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Baryogenesis
• It is well established that there is a baryon asymmetry.

• Models which generate this asymmetry must satisfy the 
Sakharov conditions:
i) Baryon number violation;
ii) CP violation;
iii) Departure from equilibrium.

• Many paradigms for baryogenesis:
• Leptogenesis - lepton number from right handed neutrino decays;
• Affleck-Dine - baryon number from the “decay” of flat directions;
• Dark-o-genesis - simultaneous generation of baryon and dark 

matter asymmetries; 
• Electroweak Baryogenesis - baryon number generated at the 

electroweak phase transition.

WMAP7 [arXiv:1001.4538]
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hHi = 0The Universe is a hot baryon symmetric thermal bath with            .

Electroweak Baryogenesis

3

nB � nB = 0

For a review see
Trodden [arXiv:hep-ph/9803479]

Timothy Cohen (SLAC) 3/32



Electroweak Baryogenesis
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TC hHi 6= 0At the critical temperature      , bubbles of              begin to percolate.

nB � nB = 0

For a review see
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Electroweak Baryogenesis

3

For a review see
Trodden [arXiv:hep-ph/9803479]

Scatterings with the (CP violating) bubble wall lead to non-zero, 
opposite chemical potentials inside and outside the bubbles.
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�S ⇠ T 4

Electroweak Baryogenesis

3

For a review see
Trodden [arXiv:hep-ph/9803479]

Outside the bubbles: Electroweak sphalerons convert this charge 
asymmetry to a baryon asymmetry.
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�S ⇠ T 4

Electroweak Baryogenesis

3

For a review see
Trodden [arXiv:hep-ph/9803479]

�S ⇠ Exp(��C/TC)

Inside the bubbles: Electroweak sphaleron rates are exponentially 
suppressed.
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�S ⇠ T 4

Electroweak Baryogenesis

3

For a review see
Trodden [arXiv:hep-ph/9803479]

�S ⇠ Exp(��C/TC)

� (nB � nB) 6= 0

� (nB � nB) = 0

A net baryon asymmetry is generated outside the bubbles.
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Electroweak Baryogenesis

3

For a review see
Trodden [arXiv:hep-ph/9803479]

�S ⇠ Exp(��C/TC)

Timothy Cohen (SLAC) 3/32

The bubbles of broken phase overtake the Universe and the baryon 
asymmetry is frozen in.

nB � nB 6= 0



The Electroweak Phase Transition
• A 1st order phase transition is characterized by the 

existence of a non-zero local minimum for the finite 
temperature Higgs potential.

• The temperature when this minimum is degenerate with 
the origin is the critical temperature      . 
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I.   Review: Finite Temperature Field Theory
II.  New Colored Scalars
III. Correlating the EWPT with Higgs Signatures
IV. Applications to the MSSM
V.  Collider Signatures
VI. Conclusions

•  Note: this talk will not address the new source of CP 
violation required for successful electroweak baryogenesis, 
e.g. in SUSY models, a non-zero                   .

Outline
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REVIEW
Finite Temperature Field Theory
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Imaginary Time and Matsubara Modes
• The Coleman-Weinberg potential at finite temperature: 

• Time is imaginary and periodic;
•                       with integrals over energy replaced by sums.

• The Higgs field coupled to a scalar

• The Higgs field coupled to a fermion

7
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NEW CUBIC TERM!

Timothy Cohen (SLAC) /32



Power Counting in 
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• Rescale all loop momenta and masses by    . 
• A diagram with degree of divergence     goes as                   .
• For diagrams 

• involving zero modes;
• with IR divergences in the limit                ,

• the only factor of     comes from the       loop integration 
measure.

D TDf(m/T )

T

Weinberg [1974]; Fendley [1987]; Espinosa, Quiros, Zwirner [1992]
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T
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A Problematic Class of Diagrams
9
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Daisy Resummation

• The critical temperature is given by                      . 
• Each additional bubble contributes 

• No parametric suppression: we must resum! 
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Resummed Cubic Terms
• At 1-loop daisy resummation causes

• where 

• Why do we care?

• while

• We see that we only get a “cubic” term when 
• This is how one “opens the baryogenesis window” of the MSSM.
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Charge-color Breaking Vacuua
• We will be analyzing models which have negative values 

of the bare mass for a colored scalar.
• This opens the possibility of ending up in a charge color 

breaking (CCB) vacuum.
• We compute the 2-loop finite temperature potential in the 

CCB direction.
• Then we can check that                 .

• We also apply a correction to this condition due to the fact that the 
critical temperature is not exactly equal to the bubble nucleation 
temperature.

12

T�
C > TX
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 Carena, Nardini, Quiros, Wagner [arXiv:0806.4297]
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NEW COLORED SCALARS
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The Model
• We will study a model where we couple a new scalar,    to 

the Higgs boson through the “Higgs portal.”

• Then the physical mass of     is given by

• We will usually take    to be a fundamental under           .   
• This is similar to the “light stop effective theory” limit of the 

MSSM.

14
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Espinosa [arXiv:hep-ph/9604320]; Carena, Quiros, Wagner [arXiv:hep-ph/9710401];
Carena, Nardini, Quiros, Wagner [arXiv:0806.4297]
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EWPT with Colored Scalars
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EWPT with Singlet Scalars
• For 1 real singlet scalar,                       . 
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The Punchline
• Two-loop corrections to               can be very important.

• Colored scalars are “better” than singlet scalars:
i)   Automatically get 6 degrees of freedom;
ii)  Larger 2-loop enhancements due to loops involving gluons;
iii) These models make observable predictions!

• Models with
• a single vacuum expectation value; 
• a coupling to colored scalars via the Higgs portal;

can result in a strong enough EWPT for electroweak 
baryogenesis.

• (Note that this is not the only way to get a strong EWPT.)
• The rest of this talk will be devoted to the resultant 

phenomenology of this model.

18
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CORRELATING THE EWPT 
WITH HIGGS SIGNATURES
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Gluon Fusion and Di-photon Decays
• We will take ratios of our production and decay rates to the 

Standard Model values.
• NLO effects mostly cancel for                     since the relevant 

vertex is approximately point like.
• Gluon fusion: 
• Di-photon decay: 

• Therefore, we will only consider leading order effects.

20
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Gluon Fusion and Di-photon Decays
• Gluon fusion is dominated by the top.  For            there is 

constructive interference between the top and the    .

• Di-photon decay is dominated by the       loop.  For       
there will be destructive interference between the       and 
the    .
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APPLICATIONS TO THE MSSM
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MSSM-like Model
• In order to map onto the MSSM, we must include the 

Higgsino state and a Yukawa coupling                   .
• We will take a typical value            .

• We will scan over a range of values for    .
• Note that in the MSSM,              for                              ,                               

x               , and                            .
• Non-zero a-terms for the stop reduce the value of    .
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COLLIDER SIGNATURES
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Measuring Higgs Properties
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Future Measurements
• Dominate uncertainty in measuring the gluon fusion rate 

will be systematics limited by theory and PDFs at O(20%).
• Dominate uncertainty in measuring di-photon BR will be 

systematics limited by experimental effects.  Maybe 
eventually measure the                        cases? 

• We expect that this will be enough to “discover”/exclude 
the region of parameter space consistent with electroweak 
baryogenesis.

• Note: doing a global fit to the Higgs couplings, maybe we 
can measure various ratios to 10-40%?

28

Duhrssen, Heinemeyer, Logan, Rainwater, Weiglen, Zeppenfeld [arXiv:hep-ph/0406323]; 
Lafaye, Plehn, Rauch, Zerwas, Duhrssen [arXiv:0904.3866]
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Decay Mode: 

•     is a new neutral state (may be a remnant of the CP violating sector).
• Multi-jet and Mono charm jet analyses.

29
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Decay Mode: 
• The search is more difficult.
• There was an early ATLAS result using              , looking 

for scalar octets.
• No bound applies for              fundamental scalars.
• Extending this analysis for the larger data set is challenging due to 

harder trigger level cuts.
• ATLAS analysis for double jet resonance.

• Only using 7 TeV data.
• Needs to improve by factor of O(2) to be sensitive.

• There is an open widow for this decay mode.  

30
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CONCLUSIONS
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Conclusions
• We are interested in simple extensions of the standard model 

Higgs sector with a strong enough phase transition for viable 
electroweak baryogenesis.

• We studied the model with new colored scalars which couple via 
the Higgs portal.

• 2-loop corrections are vital for accurate computations of the 
strength of the EWPT.

• The viable regions of parameter space lead to changes in the 
Higgs gluon fusion rate and branching ratio to di-photons of 
O(50%) or more with respect the standard model values.

• This statement applies to the MSSM in the baryogenesis window.
• These modification to the Higgs properties can potentially be 

observed at the LHC.
• The new scalars can also be searched for directly at the LHC.
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BACKUP SLIDES
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Resummation at 2-Loops
• The trick for making computations tractable is to separate 

out zero modes from non-zero modes:

• This procedure introduces temperature dependent 
counterterms which must be included for consistency.

• All longitudinal gauge boson zero modes must also be 
resummed.

• Derivative couplings to the longitudinal gauge boson zero 
modes vanish since                   for zero modes. 
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Other electric charges
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Two Colored Scalars
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X-onium
• Requires the new colored state to be long lived so it can 

hadronize.
• Recently there has been theoretical progress in computing 

the properties for stoponium.
• An analysis using LHC data shows bounds on the order 

of                         .
• If the X-onium decays to the Higgs it will be even harder to 

find.
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