require an entirely different design