

Measuring Neutrino Oscillations with the MINOS Experiment

Alexander Radovic University College London

MINOS

- MINOS or Main
 Injector Neutrino
 Oscillation Search
- Uses Neutrinos from the NuMI beam line
- Has a peak L/E of ~250km/GeV

Radovic (UCL)

- Leading measure of $\left|\Delta m^2_{\mathrm{atm}} \right|$

MINOS Physics Goals

 The measurement of 3v oscillations via the study of the NuMI and atmospheric neutrinos

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U^{*} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U^{*}_{\beta j} e^{-i\frac{m_{j}^{2}L}{2E}} U_{\alpha j} \right|^{2}$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$\overset{\nu_{3}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\omega_{2}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\omega_{2}}{\overset{\omega_{2}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\omega_{2}}{\overset{\omega_{2}}{\overset{\omega_{2}}{\overset{\nu_{2}}{\overset{\nu_{1}}{\overset{\omega_{2}}{\overset{$$

NuMI Neutrino Disappearance

- Precise measurement of muon neutrino disappearance
- Direct measurement of muon antineutrino disappearance
- Far detector prediction from near detector is compared to far detector measurement
- Neutrino oscillations deplete rate and distort the energy spectrum

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \frac{\sin^2(2\theta_{23})}{1 - \sin^2(2\theta_{23})} \sin^2\left(\frac{1.27\Delta m_{atm}^2 L}{E}\right)$$

NuMI Neutrino Appearance

- Muons can also oscillate into electron neutrinos, giving us power to measure:
 - θ_{13}
 - $-\delta cp$
 - θ_{23} octant
 - Mass hierarchy

$$\begin{split} P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \approx \left| \sqrt{P_{atm}} e^{-i\left(\frac{\Delta m_{32}^{2}L}{4E} + \delta_{cp}\right)} + \sqrt{P_{sol}} \right|^{2} \\ P_{atm} = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \\ \end{split}$$

NuMI Neutrino Appearance

- Muons can also oscillate into electron neutrinos, giving us power to measure:
 - θ_{13}
 - $-\delta cp$
 - θ_{23} octant
 - Mass hierarchy
- Electron neutrinos experience an extra CC interaction as they pass through matter, modifying oscillation probabilities

Atmospheric Neutrino Disappearance

- Very long baselines through matter compared to NuMI disappearance analysis
- Some sensitivity to $heta_{23}$ octant, mass hierarchy and δ_{cp}

MC Event Topologies

 $\nu_{\mu} \text{ Charged Current (CC)}$

Neutral Current (NC)

 ν_e CC

Electron Neutrino Appearance

DPF 2013

15/08/13 8/20

Electron Neutrino Appearance

- MINOS detector granularity makes $v_{_{\rm o}}$ CC

identification challenging

- Background estimation based on Near
 Detector data
- Compare candidate events to a library of MC using "Library Event Matching" (LEM)

Electron Neutrino Appearance

With the neutrino-enhanced

beam in Signal Enhanced Region:

- If $\theta_{13} = 0$: 128.6 BG Events
- If $\sin^2(2\theta_{13}) = 0.1$: +32.5 Events
- Total Prediction: 161 Events
- Observed: 152 Events

With the *antineutrino-enhanced* beam in Signal Enhanced Region:

- If $\theta_{13} = 0$: 17.5 BG Events
- If $\sin^2(2\theta_{13}) = 0.1$: +3.7 Events
- Total Prediction: 21.2 Events
- Observed:

20 Events

Combined Electron Neutrino Appearance

Cannot distinguish between v_e and anti- v_e events, so we perform a combined analysis:

- At $\delta_{CP} = 0$ and $\theta_{23} < \pi/4$,
- Assuming normal hierarchy: $2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.051^{+0.038}_{-0.030}$ $0.01 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.12$ [90% C.L.)
- Assuming inverted hierarchy:

 $2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.093^{+0.054}_{-0.049}$ $0.03 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.18$ (90% C.L.)

Muon Neutrino Disappearance

DPF 2013

15/08/13 12/20

- Five distinct data sets are used to study muon neutrino disappearance:
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charged current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charged current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charged current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charged current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charged current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charged current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charged current interactions
 - Anti muon neutrino charged current interactions

Neutrino Disappearance

600

Combined Beam and Atmospheric Neutrino Disappearance Best Fit

- Assumes identical neutrino and antineutrino mixing parameters
- Gaussian constraint based on world knowledge of $\theta_{_{13}}$
- δ_{cp} allowed to freely float in [0,2π] range
- Other mixing parameters set at worlds best knowledge
- 15 systematics included as nuisance parameters

Combined Muon Disappearance and Electron Neutrino Appearance

DPF 2013

15/08/13 16/20

- Assumes identical neutrino and antineutrino mixing parameters
- Gaussian constraint based on world knowledge of $\theta_{_{13}}$
- δ_{cp} allowed to freely float in [0,2π] range
- Other mixing parameters set at worlds best knowledge
- Appearance systematics included, assumes no correlation with disappearance

DPF 2013

17/20

15/08/13

- Assumes identical neutrino and antineutrino mixing parameters
- Gaussian constraint based on world knowledge of $\theta_{_{13}}$
- δ_{cp} allowed to freely float in [0,2π] range
- Other mixing parameters set at worlds best knowledge
- Appearance systematics included, assumes no correlation with disappearance

- We can also marginalize over $\delta_{_{CP}}$
- Gaussian constraint based on world knowledge of θ₁₃
- Other mixing parameters set at worlds best knowledge
- Appearance systematics included, assumes no correlation with disappearance

- We can also marginalize over $\delta_{_{CP}}$
- Gaussian constraint based on world knowledge of θ₁₃
- Other mixing parameters set at worlds best knowledge
- Appearance systematics included, assumes no correlation with disappearance

Hierarchy,	Best fit oscillation parameters				
Octant	$\Delta m^2_{32} \ / \ 10^{-3} { m eV}^2$	$\sin^2 \theta_{23}$	$\sin^2 heta_{13}$	δ_{CP}/π	$-2\Delta \log(L)$
Normal, Lower	+2.37	0.41	0.0242	0.44	0.23
Normal, Higher	+2.35	0.61	0.0238	0.62	1.74
Inverted, Lower	-2.41	0.41	0.0243	0.62	_
Inverted, Higher	-2.41	0.61	0.0241	0.37	0.09

	Parameter	Best fit	Confidence limits	
Normal	$ \Delta m^2_{32} /10^{-3}{ m eV}^2$	2.37	2.28 - 2.46 (68% C.L.)	
hierarchy	$\sin^2 heta_{23}$	0.41	0.35 - 0.65 (90% C.L.)	
Inverted	$ \Delta m^2_{32} /10^{-3}{ m eV}^2$	2.41	2.32 - 2.53 (68% C.L.)	
hierarchy	$\sin^2 heta_{23}$	0.41	0.34 - 0.67 (90% C.L.)	
D reference for inverted bierereby $0.41 \text{ tr} I = 0.02$				

Preference for inverted hierarchy: $-2\Delta \log L = 0.23$

Preference for lower octant: $-2\Delta \log L = 0.09$

Exclusion of maximal mixing: $-2\Delta \log L = 1.54 \ (\Rightarrow 79\% \text{ C.L.})$

Summary

MINOS has completed a combined analysis of:

- 10.7x10²⁰ POT to measure muon neutrino disappearance
- 3.4x10²⁰ POT to measure muon antineutrino disappearance
- 37.9 kton-years of atmospheric data

MINOS has completed a combined analysis of:

- 10.6x10²⁰ POT to measure electron neutrino appearance
- 3.3x10²⁰ POT to measure electron antineutrino appearance
- And now a full combination of our neutrino appearance and disappearance fits, allowing us to make our strongest comments yet on the octant degeneracy, δ_{co} , and the mass hierarchy

Q&A

DPF 2013

15/08/13

Q&A

DPF 2013

15/08/13

NuMI Neutrino Beam

Radovic (UCL)

MINOS Detector

- Steel/Scintillator Tracking Calorimeter
 - 2.54 cm-thick steel plates

UVUV

- 1 cm-thick, 4.1 cm-wide extruded polystyrene scintillator strips
- Magnetized at ~1.3T

н

Radovic (UCL)

Steel

Scintillator

Orthogonal

orientations

of strips

– Able to distinguish between $\mu^{\scriptscriptstyle T}$ and $\mu^{\scriptscriptstyle +}$

y [m]

-3 -2 -1 0

-4

1 2 3 4 5

x [m]

Combined Beam and Atmospheric Neutrino Disappearance Best Fit

- 2 parameter fit assumes identical neutrino and antineutrino mixing parameters
- Gaussian constraint based on world knowledge of θ₁₃
- δ_{cp} allowed to freely float in
 [0,2π] range
- Other mixing parameters set at worlds best knowledge
- 15 systematics included as nuisance parameters

Radovic (UCL)

Combined Beam and Atmospheric Neutrino Disappearance Best Fit

- 15 largest systematics included as nuisance parameters
- Best fit systematics all have a mean value near zero and width close to unity
- Well described by gaussian distributions
- No apparent bias or pathology

- 2 parameter fit assumes identical neutrino and antineutrino mixing parameters
- Gaussian constraint based on world knowledge of θ_{13}
- δ_{cp} allowed to freely float in
 [0,2π] range
- Other mixing parameters set at worlds best knowledge
- 15 systematics included as nuisance parameters

Radovic (UCL)

- $\theta_{_{23}}$, $|\Delta m^2_{_{32}}|$ and $\delta_{_{CD}}$ allowed to freely float
- Gaussian constraint based on world knowledge of θ₁₃, sin²θ₁₃=0.0242 ± 0.0025. Based on a weighted average of published results from the Daya Bay, RENO and Double-Chooz reactor neutrino experiments
- The solar parameters are set to fixed values of $\Delta m_{21}^2 = 7.54 \times 10^{-5} \text{ eV}^2$ and $\sin^2(\theta_{12}) = 0.307$, from the Fogli global analysis^{*}

Radovic (UCL)

^{*} "Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches", Fogli, G. L. et al, Phys. Rev. D, 86,1,2012

Combined Electron Neutrino Appearance

Cannot distinguish between v_{a} and anti- v_{a} events, so we perform a combined analysis: 🕏

At
$$\delta_{CP} = 0$$
 and $\theta_{23} < \pi/4$,

- Assuming normal hierarchy: $2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.051^{+0.038}_{-0.030}$ $0.01 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.12$ (90% C.L.)
- Assuming inverted hierarchy: $2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.093^{+0.054}_{-0.049}$

Radovic (UCL)

 $0.03 < 2\sin^2(2 heta_{13})\sin^2(heta_{23}) < 0.18$ (90% C.L.)

DPF 2013

15/08/13

17/22

Electron Neutrino Appearance

- MINOS detector granularity makes v_{a} CC identification challenging
- Compare candidate events to a library of MC using "Library Event Matching" (LEM)
- Compute discriminating variables based on truth information from library events that best match the candidate

Combined Beam and Atmospheric Neutrino Disappearance Best Fit

	Parameter	Best fit	Confidence limits	
Normal	$ \Delta m^2_{32} /10^{-3}{ m eV}^2$	2.35	2.27 - 2.45 (68% C.L.)	
hierarchy	$\sin^2 heta_{23}$	0.41	0.35 - 0.68 (90% C.L.)	
Inverted	$ \Delta m^2_{32} /10^{-3}{ m eV}^2$	2.41	2.31 - 2.53 (68% C.L.)	
hierarchy	$\sin^2 heta_{23}$	0.62	0.34 - 0.68 (90% C.L.)	
Preference for inverted hierarchy: $-2\Delta \log L = 0.25$				
Preference for higher octant: $-2\Delta \log L = 0.20$				
Exclusion of maximal mixing: $-2\Delta \log L = 1.79$ (\Rightarrow 82% C.L.)				

Radovic (UCL)

MINOS: Selection I

- The actual analysis selection can be broken down into two main parts.
- The first is the selection of muon like events by using a kNN (k nearest neighbour) algorithm. This takes advantage of the way muon tracks deposit energy, specifically:
 - Track Length.
 - Mean signal in track planes.
 - Transverse track profile.
 - Signal fluctuation in the track.

Radovic (UCL)

MINOS: Selection II

- The next is charge sign selection, judged by looking at the q/p of the track.
- Particularly important in the anti-neutrino analysis which aims to perform its fit with only anti-neutrinos.
- Less important for the 2 parameter analysis which includes positive sign CC events in its sample.

Near to Far Extrapolation

Radovic (UCL)

DPF 2013

15/08/13 42/45

Beam Matrix

- To achieve this we use the a beam matrix
- This matrix describes the energy dependant differences in the neutrino flux seen at the near and far detector.
- π/K/µ producing events of a given energy in the near detector produce a range of

energies in the far detector, yielding the energy smearing seen.

Selected Disappearance Events

	Simulation		Events
Data Set	No osc.	With osc.	Observed
ν_{μ} from ν_{μ} beam	3201	2543	2579
$\overline{\nu}_{\mu}$ from ν_{μ} beam	363	324	312
Non-fiducial μ from ν_{μ} beam	3197	2862	2911
$\overline{\nu}_{\mu}$ from $\overline{\nu}_{\mu}$ beam	313	227	226
Atm. contained-vertex $\nu_{\mu} + \overline{\nu}_{\mu}$	1100	881	905
Atm. non-fiducial $\mu^- + \mu^+$	570	467	466
Atm. showers	727	724	701

Library Event Matching (LEM)

Library

Find best matches from a library of MC **Events**

Judge how signal-like an event is based on those best matches.

Compare

with

Input event

(data or MC)

Select N Event #1 best matches Event #2 Best match #1 quantities Event #3 Event #4 Compute value Best match #2 of discriminant from information of N best matches Best match #N Event #30x106

Matching is done using only strip info (location and charge)

No dependence on high level reconstructed