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Neutrino Astronomy

Main goal: find cosmic ray
accelerators

I Charged particles bend in
magnetic fields

I Photons can be blocked,
have ambiguous
interpretation

I Neutrinos “smoking-gun”
hadronic acceleration
tracers, fly straight
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The Neutrino Landscape above 1 TeV
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I π/K Atmospheric Neutrinos (dominant < 100 TeV)
I Charm Atmospheric Neutrinos (“prompt”, visible ∼ 100 TeV)
I Astrophysical Neutrinos (maybe dominant > 100 TeV)
I Cosmogenic Neutrinos (> 106 TeV)
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Gigaton Detectors: the Size Frontier

Need natural detectors: IceCube, KM3NET (future), ANTARES,
Baikal
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IceCube

I 5160 PMTs

I 1 km3 volume

I 86 strings

I 17 m PMT-PMT
spacing per string

I 120 m string
spacing

I Completed 2010
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The IceCube Collaboration includes about 250 researchers  from 39 institutions around the world.  
Prof. Francis Halzen, University of Wisconsin – Madison is the principal investigator and !
Prof. Olga Botner from Uppsala University serves as the collaboration spokesperson.!
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Physics Reach of IceCube
I Astrophysical ν

I Understand Cosmic Ray
Source Populations

I Indirect Dark Matter
Searches

I Lorentz Invariance
Violation

I Direct Observation of
ντ

I Atmospheric ν
I Measurement of

Atmospheric Neutrino
Spectrum (100k
events/year)

I Measurement of θ23
I Cross-sections at

ultra-high energies
I Cosmic Ray

Measurements
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Event Signatures

Muon Neutrino CC (data)
< 1 degree angular resolution

factor of 2 resolution of muon energy

Neutral Current or Electron Neutrino (data)
10 degree angular resolution (high energy)

∼ 15% deposited energy resolution

Tau Neutrino CC (simulation)
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Backgrounds

Only backgrounds at TeV
energies are cosmic ray
showers:

I Muons and neutrinos
from southern sky

I Neutrinos from
northern sky
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Neutrino Identification

How to identify neutrinos?

1. Upgoing muon tracks
I Filter out CR muons with bulk of Earth
I Unknown vertex – hard to measure energy

2. Contained vertex
I Filter out CR muons using detector edge for anticoincidence
I All charged particles seen

3. Excess over background
I Works only for extremely bright/high energy sources
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Event Selection For Contained Events

I Define a fiducial
volume and a veto
region

I Make sure first hits
are not on boundary

I Go to high energy
(> 6000 PE) to make
sure significant
numbers of photons
expected on boundary

I Topology/direction
independent sample

I Becomes efficient at
∼ 50− 100 TeV
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Results of Contained Vertex Event Search (2010-2012)
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Observables of Interest

Spectral slope Separate extraterrestrial fluxes from atmospheric,
probe properties of accelerator

Spectral structure Cutoffs/slope changes may imply population
changes

Flavor composition Discrimination against νµ dominated
backgrounds, probes physics of production process

Zenith distribution Comparison to backgrounds, probes source
locations
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Vetoing Atmospheric Neutrinos: an Interesting Wrinkle
I Atmospheric neutrinos

are made in air showers

I For downgoing
neutrinos, the muons
from the shower will
likely not have ranged
out when they arrive at
IceCube

I Downgoing events that
start in the detector are
extremely unlikely to
be atmospheric

I Note: optimal use
requires minimal
overburden to have the
highest possible rate of
cosmic ray muons

Schönert et al. arXiv:0812.4308
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Signals and Backgrounds: Why This is Compelling
Signal Background Data

4 Cascade-
dominated
(∼ 80%) from
oscillations

8 Track-like from
CR muons and
atmospheric νµ

l 21/28 are
cascades

4 High energy?
Typically
assume E−2

8 Soft spectrum
(E−3.7), . 1
event/year >
100 TeV

l Energies to
above 1 PeV, 9
above 100 TeV

4 Mostly (2/3) in
southern sky
from Earth
absorption

8 Muons in
south,
atmospheric
neutrinos in
north

l 24/28 from
South, mostly
cascades

→ 4σ evidence for astrophysical flux
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Hints in other channels

IC59 Northern νµ arXiv:1302.0127 IC40 Cascades
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Some interesting events

74.1 TeV, −0.4◦ 252.7 TeV, +40◦
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Energy Spectrum

I Harder than
any expected
atmospheric
background

I Merges well
into expected
backgrounds at
low energies

I Potential cutoff
around 2 PeV if
E−2

I Too few events
to measure
spectrum well

IceCube Preliminary
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Zenith Distribution
I Compatible

with Isotropic
Flux

I Events
absorbed in
Earth from
Northern
Hemisphere

I Minor excess
(1.5σ) in south

I Southern-
hemisphere
dominance
generically
constrains
atmospheric
origin

IceCube Preliminary
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Skymap: Compatible with Isotropy

Too few events to evaluate isotropy or identify sources
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Summary

I Energy spectrum seems
hard

I Flavor distribution
consistent with 1:1:1

I Angular distribution makes
atmospheric explanation
hard: where are the air
showers?

I Matches expectations for
astrophysical flux

I Still no evidence for
clustering

I Does not continue at E−2

past a few PeV

I Hard to characterize
without more statistics

IceCube Preliminary
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Next Steps
I Atmospheric neutrino veto is a very

powerful concept

I Dominant observable channel for
astrophysical diffuse flux is 100 TeV - 1
PeV cascade events

I If an astrophysical flux, O(20) events
per year per fiducial gigaton

I Analysis now gives O(100) events in
IceCube in 10 years

I Angular resolution for cascades limited
by modelling of light transport and
sparse instrumentation

I Need O(10) events from a source to
identify

I Flavor composition probes particle and
astrophysics
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Backup
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Event Distribution in Detector
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Shower Energy Resolution

102

103

104

R
e
co

n
st

ru
ct

e
d
 e

n
e
rg

y
 [

T
e
V

]

102 103 104

Mean deposited energy [TeV]

0

10

20

30

40

σ
 [

%
]

10-3 10-2 10-1 100

Probability density [arb. units]

N. Whitehorn, UW Madison DPF 2013 - 25



Shower Angular Resolution
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