

CP Violation results from Belle

Matthew Barrett (University of Hawai'i at Mānoa) On behalf of the Belle collaboration

15 August 2013

Outline

- CP Violation in:
- $b \rightarrow u$ decays:
 - $B^0 \rightarrow \pi^+\pi^-$
 - $B^0 \rightarrow \rho^0 \rho^0$
- $b \rightarrow s$ decays:
 - $B^0 \rightarrow \omega K_s$
 - $B^0 \rightarrow \eta' K_s$

CP Violation in Charm decays was covered in "Charm mixing and CP Violation at Belle" - A. Schwartz at 14:50 15 August.

M. Barrett - DPF2013

The Belle Detector at KEK

The Belle dataset

Integrated luminosity of B factories

- 772 Million BB
 pairs created from
 Y(4S) decays.
- The presented analyses use the full Belle Y(4S) data set, unless otherwise indicated.

CP Violation

- CP violation in the Standard Model Arises due to an irreducible phase in the CKM matrix.
- The CKM matrix has a unitarity condition – this can be represented as the Unitarity triangle.
- b \rightarrow u decays can be sensitive to $\phi_2 \text{ (or } \alpha) \equiv \arg[(-V_{td}V_{tb}^*)/(V_{ud}V_{ub}^*)]$
- Whereas b → s decays can be sensitive to φ₁ only when mixing is present.
- CP violation can occur directly in a decay, or due to mixing (or in interference between processes). Direct CPV can be expressed as a parameter A_{CP}, and mixing induced CPV as a parameter S_{CP}.

$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Common Analysis Techniques

- The flavour of one of the Bs is known when the other decays.
- Tag one of the Bs as a state of known flavour.
- Reconstruct signal B, where flavour of signal B will vary as a function of Δt .
- Time dependent CP violation often expressed in terms of parameters A_{CP} and S_{CP} : $\mathcal{P}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 + q \left[\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t \right] \right\}$

Common Analysis techniques II

- Analyses in the presentation use many common variables for event selection and/or fitting, these include:
 - Beam constrained mass: $M_{bc} \equiv \sqrt{(E_{beam}^{cms})^2 (p_B^{cms})^2}$;
 - Delta E: $\Delta E = E_B^{cms} E_{beam}^{cms}$;
 - where E_{beam}^{cms} is the beam energy in centre of mass frame. E_{B}^{cms} (p_{B}^{cms}) is the Energy (momentum) of the B candidate in the cms frame.
 - Fisher discriminants and Likelihood ratios are used. These collect together a number of weakly discriminating event shape variables, such as Fox-Wolfram moments, $\cos \theta_{B}$ (angle between Beam axis and B direction), helicity angles, etc...
- The exact variables used for each analysis vary.

arXiv:1302.0551

• $B^0 \rightarrow \pi^+\pi^-$ has both tree and penguin contributions:

 $\pi^{-}\pi^{-}$

- Interference between tree and penguins means that ϕ_2 is not directly observable, instead $S_{CP} = \sqrt{1 A_{CP}^2} \sin(2\phi_2 + 2\Delta\phi_2)$
- ϕ_2 can still be calculated using an isospin analysis
 - The full set of $B \rightarrow \pi\pi$ decays for different pion charge combinations needs to be considered.

$$A_{+0} = \frac{1}{\sqrt{2}}A_{+-} + A_{00}, \quad \bar{A}_{-0} = \frac{1}{\sqrt{2}}\bar{A}_{+-} + \bar{A}_{00},$$

arXiv:1302.0551

- $B^0 \rightarrow \pi^+ \pi^-$ is fitted using 7 variables: $M_{bc}^{}, \Delta E$, Fisher discriminant, $\mathcal{L}^+_{K\pi}$, $\mathcal{L}^-_{K\pi}^{}, \Delta t$ and q.
- $\mathcal{L}_{\kappa\pi}^{\pm}$ are likelikihood ratios for K/ π identification:

 $B^0 \rightarrow \pi^+\pi^-$

 Important background is from misidentified kaons.

 $B^0 \rightarrow \pi^+\pi^-$ signal; $B^0 \rightarrow K^+\pi^-$ background; Total background.

5.24 5.25 5.26 5.27

a

5.28 5.29

M_{bc} (GeV/c²)

Events / (0.0025 GeV/c²)

Normalised Residuals 400

350

300

250

200

100

50

arXiv:1302.0551

15 August 2013

M. Barrett - DPF2013

10

[1] Y.-T. Duh et al. (Belle Collaboration), Phys. Rev. D 87, 031103(R) (2012). [2] Y. Chao et al. (Belle Collaboration), Phys. Rev. Lett. 94, 181803 (2005).

$\mathbf{B}^{0} \rightarrow \rho^{0} \rho^{0}$

arXiv:1212.4015

- $B^0 \rightarrow \rho^0 \rho^0$ is dominated by a b $\rightarrow u\bar{u}d$ tree decay
 - The decay is not a CP eigenstate.
 - Helicity analysis is required.

- Major background from $B \rightarrow 4\pi$ decays, including resonant modes:
- Several $B \rightarrow 4\pi$ modes are studied: $B^0 \rightarrow \rho^0 \rho^0$, $B^0 \rightarrow f_0 f_0$, $B^0 \rightarrow f_0 \rho^0$, $B^0 \rightarrow f_0 \pi^+ \pi^-$, $B^0 \rightarrow \rho^0 \pi^+ \pi^-$, $B^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$;
- Events with two charged pion pairs are selected.
 - Invariant mass and helicity angle are calculated for both pairs.

arXiv:1212.4015

90 80 70 60 90 80 70 250 Fit to 6 variables: Events / (0.01) Events / (0.04) Events / (0.04) \mathbf{a} 200 60 $\Delta E, m_{1.2}(\pi^{+}\pi^{-}),$ 150 50 100 $\cos(\Theta_{_{\!\!\!H}})_{_{1,2}}, \mathcal{F}$ 30E 30 20 20 50 (fisher 10 10 Normalised Residuals Normalised Residuals Normalised Residuals discriminant). -0.05 0.05 0.1 0.6 0.8 1 $m_1(\pi^+\pi^-)$ [GeV/c²] 0.8 0.6 0.8 1 $m_2(\pi^+\pi^-)$ [GeV/c²] -0.1 0 ∆E [GeV] 100 $B^0 \rightarrow \rho^0 \rho^0;$ 100 (d) Events / (0.1) Events / (0.1) e 80 80 $B^{0} \rightarrow f_{0}\rho^{0};$ 60 60 40 40 1500 $B^0 \rightarrow 4\pi$; 1000 20 20 500 Normalised Residuals Normalised Residuals Non-peaking BB; 0.5 1 $\cos(\Theta_{\rm H})_1$ -0.5 0.5 1 $\cos(\Theta_{\rm H})_2$ -3 -2 2 -1 -1 -0.5 -1 0 0 All Non-peaking. F_{S/B}

$B^{0} \rightarrow \rho^{0} \rho^{0}$

Branching fraction $(\times 10^{-6})$	Events	UL (×10 ⁻⁶)	$\mathcal{S}(\sigma)$
$\mathcal{B}(B^0 \to \rho^0 \rho^0) = 1.02 \pm 0.30 \pm 0.22$	166	< 1.5	2.9
$f_L = 0.21_{-0.22}^{+0.18} \pm 0.11$	-	-	
$\mathcal{B}(B^0 \to \pi^+ \pi^- \pi^+ \pi^-) = -3.58^{+7.75}_{-7.19} \pm 2.99$	-25	< 11.7	-
$\mathcal{B}(B^0 \to \rho^0 \pi^+ \pi^-) = 1.70^{+4.21}_{-4.12} \pm 5.30$	33	< 12.2	< 1
$\mathcal{B}(B^0 \to f_0 \pi^+ \pi^-) \times \mathcal{B}(f_0 \to \pi^+ \pi^-) = -1.34^{+2.12}_{-1.97} \pm 0.98$	-27	< 3.1	-
$\mathcal{B}(B^0 \to f_0 \rho^0) \times \mathcal{B}(f_0 \to \pi^+ \pi^-) = 0.86 \pm 0.27 \pm 0.15$	149	-	3.0
$\mathcal{B}(B^0 \to f_0 f_0) \times \mathcal{B}(f_0 \to \pi^+ \pi^-)^2 = 0.03^{+0.10}_{-0.09} \pm 0.04$	-5	< 0.2	-

- First evidence for $B^0 \rightarrow f_0 \rho^0$.
- Constraint put on ϕ_2 : $\phi_2 = (91.0 \pm 7.2)^\circ$
 - Via Isospin analysis using $B^0 \rightarrow \rho^0 \rho^0$ (only the longitudinal fraction), and current HFAG values and BaBar PRD **76**, 051007 (2007).

- Both tree and penguin diagrams can contribute.
- ω is constructed as $\omega \rightarrow \pi^+ \pi^0 \pi^-$, and K_s in the decay K_s $\rightarrow \pi^+ \pi^-$.
- Branching fractions and CP parameters extracted via a seven dimensional fit to:
- $M_{bc}^{}$, ΔE , likelihood ratio, $m_{3\pi}^{}$, cos (ΘH)_{3π}, Δt , and q.
- Mbc and DE distributions show signal, BB background and qq background.

• First evidence of CPV in
$$B^0 \rightarrow \omega K_s$$
:

•
$$S_{\omega K_S^0} = +0.91 \pm 0.32(stat) \pm 0.05(syst)$$

 $\mathcal{A}_{\omega K_S^0} = -0.36 \pm 0.19(stat) \pm 0.05(syst)$

$B^0 \rightarrow \eta' K_s$

- Dominant diagram is a b → s penguin diagram. $A_{_{CP}}$ expected to be small, but $S_{_{CP}}$ can be sensitive to new loop physics.
- The decay is reconstructed via: $\eta' \to \eta \pi^+ \pi^-$ (with $\eta \to \gamma \gamma$, or $\eta \to \pi^+ \pi^0 \pi^-$), and $\eta' \to \rho^0 \gamma$. The K_s is reconstructed via K_s $\to \pi^+ \pi^-$ or K_s $\to \pi^0 \pi^0$ (except where there is also a π^0 from the η' decay).

$B^0 \rightarrow \eta' K_s$

- Preliminary results.
- CP violation parameters:

 $S_{\eta'K^0} = 0.68 \pm 0.07(stat) \pm 0.03(syst)$ $A_{\eta'K^0} = +0.03 \pm 0.05(stat) \pm 0.03(syst)$

- A_{CP} is consistent with zero;
- $S_{_{CP}}$ is consistent with sin $2\phi_{_1}$ measurements from charmed B decays, such as b J/ ψ K_s.
- Preliminary result would represent most sensitive measurement in this channel.

15 August 2013

M. Barrett - DPF2013

Summary

- Results of four CP violation analyses have been presented:
- $B^{0} \to \pi^{+}\pi^{-}$: $\mathcal{A}_{CP}(B^{0} \to \pi^{+}\pi^{-}) = +0.33 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)},$ $\mathcal{S}_{CP}(B^{0} \to \pi^{+}\pi^{-}) = -0.64 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)},$
- $B^{0} \rightarrow \rho^{0} \rho^{0}$: $\phi_{2} = (91.0 \pm 7.2)^{\circ}$
 - Also first evidence for $B^0 \rightarrow f_0^0 \rho^0$:

 $\mathcal{B}(B^{0} \to f_{0}\rho^{0}) \times \mathcal{B}(f_{0} \to \pi^{+}\pi^{-}) = (0.86 \pm 0.27 \text{ (stat)} \pm 0.15 \text{ (syst)}) \times 10^{-6}$ $\mathbf{B}^{0} \to \omega \mathbf{K}_{s}: \qquad \qquad \mathcal{S}_{\omega K_{S}^{0}} = +0.91 \pm 0.32(stat) \pm 0.05(syst) \\ \mathcal{A}_{\omega K_{S}^{0}} = -0.36 \pm 0.19(stat) \pm 0.05(syst) \\ \mathcal{A}_{\omega K_{S}^{0}} = 0.68 \pm 0.07(stat) \pm 0.03(syst) \\ \mathcal{A}_{\omega K_{S}^{0}} = -0.02 \pm 0.05(syst) \pm 0.02(syst)$

M. Barrett - DPF2013