CP Violation results from Belle

Matthew Barrett
(University of Hawai'i at Mānoa)
On behalf of the Belle collaboration

15 August 2013

Outline

- CP Violation in:
- b \rightarrow u decays:
- $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$
- $B^{0} \rightarrow \rho^{0} \rho^{0}$
- $b \rightarrow s$ decays:
- $B^{0} \rightarrow \omega K_{S}$
- $B^{0} \rightarrow \eta^{\prime} K_{S}$

CP Violation in Charm decays was covered in "Charm mixing and CP Violation at Belle" - A. Schwartz at 14:50 15 August.

The Belle Detector at KEK

The Belle dataset

Integrated luminosity of B factories

- 772 Million $B \bar{B}$ pairs created from $\mathrm{Y}(4 \mathrm{~S})$ decays.
- The presented analyses use the full Belle Y(4S) data set, unless otherwise indicated.

CP Violation

- CP violation in the Standard Model Arises due to an irreducible phase in the CKM matrix.

$$
V_{\mathrm{CKM}} \equiv V_{L}^{u} V_{L}^{d \dagger}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- The CKM matrix has a unitarity condition - this can be represented as the Unitarity triangle.
- $\mathrm{b} \rightarrow \mathrm{u}$ decays can be sensitive to
$\phi_{2}($ or $\alpha) \equiv \arg \left[\left(-V_{t d} V_{t b}^{*}\right) /\left(V_{u d} V_{u b}^{*}\right)\right]$
- Whereas b \rightarrow s decays can be sensitive to ϕ_{1} only when mixing is
 present.
- CP violation can occur directly in a decay, or due to mixing (or in interference between processes). Direct CPV can be expressed as a parameter $A_{C P}$, and mixing induced CPV as a parameter $S_{C P}$.

Common Analysis Techniques

- The $\mathrm{B}^{0}-\bar{B}^{0}$ form a coherent quantum pair.
- The flavour of one of the Bs is known when the other decays.
- Tag one of the Bs as a state of known flavour.
- Reconstruct signal B, where flavour of signal B will vary as a function of Δt.
- Time dependent CP violation often expressed in terms of parameters $A_{C P}$ and $S_{C P}$:

$$
\mathcal{P}(\Delta t, q)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left\{1+q\left[\mathcal{A}_{C P} \cos \Delta m_{d} \Delta t+\mathcal{S}_{C P} \sin \Delta m_{d} \Delta t\right]\right\}
$$

Common Analysis techniques II

- Analyses in the presentation use many common variables for event selection and/or fitting, these include:
- Beam constrained mass: $M_{b c} \equiv \sqrt{\left(E_{b e a m}^{c m s}\right)^{2}-\left(p_{B}^{c m s}\right)^{2}}$;
- Delta E: $\Delta E=E_{B}^{c m s}-E_{\text {beam }}^{c m s}$;
- where $E^{\text {cms }}$ beam is the beam energy in centre of mass frame. $E^{c m s}{ }_{B}\left(p^{c m s}{ }_{B}\right)$ is the Energy (momentum) of the B candidate in the cms frame.
- Fisher discriminants and Likelihood ratios are used. These collect together a number of weakly discriminating event shape variables, such as Fox-Wolfram moments, $\cos \theta_{B}$ (angle between Beam axis and B direction), helicity angles, etc...
- The exact variables used for each analysis vary.

arXiv:1302.0551

- $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$has both tree and penguin contributions:

- Interference between tree and penguins means that ϕ_{2} is not directly observable, instead $\quad \mathcal{S}_{C P}=\sqrt{1-\mathcal{A}_{C P}^{2}} \sin \left(2 \phi_{2}+2 \Delta \phi_{2}\right)$
- ϕ_{2} can still be calculated using an isospin analysis
- The full set of $B \rightarrow \pi \pi$ decays for different pion charge combinations needs to be considered.

$$
A_{+0}=\frac{1}{\sqrt{2}} A_{+-}+A_{00}, \quad \bar{A}_{-0}=\frac{1}{\sqrt{2}} \bar{A}_{+-}+\bar{A}_{00}
$$

arXiv:1302.0551

- $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$is fitted using 7 variables: $\mathrm{M}_{\mathrm{bc}}, \Delta \mathrm{E}$, Fisher discriminant, $\mathcal{L}^{+}{ }_{K \pi}$, $\mathcal{L}^{-}, ~ \Delta \mathrm{t}$ and q .
- $L^{ \pm}{ }_{K \pi}$ are likelikihood ratios for K / π identification:
- Important background is from misidentified kaons.

arXiv:1302.0551

- Fitted $A_{C P}, S_{C P}$ results:

$$
\begin{aligned}
\mathcal{A}_{C P}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) & =+0.33 \pm 0.06(\text { stat }) \pm 0.03 \text { (syst) }, \\
\mathcal{S}_{C P}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) & =-0.64 \pm 0.08(\text { stat }) \pm 0.03 \text { (syst) }
\end{aligned}
$$

- Isospin analysis to this mode and other $B \rightarrow \pi \pi$ measurements from Belle [1,2] yields constraints on $\phi 2$ and $\Delta \phi 2$:
$23.8^{\circ}<\phi_{2}<66.8^{\circ}$ is disfavoured.

$$
\left|\Delta \phi_{2}\right|<44.8^{\circ}
$$

for 1σ bound.

- $B^{0} \rightarrow \rho^{0} \rho^{0}$ is dominated by a b $\rightarrow u \bar{d} d$ tree decay
- The decay is not a CP eigenstate.
- Helicity analysis is required.

- Major background from $B \rightarrow 4 \pi$ decays, including resonant modes:
- Several $B \rightarrow 4 \pi$ modes are studied: $B^{0} \rightarrow \rho^{0} \rho^{0}, B^{0} \rightarrow f_{0} f_{0}, B^{0} \rightarrow f_{0} \rho^{0}$, $\mathrm{B}^{0} \rightarrow \mathrm{f}_{0} \pi^{+} \pi^{-}, \mathrm{B}^{0} \rightarrow \rho^{0} \pi^{+} \pi^{-}, \mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} ;$
- Events with two charged pion pairs are selected.
- Invariant mass and helicity angle are calculated for both pairs.

$\mathrm{B}^{0} \rightarrow \mathrm{p}^{0} \rho^{0}$

- Fit to 6 variables:
- $\Delta \mathrm{E}, \mathrm{m}_{1,2}\left(\pi^{+} \pi^{-}\right)$, $\cos \left(\Theta_{H}\right)_{1,2}, \mathcal{F}$ (fisher discriminant).
- $B^{0} \rightarrow \rho^{0} \rho^{0}$;
- $B^{0} \rightarrow f_{0} \rho^{0}$;
- $\mathrm{B}^{0} \rightarrow 4 \pi$;
- Non-peaking BB;
- All Non-peaking.

Branching fraction $\left(\times 10^{-6}\right)$	Events	UL $\left(\times 10^{-6}\right)$	$\mathcal{S}(\sigma)$
$\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)=1.02 \pm 0.30 \pm 0.22$	166	<1.5	2.9
$f_{L}=0.21_{-0.22}^{+0.10} \pm 0.11$	-	-	
$\mathcal{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)=-3.58_{-7.19}^{+7.75} \pm 2.99$	-25	<11.7	-
$\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \pi^{+} \pi^{-}\right)=1.70_{-4.12}^{+4.1} \pm 5.30$	33	<12.2	<1
$\mathcal{B}\left(B^{0} \rightarrow f_{0} \pi^{+} \pi^{-}\right) \times \mathcal{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)=-1.34_{-1.12 \tau}^{+2.12} \pm 0.98$	-27	<3.1	-
$\mathcal{B}\left(B^{0} \rightarrow f_{0} \rho^{0}\right) \times \mathcal{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)=0.86 \pm 0.27 \pm 0.15$	149	-	3.0
$\mathcal{B}\left(B^{0} \rightarrow f_{0} f_{0}\right) \times \mathcal{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)^{2}=0.03_{-0.09}^{+0.20} \pm 0.04$	-5	<0.2	-

- First evidence for $B^{0} \rightarrow f_{0} \rho^{0}$.
- Constraint put on ϕ_{2} : $\quad \phi_{2}=(91.0 \pm 7.2)^{\circ}$
- Via Isospin analysis using $B^{0} \rightarrow \rho^{0} \rho^{0}$ (only the longitudinal fraction), and current HFAG values and BaBar PRD 76, 051007 (2007).

- Both tree and penguin diagrams can contribute.
- ω is constructed as $\omega \rightarrow \pi^{+} \pi^{0} \pi^{-}$,
 and K_{s} in the decay $\mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}$.
 show signal, BB background and qq background.

$B^{0} \rightarrow \omega K_{s}$

- Preliminary results:

Both $\mathrm{B}^{0} \rightarrow \omega \mathrm{~K}_{\mathrm{s}}$ and $\mathrm{B}^{+} \rightarrow \omega \mathrm{K}^{+}$measured:

$$
\begin{aligned}
& \mathcal{B}\left(B^{0} \rightarrow \omega K^{0}\right)=(4.5 \pm 0.4(\text { stat }) \pm 0.3(\text { syst })) \times 10^{-6} \\
& \mathcal{B}\left(B^{+} \rightarrow \omega K^{+}\right)=(6.8 \pm 0.4(\text { stat }) \pm 0.4(\text { syst })) \times 10^{-6}
\end{aligned}
$$

- First evidence of CPV in $B^{0} \rightarrow \omega \mathrm{~K}_{\mathrm{s}}$:
- $\mathcal{S}_{\omega K_{S}^{0}}=+0.91 \pm 0.32$ (stat) ± 0.05 (syst)

- Dominant diagram is $a b \rightarrow s$ penguin diagram. $A_{C P}$ expected to be small, but S_{CP} can be sensitive to new loop physics.
- The decay is reconstructed via: $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$(with $\eta \rightarrow \gamma \gamma$, or $\eta \rightarrow \pi^{+} \pi^{0} \pi^{-}$), and $\eta^{\prime} \rightarrow \rho^{0} \gamma$. The K_{s} is reconstructed via $K_{s} \rightarrow \pi^{+} \pi^{-}$or $K_{s} \rightarrow \pi^{0} \pi^{0}$ (except where there is also a π^{0} from the η^{\prime} decay).
- Fit is performed to 3 variables: M_{bc}, ΔE, and a likelihood ratio.

$B^{0} \rightarrow \eta^{\prime} K_{s}$

- Preliminary results.
- CP violation parameters:

$$
\begin{aligned}
& \mathcal{S}_{\eta^{\prime} K^{0}}=0.68 \pm 0.07(\text { stat }) \pm 0.03(\text { syst }) \\
& \mathcal{A}_{\eta^{\prime} K^{0}}=+0.03 \pm 0.05(\text { stat }) \pm 0.03(\text { syst })
\end{aligned}
$$

- $A_{C P}$ is consistent with zero;
- $S_{C P}$ is consistent with $\sin 2 \phi_{1}$ measurements from charmed B decays, such as b J/ $/ \mathrm{K}_{\mathrm{s}}$.
- Preliminary result would represent most sensitive measurement in this channel.

Summary

- Results of four CP violation analyses have been presented:
- $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}: \mathcal{A}_{C P}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=+0.33 \pm 0.06$ (stat) ± 0.03 (syst),

$$
\mathcal{S}_{C P}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=-0.64 \pm 0.08 \text { (stat) } \pm 0.03 \text { (syst) }
$$

- $\mathrm{B}^{0} \rightarrow \rho^{0} \rho^{0}: \phi_{2}=(91.0 \pm 7.2)^{\circ}$
- Also first evidence for $B^{0} \rightarrow f_{0} \rho^{0}$:

$$
\begin{array}{cl}
\mathcal{B}\left(B^{0} \rightarrow f_{0} \rho^{0}\right) \times \mathcal{B}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)=(0.86 \pm 0.27 \text { (stat) } \pm 0.15(\text { syst })) \times 10^{-6} \\
& \mathrm{~B}^{0} \rightarrow \omega \mathrm{~K}_{\mathrm{s}}: \\
& \mathcal{S}_{\omega K_{S}^{0}}=+0.91 \pm 0.32(\text { stat }) \pm 0.05(\text { syst }) \\
& \mathcal{A}_{\omega K_{S}^{0}}=-0.36 \pm 0.19(\text { stat }) \pm 0.05(\text { syst }) \\
& \mathrm{B}^{0} \rightarrow \eta^{\prime} \mathrm{K}_{s^{\prime}}: \\
& \mathcal{S}_{\eta^{\prime} K^{0}}=0.68 \pm 0.07(\text { stat }) \pm 0.03(\text { syst }) \\
& \mathcal{A}_{\eta^{\prime} K^{0}}=+0.03 \pm 0.05(\text { stat }) \pm 0.03(\text { syst })
\end{array}
$$

