Highlights from the Search for New Physics

Scott Thomas Rutgers University

Non-Comprehensive / Incomplete Survey of the Search for New Physics

Minimal Renormalizable Standard Model

Minimal Renormalizable Standard Model

Success !!

Minimal Renormalizable Standard Model

Search for New Physics at the Electroweak Scale

Search for New Physics at the Electroweak Scale

Experimentally:

. Dark Matter (ElectroWeak Scale WIMP)

. Super-Space (Gauge Coupling Unification, Top IR Quasi-Fixed Point, ...)

. Experimental Anomalies ... (Easy to Find - Hard to Make Go Away)

Accompanying Theoretical Framework, Connections ...

Theoretically:

. Quantum Stability of ElectroWeak Scale (EW Hierarchy Problem LQFT- c.f. Vacuum Energy Problem)

Renormalizable Standard Model Effective Theory – Breaks Down "Just" Above the Electroweak Scale

New Interactions/States Waiting to be Discovered "Just" Above the Electroweak Scale

Theoretically:

. Quantum Stability of ElectroWeak Scale (EW Hierarchy Problem LQFT- c.f. Vacuum Energy Problem)

Doctrine of Naturalness

So Far: . No Definitive Evidence for New States . No Definitive Evidence for New Interactions (Beyond Gravity + Neutrino Mass Op) (Victims of Success of Minimal Standard Model)

Search for New Physics at the Electroweak Scale

+

New Interactions

New States

Search for New Physics at the Electroweak Scale

+

Muon g-2:

Chirality Violating Interaction – Probes Interaction with Higgs Sector

<u>Three</u> Experimental Probes of Muon Interaction with Higgs Sector (Unique Among SM Particles for Foreseeable Future)

- 1. Muon Mass
- **2. Higgs ->** μ μ
- 3. Muon g-2 $a_{\mu}^{\text{Expt.}} a_{\mu}^{\text{SM}} = (260 \pm 78) \times 10^{-11} (3.3 \text{ o})$

Talks by Kiburg, Porter, Fukushima

Muon g-2:

Contribution	Result $(\times 10^{11})$	Error
QED (leptons)	116 584 718 \pm 0.14 \pm 0.04 $_{\alpha}$	$0.00 \mathrm{~ppm}$
HVP(lo) [1]	6923 ± 42	0.36 ppm
HVP(ho)	$-98 \pm 0.9_{ m exp} \pm 0.3_{ m rad}$	0.01 ppm
HLbL [2]	105 ± 26	0.22 ppm
\mathbf{EW}	$154 \pm 2 \qquad \pm 1$	0.02 ppm
Total SM	$116\ 591\ 802\ \pm\ 49$	$0.42 \mathrm{~ppm}$

Program Requires

- . g-2 Measurement
- . R_{had} Measurement
- . Lattice hadronic yyyy Interaction

 $a_{\mu}^{\text{Expt.}} - a_{\mu}^{\text{SM}} = (260 \pm 78) \times 10^{-11} \quad (3.3 \text{ o})$

- New E989 experiment will reduce experimental uncertainty by a factor of 4 to 16 x 10⁻¹¹ (0.14 ppm)
- If current discrepancy remains this would yield $>5\sigma$
- Together with theory improvements could give >8σ

Pion Charged Current Decay:

$$R_{e/\mu}^{SM} = \frac{\Gamma(\pi \to e\nu + \pi \to e\nu\gamma)}{\Gamma(\pi \to \mu\nu + \pi \to \mu\nu\gamma)} = 1.2352(1) \times 10^{-4} \sim (m_e / m_{\mu})^2$$

Chirality Violating Interaction – Probes Interaction with Higgs Sector

TRIUMF PIENU: aims at <0.1% in BR measurement

Talk by Sher

Dark Hidden Sector:

 $m_D \sim O(\alpha_D / 4\pi) m_W$

Dark Gauge Boson <- Mix -> Photon

Talks by Moreno, Echenard

Dark Hidden Sector:

BaBar

Direct Production of New States :

High Energy Hadron Colliders

σ	(fb) 7 TeV
W	100,000,000
Z	30,000,000
tt	150,000
WW	40,000
WZ	17,000
ZZ	6,500
h inclusive	17,900
ttW	150
ttZ	100
WWW	60
ttWW	2
₩₩ (400 Ge	eV) 10
ĝĝ (1 TeV)) 10

σ (fb)	7 TeV
W 100	,000,000
Z 30,	,000,000
tt	150,000
WW	40,000
WZ	17,000
ZZ	6,500
h inclusive	17,900
ttW	150
ttZ	100
WWW	60
ttWW	2
₩₩ (400 GeV)	10
ĝĝ (1 TeV)	10

σ	(fb) 7 TeV
W	100,000,000
Z	30,000,000
tt	150,000
WW	40,000
WZ	17,000
ZZ	6,500
h inclusive	17,900
ttW	150
ttZ	100
WWW	60
ttWW	2
₩₩ (400 G	eV) 10
ĝĝ (1 TeV) 10

σ (f	b) 7 TeV
W 1	00,000,000
Z 3	30,000,000
tt	150,000
WW	40,000
WZ	17,000
ZZ	6,500
h inclusive	17,900
ttW	150
ttZ	100
WWW	60
ttWW	2
₩₩ (400 GeV) 10
ĝĝ (1 TeV)	10

Leptons, taus, Photons, ...

Kinematic Discriminants in Signature Space

- . Blunt Signature Space Well Covered
- . Refined Parts of Signature Space Pretty Well Covered
- . Focused Isolated Regions of Signature Space Covered

Same Sign Di-Leptons + b-jets + MET : ATLAS

Talk by Lei

Same Sign Di-Leptons + b-jets + MET : ATLAS

Talk by Lei

Blunt +

Multi-Leptons: ATLAS

O(100) Channels

Variable	Meaning					
H_{T}	$\Sigma p_{\rm T}$ of all jets in the event					
$m_{\rm T}^W$	Transverse mass of W-boson candidate (on-Z events only)					
Variable	Meaning	Lower Bounds [GeV]			Additional Requirements	
$H_{\rm T}^{\rm leptons}$	$\Sigma p_{\rm T}$ of leading three leptons	0	200	500	800	
Min. $p_{\rm T}^{\ell}$	$p_{\rm T}$ of softest (third) lepton	0	50	100	150	
$E_{\mathrm{T}}^{\mathrm{miss}}$	MET RefFinal	0	100	200	300	$H_{\rm T} < 150~{ m GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	MET_Ken mar	0	100	200	300	$H_{\rm T} \ge 150 {\rm GeV}$
meff		0	600	1000	1500	
m _{eff}	$E_{\rm T}^{\rm miss}$ + $H_{\rm T}$ + $H_{\rm T}^{\rm leptons}$	0	600	1200		$E_{\mathrm{T}}^{\mathrm{miss}} \geq 100~\mathrm{GeV}$
m _{eff}		0	600	1200		$m_{\rm T}^W \ge 100 { m GeV}, { m on-}Z$
Variable	Meaning	Lower Bounds				
b-tags	Number of <i>b</i> -tagged jets	0	1	2		

Talk by Hance

Multi-Leptons: ATLAS

O(100) Channels

Talk by Hance

Multi-Leptons: ATLAS

Blunt +

O(100) Channels

Talk by Hance

Boosted 3-Jet Resonances: CMS

Ensemble of 6 choose 3 = 20 Jet Triplets

(No MET)

Talk by Seitz

Boosted 3-Jet Resonances: CMS

Ensemble of 6 choose 3 = 20 Jet Triplets

(No MET)

Talk by Seitz

Paired Di-Jet Resonances:

Fat-Jet Sub-Jets

(No MET)

Talk by Tweedie

Paired Di-Jet Resonances:

Asymmetric Internal Conversion

Largest Source: Z -> | | γ* -> | | | (l) (Others)

Asymmetric Internal Conversion $\gamma^* \rightarrow e(e)$, $\mu(\mu)$

Compare External Conversion in Material γ -> e(e)

Standard MC's Don't Capture IR Singular Region of Phase Space

$$m_{\ell\ell} \; rac{d\mathcal{P}(\gamma^* o \ell\ell)}{dm_{\ell\ell}} = rac{2}{3}rac{lpha}{\pi} \left(1 - rac{4m_\ell^2}{m_{\ell\ell}^2}
ight)^{1/2} \left(1 + rac{2m_\ell^2}{m_{\ell\ell}^2}
ight)$$

Asymmetric Internal Conversion

Largest Source: Z -> | | γ* -> | | | (|) (Others)

Asymmetric Internal Conversion $\gamma^* \rightarrow e(e)$, $\mu(\mu)$

Compare External Conversion in Material γ -> e(e)

Standard MC's Don't Capture IR Singular Region of Phase Space

$$m_{\ell\ell} \; rac{d\mathcal{P}(\gamma^* o \ell\ell)}{dm_{\ell\ell}} = rac{2}{3}rac{lpha}{\pi} \left(1 - rac{4m_\ell^2}{m_{\ell\ell}^2}
ight)^{1/2} \left(1 + rac{2m_\ell^2}{m_{\ell\ell}^2}
ight)$$

Developed Special Purpose AIC MG MC

First Observed in Multi-Dimensional Dalitz Distribution O(few) Events

First Observation of Z -> III(I)

Asymmetric Internal Conversion

Largest Source: Z -> | | γ* -> | | | (|) (Others)

Asymmetric Internal Conversion $\gamma^* \rightarrow e(e)$, $\mu(\mu)$

Compare External Conversion in Material γ -> e(e)

Standard MC's Don't Capture IR Singular Region of Phase Space

$$m_{\ell\ell} \; rac{d\mathcal{P}(\gamma^* o \ell\ell)}{dm_{\ell\ell}} = rac{2}{3}rac{lpha}{\pi} \left(1 - rac{4m_\ell^2}{m_{\ell\ell}^2}
ight)^{1/2} \left(1 + rac{2m_\ell^2}{m_{\ell\ell}^2}
ight)$$

Developed Special Purpose AIC MG MC

First Observed in Multi-Dimensional Dalitz Distribution O(few) Events

First Observation of Z -> III(I)

Asymmetric Internal Conversion

Largest Source: Z -> | | γ* -> | | | (|) (Others)

Asymmetric Internal Conversion $\gamma^* \rightarrow e(e)$, $\mu(\mu)$

Compare External Conversion in Material γ -> e(e)

Standard MC's Don't Capture IR Singular Region of Phase Space

$$m_{\ell\ell} \; rac{d\mathcal{P}(\gamma^* o \ell\ell)}{dm_{\ell\ell}} = rac{2}{3}rac{lpha}{\pi} \left(1 - rac{4m_\ell^2}{m_{\ell\ell}^2}
ight)^{1/2} \left(1 + rac{2m_\ell^2}{m_{\ell\ell}^2}
ight)$$

Developed Special Purpose AIC MG MC

First Observed in Multi-Dimensional Dalitz Distribution O(few) Events

First Observation of Z -> III(I) , IIII

Asymmetric Internal Conversion

Largest Source: Z -> | | γ* -> | | | (|) (Others)

Asymmetric Internal Conversion $\gamma^* \rightarrow e(e)$, $\mu(\mu)$

Compare External Conversion in Material γ -> e(e)

Standard MC's Don't Capture IR Singular Region of Phase Space

$$m_{\ell\ell} \; rac{d\mathcal{P}(\gamma^* o \ell\ell)}{dm_{\ell\ell}} = rac{2}{3}rac{lpha}{\pi} \left(1 - rac{4m_\ell^2}{m_{\ell\ell}^2}
ight)^{1/2} \left(1 + rac{2m_\ell^2}{m_{\ell\ell}^2}
ight)$$

Developed Special Purpose AIC MG MC

First Observed in Multi-Dimensional Dalitz Distribution O(few) Events

First Observation of Z -> III(I) , IIII Used in Higgs -> IIII as "calibration"

Asymmetric Internal Conversion

Largest Source: Z -> | | γ* -> | | | (|) (Others)

Asymmetric Internal Conversion $\gamma^* \rightarrow e(e)$, $\mu(\mu)$

Compare External Conversion in Material γ -> e(e)

Standard MC's Don't Capture IR Singular Region of Phase Space

$$m_{\ell\ell} \; rac{d\mathcal{P}(\gamma^* o \ell\ell)}{dm_{\ell\ell}} = rac{2}{3}rac{lpha}{\pi} \left(1 - rac{4m_\ell^2}{m_{\ell\ell}^2}
ight)^{1/2} \left(1 + rac{2m_\ell^2}{m_{\ell\ell}^2}
ight)$$

Developed Special Purpose AIC MG MC

First Observed in Multi-Dimensional Dalitz Distribution O(few) Events

First Observation of Z -> III(I) , IIII Used in Higgs -> IIII as calibration

Higgs -> WW: Asymmetric Internal Conversion

```
H->WW->IvIv
```

(Gray, Kilic, Park, Somalwar, ST)

Un-Anticipated Process - "Fake" Lepton Background

Higgs -> WW: Asymmetric Internal Conversion

```
H->WW->IvIv
```

(Gray, Kilic, Park, Somalwar, ST)

Un-Anticipated Process - "Fake" Lepton Background

Higgs -> WW: Asymmetric Internal Conversion

```
H->WW->IvIv
```

(Gray, Kilic, Park, Somalwar, ST)

Un-Anticipated Process - "Fake" Lepton Background

Wγ* → IvI(I) + ... (Comparable to Higgs Signal)

Search for the Physics of Electroweak Symmetry Breaking

New Physics at Electroweak Scale Associated with Higgs Sector

- Higgs Rate Measurements

This Talk

- Search for Additional States in the Higgs Sector

- Searching for New Physics Produced in Association with Higgs (Calibrated Source)
- Precision Higgs Measurements to Search for New Physics

Still Possible to Discover New Physics at Electroweak Scale in Existing Data

Search for New Physics in Higgs Boson Rate Measurements

Number of Channels Observed + Measured

Many Many More Eventually ...

	Inclusive	VBF	Vh	tth
γγ	X	X	X	Х
ZZ*	X	Х	х	Х
WW*	X	X	X	Х
ττ	X	X	X	Х
bb			X	X
Ζγ	Х	Х	Х	
μμ	Х	Х	X	Х

Search for New Physics in Higgs Boson Rate Measurements

Signals of New Physics in SM Higgs Rate Measurements

Search for New Physics in Higgs Boson Rate Measurements

It's the Higgs Boson !!

Precision Probes of New Physics

Electroweak Observables $G_{F}, m_{W}, m_{Z}, \Gamma_{Z}, A_{Z-FB}, ...$

Renormalizable SM + D=6 Operators $H = \langle H \rangle$ $\frac{\xi_T}{M^2} (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H)$ $\frac{g_1g_2\xi_{S_{12}}}{M^2} H^{\dagger}W_{\mu\nu}H B^{\mu\nu}$ PDG

S = 0.01 + 0.10

T = 0.03 + 0.11

Systematics: m_t , $ln(m_h)$, α_s ,

Higgs Observables σ. Br (Initial -> h -> Final)

Higgs Observables σ. Br (Initial -> h -> Final)

<u>Best Channels</u>: σ.Br(Inclusive -> h -> Resonant Final)

Higgs Observables $Br(h \rightarrow \gamma\gamma)$ σ . Br (Initial -> h -> Final) $Br(h \rightarrow ZZ)$

Best Channels: (Ratios) σ. Br (Inclusive -> h -> Resonant Final)

Higgs Observables σ. Br (Initial -> h -> Final)

$$\frac{\operatorname{Br}(h \to \gamma \gamma)}{\operatorname{Br}(h \to ZZ)} \simeq \frac{\operatorname{Br}(h \to \gamma \gamma)}{\operatorname{Br}(h \to ZZ)} \bigg|_{\mathrm{SM}} \left[1 + \mathcal{O}\left(\frac{\alpha}{4\pi v^2} \frac{M^2}{\xi} \right) \right]$$

<u>Best Channels</u>: (Ratios) σ. Br (Inclusive -> h -> Resonant Final)

 $\begin{array}{l} \mbox{Renormalizable SM +} \\ \mbox{D=6 Operators} \\ \mbox{H = <H> + h} \\ \hline \\ \frac{\xi_T}{M^2} (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H) \\ \frac{g_1g_2\xi_{S_{12}}}{M^2} H^{\dagger}W_{\mu\nu}H B^{\mu\nu} \\ \frac{g_1^2\xi_{S_{11}}}{2M^2} H^{\dagger}H B_{\mu\nu}B^{\mu\nu} \\ \frac{g_2^2\xi_{S_{22}}}{2M^2} H^{\dagger}H W_{\mu\nu}W^{\mu\nu} \end{array}$

57

59

Implications of the Higgs Mass

Higgs Self Coupling is Small

 $m_h \sim m_Z \qquad \lambda \sim g$

Renormalizable Standard Model Remains Perturbative to Very High Scale

ElectroWeak Scale can be Stabilized by Partner Particles - Cancel Quadratic Divergence in Low Energy Theory

Doctrine of Naturalness Suggests Partner Particles <u>Below</u> TeV Scale

Doctrine of Naturalness

Quantum Stability of K-K mixing Against Changes in UV Physics

Charm Quark Cancels Quadratic Divergence of ∆S=2 Amplitude in Low Energy Theory

(Successful) Prediction of Charm Mass!

Search for Partner Particles Focused

Talk by Lei

Search for Partner Particles Focused

Top Partner: CMS

Talk by Lei

Search for Partner Particles

Refined + Focused

Top Spartner Super-Space: ATLAS

Search for Electroweak States at the Electroweak Scale

```
Higgs Sector
   Mass Scale O(100-200) GeV
    SU(2)_{L} U(1)_{y} Interactions
    \sigma(pp \rightarrow Resonant Higgs Sector)_{LHC} = O(10 pb)
    \sigma(pp \rightarrow Pair Production Higgs Sector)_{HC} = O(1 pb)
    Higgs Identified/Calibrated Object
       (New Opportunities for Searches)
   LHC Sensitivity to New Electroweak Physics at
      Electroweak Scale and in
      Higgs Sector Just Beginning ....
```

Search for New Physics

