A search for ttbar resonances in lepton plus jets events with ATLAS using 14 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV.

Ruchika Nayyar University of Arizona For the ATLAS Collaboration

DPF 2013 Meeting, Aug13-18, 2013 Santa Cruz, California

Thursday, August 15, 2013

Outline

- Introduction.
 - -- ATLAS detector.
 - -- Motivation for top quark physics.
 - -- Top quark production/decay.
- Top quark production measurements.
 - -- Cross-section measurement.
 - -- Charge asymmetry measurement.
- Analyzing the lepton plus jets decay channel.
 - -- Benchmark models studied.
 - -- Resolved vs boosted topology.
 - -- Event Selection.
 - -- Estimation of the backgrounds.
 - -- Invariant mass reconstruction of top-antitop pair.
 - -- Some kinematic distributions.
 - -- Sources of Systematics.
 - -- Limits.
- Conclusions.

The ATLAS Detector

Muon Spectrometer: $|\eta| < 2.7$ Air-core toroids and gas-based muon chambers $\sigma/p_T = 2\%$ @ 50 GeV to 10% @ 1TeV (ID+MS)

EM Calorimeter: $|\eta| < 3.2$ Pb-LAr Accordion $\sigma/E=10\% \ VE \oplus 0.7\%$

The ATLAS detector Inner Detector: |n|<2.5, B=2T, Si pixels/strips and Trans. Rad. Det.; σ/pT = 0.05% pT (GeV) # 1%

Hadronic calorimeter: $|\eta| < 1.7$ Fe/scintillator 1.3< $|\eta| < 4.9$ Cu/ W-LAr; σ /Ejet= 50%/VE \oplus 3%

ATLAS

Motivation

- Top quark is the heaviest of the known SM particle $m_t = 172.9 \pm 1.1$ GeV close to EW scale.
- Decay occurs before hadronization "bare quark". width $\Gamma = 1.42$ GeV and lifetime $\tau = 4.5 \times 10^{-25}$ s $< \Lambda^{-1}_{QCD}$
- Due to its large mass, it offers a unique window to search for new physics at TeV scale.
- Many extensions of SM explain the large top mass by allowing the top to participate in new dynamics.
- To search for new physics :
 - → Measure the production properties of top quark, and compare to the SM prediction. Any deviation hints new physics.
 - \rightarrow Directly search for new particles that couple to top quark.

Top quark pair production/decay

Outline

• Introduction.

- -- ATLAS detector.
- -- Motivation for top quark physics.
- -- Top quark production/decay.
- Top quark production measurements.
 - -- Cross-section measurement.
 - -- Charge asymmetry measurement.
- Analyzing the lepton plus jets decay channel.
 - -- Benchmark models studied.
 - -- Resolved vs boosted topology.
 - -- Event Selection.
 - -- Estimation of the backgrounds.
 - -- Invariant mass reconstruction of top-antitop pair.
 - -- Some kinematic distributions.
 - -- Sources of Systematics.
 - -- Limits.
- Conclusions.

Top Quark Cross-section Measurement

- Summary of measurements compared to the corresponding theoretical expectation based on an approximate NNLO calculation (Hathor 1.2).
- The upper part of the figure shows measurements that are averaged to give the combined value shown.
- The lower part shows additional newer measurements not included in the combination.

Top Quark Cross-section Measurement

- Summary plot showing the top pair production cross section as a function of the LHC center of mass energy.
- The experimental results in the various top decay channels (and their combination) at 7 TeV and the recent result at 8 TeV are compared to an approximate NNLO QCD calculation based on Hathor 1.2.
- Some selected results from Tevatron are also shown.

Charge Asymmetry Measurement

- Interesting study since Tevatron measured a significantly larger forward backward asymmetry than the SM prediction.
- Observable is $\Delta |y| = |y_t| |y_{\overline{t}}|$

 $gg \rightarrow t\bar{t}$ production is symmetric where as $q\bar{q} \rightarrow t\bar{t}$ is asymmetric at NLO and $A_C^{SM} < 0$, \bar{t} are produced more centrally than t

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

• The A_c fit results:

Ac	Data	Theory
Unfolded	0.006±0.010	0.0123±0.0005
Unfolded with $m_{t\bar{t}} > 600 \text{ GeV}$	0.018 ± 0.022	0.0175+0.005
Unfolded with $\beta_{z,t\bar{t}} > 0.6$	0.011 ± 0.018	$0.0202_{-0.007}^{+0.006}$

• In good agreement with the SM!

ATLAS-CONF-2013-078

Outline

• Introduction.

- -- ATLAS detector.
- -- Motivation for top quark physics.
- -- Top quark production/decay.
- Top quark production measurements.
 - -- Cross-section measurement.
 - -- Charge asymmetry measurement.
- Analyzing the lepton plus jets decay channel.
 - -- Benchmark models studied.
 - -- Resolved vs boosted topology.
 - -- Event Selection.
 - -- Estimation of the backgrounds.
 - -- Invariant mass reconstruction of top-antitop pair.
 - -- Some kinematic distributions.
 - -- Sources of Systematics.
 - -- Limits.
- Conclusions.

ATLAS-CONF-2013-052

Benchmark Models

• Leptophobic topcolor Z'

Eur.Phys.J.C72 (2012) 2072

- Explains the top quark mass and EWSB through a top quark condensate.
- Z' couples only to the first and third generation of quarks.
- Narrow resonance $\Gamma/m \sim 1.2 \%$

Kaluza Klein Gluons Phys. Rev. D 77, 015003 (2008)

- Predicted by the Randall-Sundrum model with warped extra dimension.
- Strongly coupled to top quark.
- Broad resonance $\Gamma/m \sim 15 \%$

Boosted vs Resolved Topology

- **Resolved:** No overlap between small radius ($\Delta R=0.4$) jets or leptons.
 - Useful for top quark pairs from low mass BSM particles.
- **Boosted:** Large radius ($\Delta R=1.0$) jets contain multiple partons and/or leptons.
 - Merged Jets are reconstructed as "fat jets" with $\Delta R=1.0$
 - Useful for top quark pairs from high mass BSM particles.

Event Selection

- One top decays hadronically, and the other semileptonically.
- At least 1 primary vertex with 4 or more associated tracks.
- Pass either single electron/muon trigger.
- Exactly one isolated lepton (e/μ) matching trigger.
- Missing E_T $E_T > 30/20$ GeV (e/ μ channel)
- Transverse M_w $M_w > 30 \text{ GeV} (e \text{ channel})$ $M_w + E_T > 60 \text{ GeV} (\mu \text{ channel})$

• Boosted Selection:

- -- 1 high $p_T R=1.0$ jet with $m_{jet} > 100 \text{ GeV}$ and first K_T splitting scale $\sqrt{d_{12}} > 40 \text{ GeV}$.
- -- 1 R= 0.4 jet closest to lepton
- -- \geq 1 R=0.4 b-jet (can overlap with above jets)

• Resolved Selection:

-- 3 or 4 R =0.4 jets with \geq 1 b-jet

The selection efficiency as a function of the true $m_{t\bar{t}}$ for Z' resonances at various mass points.

Estimation of the Backgrounds

Major sources of backgrounds considered are:

► SM tī production

- -- estimated using the MC@NLO
- -- HERWIG for parton showering and hadronization.
- -- JIMMY for modeling multiple parton scattering.

► W+jets

- Generated via ALPGEN + PYTHIA
- normalization derived from data

Multi-Jet

- Data driven estimate

► Z+jets

- estimated using Alpgen + Pythia.

Single Top

- -- production in "s" channel is modeled with MC@NLO/HERWIG/JIMMY
- -- production in "t" channel modeled with ACERMC/PYTHIA

Diboson

- estimated using HERWIG and JIMMY.

Resolved selection				
Туре	e+jets	μ +jets	Sum	
tī	94000 ± 15000	118000 ± 19000	211000 ± 33000	
Single top	6800 ± 800	8400 ± 1100	15200 ± 1900	
Multi-jet	3700 ± 1800	10000 ± 5000	14000 ± 6000	
W+jets	16000 ± 4000	23000 ± 6000	39000 ± 10000	
Z+jets	1800 ± 400	1800 ± 400	3600 ± 800	
Di-bosons	230 ± 50	320 ± 60	550 ± 100	
Total	121000 ± 17000	162000 ± 23000	283000 ± 39000	
Data	119490	160878	280251	
Boosted selection				
Туре	e+jets	μ +jets	Sum	
tī	$2100~\pm~500$	2800 ± 600	4900 ± 1100	
Single top	71 ± 15	105 ± 22	176 ± 34	
Multi-jet	39 ± 19	32 ± 16	71 ± 25	
W+jets	170 ± 60	310 ± 90	480 ± 140	
Z+jets	18 ± 11	33 ± 8	52 ± 15	
Di-bosons	2.0 ± 0.8	1.5 ± 1.4	3.5 ± 1.8	
Total	2400 ± 500	3300 ± 700	5600 ± 1200	

Data Driven Background

The normalization for two important sources of background (W+jets /Multijet) is estimated using data.

▶ W+jets

- Samples of simulated ALPGEN events are used to model the W+jets background including shape.
- To determine the overall normalization, the asymmetry in the production of W⁺/W⁻ bosons is exploited.

$$N_{W^+} + N_{W^-} = \left(\frac{r_{\rm MC} + 1}{r_{\rm MC} - 1}\right) (D_{\rm corr+} - D_{\rm corr-}),$$

- Charge symmetric contributions from various MC cancel out in the equation but the charge asymmetric contributions (single top) are estimated and subtracted.
- Fits to data in jet/b-tag multiplicity bins provide the normalization factor.

Multi-Jet

- The normalization as well as shape of the multijet background is estimated directly from data using a matrix method.
- Enriched samples of multi-jet events with relaxed lepton identification criteria (eg. isolation requirement) are used.

$M_{t\bar{t}}$ Reconstruction

The top quark pair invariant mass is computed from the four momenta of the physics object in the event.

• Resolved Reconstruction:

- -- χ^2 algorithm is used to select the best assignment of jets to the hadronically and semileptonically decaying top quarks.
- -- The algorithm uses reconstructed top quark and W masses as constraints.

$M_{t\bar{t}}$ Reconstruction

• Boosted Reconstruction:

- -- The four momenta of the hadronically decaying top is taken to be that of the large radius R=1.0 jet.
- -- While for the semi-leptonically decaying top, use v solution from the W boson, lepton and small radius R =0.4 jet.

• The produced top quark pair mass is used for the statistical analysis.

Reconstructed M_{tt} in Each Channel

Some Kinematic Distributions (1)

Leading jet p_T after the resolved selection.

Some Kinematic Distributions (2)

Invariant mass of the semi-leptonically decaying top quark candidate after the boosted selection.

Invariant mass of the hadronically decaying top quark candidate after the boosted selection.

⊡tť

Multi-jets

Z+jets

15 = 8 TeV

μ + jets

boosted

mt, had [GeV]

260 280

Systematics

- The "uncertainty" or "error of measurement" is given by a range of values which enclose the true value. We can have two kinds of uncertainties:
 - Statistical These sources of error are stochastic in nature and arise due to the fact that measurement is based on a finite set of events.
 - Systematic These errors arise from uncertainty associated with nature of measurement apparatus, methods used for particle identification and so on.
- The analysis considers two cases of systematics :
 - (1) Uncertainty that affect the reconstructed objects (jets..)
 - (2) Uncertainty that affect modeling of the backgrounds or signals.
- Some of these can affect both the shape and normalization while some affect normalization only.

Systematics

• All values quoted here are % variation from nominal yields.

Dominant systematics on yields

Systematics	Resolved	Boosted
tt normalization	8.0%	9.0%
JES of R=0.4 jets	6.0%	0.70%
JES+JMS of R=1. jets	0.30%	17%
b-tag efficiency	4.0%	3.4%
PDF	2.9%	6.0%

	Resolved selection		Boosted selection	
	yield impact [%]		yield impa	ct [%]
Systematic effect	total bkg.	Z'	total bkg.	Z
Luminosity	2.9	3.6	3.3	3.6
PDF	1.6	4.6	5.8	2.9
ISR/FSR	0.2	-	0.7	-
Parton shower and fragm.	4.5	-	4.1	
tt normalization	7.6	-	8.8	
tī EW virtual correction	2.2	200	4.4	2
tī Generator	1.5	-	1.6	-
W+jets bb + cc + c vs. light	0.8		1.0	
W+jets bb variation	0.2		0.4	
W+jets c variation	1.1	-	0.6	I
W+jets normalization	2.1	-	1.0	-
Multi-jet norm, e+jets	0.6	824	0.3	S <u>-</u> 28
Multi-jet norm, μ +jets	1.8		0.3	
JES, small-radius jets	6.0	2.2	0.7	0.5
JES+JMS, large-radius jets	0.3	4.1	16.5	3.3
Jet energy resolution	1.6	0.4	0.6	0.7
Jet vertex fraction	1.7	2.3	2.1	2.4
b-tag efficiency	4.3	1.8	3.4	5.9
c-tag efficiency	1.4	0.3	0.7	0.9
Mistag rate	0.7	0.3	0.7	0.1
Electron efficiency	1.0	1.1	1.0	1.0
Muon efficiency	1.5	1.5	1.6	1.6

Limits (1)

After the tT mass reconstruction, data and expected background distributions are compared to search for new physics.

- A tool "BumpHunter" is used it searches for local excesses or deficits in the data compared to the expected background, taking the look-elsewhere effect into account over the full mass spectrum.
- After accounting for systematics and statistical uncertainties, no excess is observed in data. -- Set upper limits!
- The limits are set on the σ * B.R of Z' and KK gluon benchmark models using Bayesian techniques.
- In the combination, the four statistically uncorrelated spectra are used, corresponding to boosted and resolved selections, as well as e+jets and μ+jets decay channels.

Limits (2)

14.3 fb⁻¹ @ 8TeV

Exclusion ranges	Observed
Ζ'	0.5-1.8TeV
KK gluon	0.5-2.0TeV

Limits (3)

Upper 95% CL cross s	ection limits times	branching ratio on a	leptophobic	topcolor Z'
11		0	1 1	1

Mass (TeV)	$\sigma \times \text{BR} \times 1.3 \text{ [pb]}$	Obs. (pb)	Exp. (pb)	-1σ (pb)	$+1\sigma$ (pb)
0.50	23.	5.30	4.99	1.50	10.7
0.75	5.6	2.17	1.00	0.249	1.87
1.00	1.6	0.406	0.335	0.091	0.674
1.25	0.57	0.187	0.160	0.064	0.323
1.50	2.1×10^{-1}	0.148	0.096	0.041	0.198
1.75	202 0.22200	0.087	0.066	0.030	0.137
2.00	3.9×10 ⁻²	0.078	0.055	0.023	0.117
2.25		0.078	0.045	0.021	0.103
2.50	6.9×10^{-3}	0.081	0.035	0.017	0.081
3.00	1.5×10^{-3}	0.083	0.019	0.010	0.053

Mass (TeV)	$\sigma \times BR [pb]$	Obs. (pb)	Exp. (pb)	-1σ (pb)	$+1\sigma$ (pb)
0.50	82.	9.62	6.73	2.15	14.1
0.60	45.	4.79	3.48	0.813	6.98
0.70	25.	3.48	1.84	0.436	3.90
0.80	15.	1.66	1.19	0.262	2.37
0.90	8.8	0.948	0.711	0.165	1.60
1.00	5.5	0.561	0.529	0.125	1.11
1.15	2.8	0.394	0.329	0.100	0.720
1.30	1.5	0.282	0.221	0.081	0.464
1.60	0.50	0.204	0.134	0.052	0.296
1.80	0.26	0.149	0.109	0.041	0.237
2.00	0.14	0.153	0.097	0.036	0.209
2.25	0.067	0.218	0.089	0.036	0.203
2.50	0.035	0.152	0.080	0.035	0.196

Upper 95% CL cross section limits times branching ratio on a Kaluza-Klein gluon

Conclusions

- We searched for $t\bar{t}$ resonances in the lepton plus jets final state with 14 fb⁻¹ of 8 TeV data.
- No significant excess of events was observed.
- Using 2 benchmark models, we set 95% C.L upper limits on mass of produced resonances.

Exclusion ranges	Observed
Ζ'	0.5-1.8TeV
KK gluon	0.5-2.0TeV

• Re-optimization of 20 fb⁻¹ of 8 TeV data is in progress and we expect new results by the end of the year.

Backup Slides

ATLAS Luminosity

Top Object Reconstruction

Electrons:

 Clusters of energy deposits in EM calorimeter are reconstructed and associated to charged particle tracks in the inner detector.

Muons:

- Track segments are reconstructed in the muon chambers (spectrometer) and segments are combined starting from the outermost layer. They are fitted to account for material effects.
- Inner detector charged particle tracks are matched to the fitted spectrometer tracks.

Jets:

• Clusters of energy deposits in EM and hadronic calorimeter cells are combined using the Anti- k_T algorithm with distance parameter R = 0.4

• Missing E_T ($\not\!\!E_T$):

 Formed using a vector sum of all jets, electron and muon candidates and all the unassigned cells in the calorimeter.

e+jets event