

1

EWSB and the Higgs Sector

Fermi's theory of beta decay

- In 1933 Fermi proposed a theory of beta decay
 - four-fermion vertex with coupling constant GF
- The theory has a serious sickness
 - **unitarity violation:** interaction probability grows with energy until probabilities are greater than 1.
 - The theory is non-renormalizable.

Now we see Fermi theory as an "**effective theory**" valid to energy scales comparable with the mass of the W-boson.

Fermi's theory of beta decay

- In 1933 Fermi proposed a theory of beta decay
 - four-fermion vertex with coupling constant GF
- The theory has a serious sickness
 - **unitarity violation:** interaction probability grows with energy until probabilities are greater than 1.
 - The theory is non-renormalizable.

Now we see Fermi theory as an "**effective theory**" valid to energy scales comparable with the mass of the W-boson.

The LHC: a no loose proposition

The LHC: a no loose proposition

Kyle Cranmer (NYU)

The LHC: a no loose proposition

Kyle Cranmer (NYU)

Interactions with fermions:

$$\phi \cdots f_{f} y f_L f_R \phi$$

Kyle Cranmer (NYU)

4

The flat directions in the potential Goldstone modes are related to massive force carriers.

We say these degrees of freedom are "eaten"

CENTER FOR The Higgs Mechanism COSMOLOGY ANI PARTICLE PHYSICS U(1)SU(2)xU(1)SO(3) $arphi_3$ φ_2 $arphi_1$

The Higgs mechanism leaves open the underlying symmetry and the representation of the Higgs multiplet(s). For example:

- Failed Georgi-Glashow model for EWSB without Z boson
- Higgs triplets with doubly charged Higgs
- more than one multiplet in SUSY and Type 1-4 2HDMs

A busy EWSG & Higgs section!

Electroweak Symmetry Breaking and the Higgs Sector - Classroom Unit 1	(08:30-10:00)	1	Elect	troweak Symmetry Breaking and the Higgs Sector - Classroom Unit 1 (1	6:00-17:40)	
- Conveners: Dr. Draper, Patrick; Dr. Piacquadio, Giacinto			- Con	veners: Dr. Draper, Patrick; Dr. Piacquadio, Giacinto		
time [id] title	presenter	ti	ime	[id] title	presenter	
08:30 [150] Observation and coupling measurements of Higgs boson in the diphoton decay mo	de YANG, Hongtao		16:00 [307] Search for invisible Higgs decays at CMS		CHASCO, Matthew	
08:50 [155] Spin measurement of the Higgs-like resonance observed in the two photon decay	Mr. HARD, A	andrew 1	6:30	[80] Search for the SM Higgs Boson Produced in Association with a Vector Boson and Decaying to Bottom Quarks	Mr. MOONEY, Michael	
channel in ATLAS			6:55	[202] Search for associated production WH, ZH with H decaying to b bbar at ATLAS.	Dr. MORANGE, Nicolas	
09:10 [159] Property measurements with Higgs to gamma gamma at ATLAS	Mr. SAXON,	James 1	7:15	[146] Statistical treatment in the search for the Standard Model Higgs boson produced in	MING. Yao	
09:30 [79] Observation Of A Higgs-Like Boson in the Decay H -> ZZ -> 4 lepton	Mr. VARTAK	K, Adish		association with a vector boson and decaying to bottom quarks with the ATLAS detector	-,	
Electroweak Symmetry Breaking and the Higgs Sector - Classroom Unit 1	(10:30-12:00)		Elect	troweak Symmetry Breaking and the Higgs Sector - Classroom Unit 1 (1	0.30-12.00)	
- Conveners: Dr. Draper, Patrick; Dr. Piacquadio, Giacinto			Electroweak Symmetry Dreaking and the riggs Sector - Classroom Unit 1 (10:30-12:00)			
time [id] title	presenter	ti	- Con	fidl title	precenter	
10:30 [288] Searching for neutral Higgs bosons in non-standard channels	Dr. MENON, A	Arjun			presenter	
11:00 [172] Search for Non-Standard-Model Higgs Boson Decays Using Collimated Muon Pair	s TATARINOV,	, Aysen	10:30	[86] Searches for decays of the Higgs-like boson to tau lepton pairs with the ATLAS detector	Mr. TUNA, Alexander Naip	
at the CMS		1	11:00 [149] Search for the standard model Higgs boson in the Zgamma decay mode with ATLAS WANG, Fuguan			
11:30 [198] ATLAS Searches for BSM Higgs Bosons	POTTER, Chri	stopher	11.20 [200] Implications of a 125 CoV SM like Higgs			
Electroweak Symmetry Breaking and the Higgs Sector Classroom Unit 1 (1	2.20 15.20)	1	11.50		DI. DRAPER, Paulick	
- Conveners: Dr. Draper, Patrick; Dr. Piacquadio, Giacinto	13.30-13.30)	1	Elect	troweak Symmetry Breaking and the Higgs Sector - Classroom Unit 1 (1	4:30-17:00)	
time [id] title presenter			- Conveners: Dr. Draper, Patrick; Dr. Piacquadio, Giacinto			
13:30 [287] Electroweak Barvogenesis and Higgs Signatures	Dr. COHEN. Tir	n ti	time [id] title		presenter	
			14:30 [98] Evidence for a particle decaying to W+W- in the fully leptonic final state in a stand		Mr. YOO, Jae Hyeok	
14:00 [69] Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS	XU, Lailin		model Higgs boson search			
14:30 [109] Searches for low-mass Higgs at BaBar	Mr. SO, Rocky	1	15:00	[129] Higgs to WW production at ATLAS	Mr. SCHAEFER, Doug	
15:00 [156] Searches for Exotic Higgs decays in CMS	Dr. CASTANEDA, Alfredo		15:20	[217] Vector boson fusion Higgs production in H\rightarrow{WW}\rightarrow{l \nu l \nu} in ATLAS	Mr. CERIO, Benjamin	
Citation history of the two Higgs boson papers	2000	1	15:40	[152] Spin measurements of the Higgs-like resonance in the WW->lvlv decay mode in ATLAS	Dr. KASHIF, Lashkar	

time	[id] title	presenter
14:30	[98] Evidence for a particle decaying to W+W- in the fully leptonic final state in a standard model Higgs boson search	Mr. YOO, Jae Hyeok
15:00	[129] Higgs to WW production at ATLAS	Mr. SCHAEFER, Doug
15:20	[217] Vector boson fusion Higgs production in H\rightarrow{WW}\rightarrow{l \nu l \nu} in ATLAS	Mr. CERIO, Benjamin
15:40	[152] Spin measurements of the Higgs-like resonance in the WW->lvlv decay mode in ATLAS	Dr. KASHIF, Lashkar
16:00	[247] Properties of a Higgs-like particle of mass 125 GeV	SHAW, Savanna
16:30	[147] Higgs property measurements in ATLAS	Mr. JI, haoshuang

Santa Cruz, August 2013

SM Higgs @ the LHC

LHC HIGGS XS WG 2010

Kyle Cranmer (NYU)

SM Higgs @ the LHC

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

SM Higgs @ the LHC

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

LHC Data

Fantastic running at the LHC leading to >10¹⁵ p-p collisions !

-•Mass measurement

Mass from $H \rightarrow \tau \tau$ ($m_X = 120^{+9}_{-6}(stat) \pm 4(sys)$ GeV) consistent

Kyle Cranmer (NYU)

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Spin & CP Properties

Christophe Grojean

Implications of Possible New Physics 8

Kracow, 10rd Sept. 2012

Kyle Cranmer (NYU)

Spin & Parity @ CMS with $H \rightarrow ZZ \rightarrow 4I$

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Kyle Cranmer (NYU)

Spin & Parity @ CMS with $H \rightarrow ZZ \rightarrow 4I$

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Kyle Cranmer (NYU)

Pseudoexperiments

Pseudoexperiments

0+ vs. 2+

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Several spin-2 models possible:

- start with graviton-inspired model with minimal couplings
- vary qq vs gg initial state frac

ATLAS result with yy, ZZ, & WW

0.05

0.04

0.03

0.02

0.01

15

Cross-sections and Branching Ratios (assuming 0⁺ SM tensor structure)

Details

Channels are sub-divided to enhance sensitivity either for experimental reasons or take advantage of production features

Higgs Boson Decay	Subsequent Decay	Sub-Channels	$\int L \mathrm{d}t$ [fb ⁻¹]	Ref.		
	$2011 \sqrt{s} = 7 \text{ TeV}$					
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-\text{jet VBF}, \ell-\text{tag}\}$	4.6	[8]		
$H o \gamma \gamma$	_	10 categories { $p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}$ } \oplus {2-jet VBF}	4.8	[7]		
$H \rightarrow WW^{(*)}$	<i>ℓνℓν</i>	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet, } 1\text{-jet, } 2\text{-jet VBF}\}$	4.6	[9]		
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6			
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]		
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6			
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6			
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[11]		
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7			
$2012 \ \sqrt{s} = 8 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}\}$	20.7	[8]		
$H o \gamma \gamma$	_	14 categories { $p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}$ } \oplus {2-jet VBF} \oplus { ℓ -tag, $E_{\text{T}}^{\text{miss}}$ -tag, 2-jet VH	} 20.7	[7]		
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7	[9]		
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	13			
$H \to \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[10]		
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13			
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13			
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[11]		
	$Z \to \ell \ell$	$p_{\rm T}^{\bar{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13			

Kyle Cranmer (NYU)

Details

Channels are sub-divided to enhance sensitivity either for experimental reasons or take advantage of production features

Higgs Boson Decay	Subsequent Decay	Sub-Channels		Ref.
$2011 \ \sqrt{s} = 7 \text{ TeV}$				
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, \frac{2-jet VBF}{\ell-tag}\}$		[8]
$H o \gamma \gamma$	_	10 categories { $p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion} \} \oplus \{2\text{-jet VBF}\}$		[7]
$H \rightarrow WW^{(*)}$	ℓνℓν	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet} \text{ VBF}\}$		[9]
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e,\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{\tilde{W}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\dot{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	

2012 $\sqrt{s} = 8 \text{ TeV}$

$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-\frac{\text{jet VBF}, \ell-\text{tag}}\}$	20.7	[8]
		14 categories	20.7	[7]
$H \to \gamma \gamma$	_	$\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\} \oplus \{\ell\text{-tag}, E_{T}^{\text{miss}}\text{-tag}, 2\text{-jet VH}\}$	}	[/]
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet} VBF\}$	20.7	[9]
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	13	
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet, 1-jet, } p_{\mathrm{T}, \tau\tau} > 100 \text{ GeV, 2-jet}\}$	13	[10]
$\Pi \rightarrow ii$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	

Kyle Cranmer (NYU)

Evolution of Model Complexity

Disentangling multiple production modes

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

$$n_{\text{Signal}}^{k} = \left(\sum \mu_{i} \sigma_{i,SM} \times A_{if}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \mathcal{B}_{f,SM} \times \mathcal{L}^{k}$$

- $\sigma_i = \mu_i \sigma_{i,SM}$ is the i^{th} hypothesized production cross section
- $\mathcal{B}_f = \mu_f \mathcal{B}_{f,SM}$ is the f^{th} hypothesized branching fraction
- Detector acceptance A_{if}^k , reconstruction efficiency ε_{if}^k , and integrated luminosity \mathcal{L}^k are fixed by above assumptions

Imperial College Model-independent presentation

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Can't compare contours directly, b/c there is a different BR for axis

But, BR cancels when considering slope in this plane

still sensitive to theory uncertainties (jet veto, ggH+2jet contamination,...)

Note: All coupling measurements pass through this space

Imperial College Model-independent presentation

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Can't compare contours directly, b/c there is a different BR for axis

But, BR cancels when considering slope in this plane

still sensitive to theory uncertainties (jet veto, ggH+2jet contamination,...)

Note: All coupling measurements pass through this space

Model-independent presentation

Can't compare contours directly, b/c there is a different BR for axis

But, BR cancels when considering slope in this plane

• mild sensitivity to theory uncertainties (jet veto, ggH+2jet contamination,...)

Kyle Cranmer (NYU)

VBF 2-photon candidate

dit Toolbar

About 12 Higgs events expected in VBF-like categories

$m_{\gamma\gamma} = 126.9 \text{ GeV}$ $\Delta \eta_{jj} = 5.6$ $m_{jj} = 1.67 \text{ TeV}$

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

1 VBF candidate observed (m₄₁=123.5 GeV) [0.7 expected, S/B~5]

Ratio of Branching Ratios

A model independent approach less sensitive to theory uncertainties

Kyle Cranmer (NYU)

VH status

CENTER FOR COSMOLOGY AND **PARTICLE PHYSICS**

VH production not yet firmly established

Channels:

- $H \rightarrow \gamma \gamma$: simple lepton tag, few events
- $H \rightarrow$ bb: complicated analyses
- Sensitivity at ~2x SM rate

ATLAS & CMS both see a convincing diboson peak in $H \rightarrow$ bb with slight Higgs-like excess evidence for VH at Tevatron

 $H \rightarrow \gamma \gamma$ @ ATLAS

H→bb @ ATLAS

 σ_{SM}

m_µ [GeV]

Our SM bias?

ATLAS does not have a $Z(\rightarrow vv) H(\rightarrow 4I)$ b/c sensitivity in SM is small

m₄₁=123.5 GeV, ETmiss=121.3 GeV

Kyle Cranmer (NYU)

Couplings

The basic starting point for the various parametrizations :

$$\sigma(H) \times BR(H \to xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma}$$

No useful direct constraint on total width at LHC

- ideally, allow for invisible or undetected partial widths
- Ieads to an ambiguity unless something breaks degeneracy

Various strategies / assumptions break this degeneracy

- Assume no invisible decays
- Fix some coupling to SM rate
- Only measure ratios of couplings
- + Limit $\Gamma_V \leq \Gamma_V^{\mathrm{SM}}$ eg. Dührssen et. al, Peskin, ...
 - valid for CP-conserving H, no H⁺⁺, ... Gunion, Haber, Wudka (1991)
 - together with $\Gamma_V^2/\Gamma = \text{meas} \Rightarrow \Gamma_{\text{vis}} \leq \Gamma \leq \Gamma_{V,SM}^2/\text{meas}$

Parametrizing the couplings

Approach: scale couplings w.r.t. SM values by factor κ

Expansion around SM point with state-of-the-art predictions

Option 1) relate ggH and yyH assuming no new particles in loop

Option 2) introduce κ_g and κ_γ as effective coupling to ggH and $\gamma\gamma$ H

Benchmark models

Fully model independent fit is not very informative with current data

Benchmarks proposed by joint theory/experiment LHC XS group

arXiv:1209.0040

Probe Fermionic vs. Bosonic couplings: $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$ \cdot relevant for Type I 2HDM $\kappa_V = \kappa_W = \kappa_Z$

Probe W vs. Z couplings (custodial symmetry)

Probe up. vs. down fermion couplings

Probe quark vs. lepton couplings

Probe new particles in ggH and $\gamma\gamma$ H loops

Probe invisible decays

Example Coupling results

Here, evidence for fermion couplings is indirect

Tevatron results

Tevatron is mainly sensitive to VH production

- ${\scriptstyle \bullet}$ sees evidence for $H{\rightarrow}$ bb
- High $H \rightarrow \gamma \gamma$ affects best-fit fermion coupling

Searches for Additional Standard Model Signals

:: *ttH*

125tH production 35ot yet finding established • Channels: m_H (GeV)

- $H \rightarrow \gamma \gamma$: clean tag, few events
- $H \rightarrow \tau \tau$, bb: complicated analyses
- Sensitivity at ~few x SM rate

Kyle Cranmer (NYU)

Kyle Cranmer (NYU)

DPF, Santa Cruz, August 2013

M_H [GeV]

37

$H \rightarrow \tau \tau$

egories of the to Karler Granmer (NYU)

Figure 16: The solid a tion of the Higg

CENTER FOR

Searches for Beyond the Standard Model Signals

Unfolded differential cross section in $H \rightarrow \gamma \gamma$

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

3

3.5

N_{iets}

Kyle Cranmer (NYU)

Probing undetected a

Here total width modified

 $\begin{array}{c} 0.4 \\ 0.2 \\ 0.0 \\ 0 \end{array}$

uses effective coupling for ggH and γγH loops

everything else is SM-like (namely VBF production)

Disfavors large BR to invisible

As BR(inv) increases, κ_g must increase As $\kappa_g \rightarrow \infty B(gg) \rightarrow B(gg)_{SM} \sim 10\%$ Thus BR(inv) < 1-B(gg)_{SM}

Kyle Cranmer (NYU)

Invisible decays

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

ATLAS & CMS directly probing invisible decays with associated production

Exotic decays

р

- NMSSM gives $h \rightarrow aa$
 - well motivated theory
 - rich phenomenology

Flavor changing $t \rightarrow cH$

Kyle Cranmer (NYU)

Flavor changing decays

Kyle Cranmer (NYU)

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Searching for additional $H \rightarrow \gamma \gamma$ using SM Higgs as "background" @ CMS

Searching for High-mass Higgs in H \rightarrow WW \rightarrow Iv Iv @ ATLAS

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

BaBar nMSSM searches

BABAR light Higgs searches

Presented in DPF 2011				
Υ (2,3S) $\rightarrow \gamma A^0; A^0 \rightarrow \mu^+ \mu^-$	PRL 103, 081803 (2009)			
$\Upsilon(3S) \rightarrow \gamma A^0; A^0 \rightarrow \tau^+ \tau^-$	PRL 103, 181801 (2009)			
$\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow invisible$	PRL 107, 021804 (2011)			
Υ (2,3S) → γ A ⁰ ; A ⁰ → hadrons	PRL 107, 221803 (2011)			
Today's talk				
Υ (1S) → γ A ⁰ ; A ⁰ → μ ⁺ μ ⁻	PRD 87, 031102(R) (2013)			
$\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow \tau^+ \tau^-$	arXiv:1210:5669			
$\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow gg \text{ or } s\bar{s}$	PRD 88, 031701(R) (2013)			

T. Rizzo (SLAC Summer Institute 2012)

Rocky So

Kyle Cranmer (NYU)

Conclusions

- We've found a new particle, and we've only just begun
 - a profound step in our understanding of fundamental phyics

