New Results in Charmless B Meson Decays from BABAR

UC SANTA

Justin Albert

Univ. of Victoria

Representing the BaBar Collaboration

August 16, 2013

Overview: 2 (of *Many*) New BaBar Results

1) Evidence for $B^0 \rightarrow \omega \omega$, and improved limit for $B^0 \rightarrow \omega \phi$.

Brand new! To be submitted to PRL

2) Measurement of CP violation in *B* decays to three charged kaons.

PRD **85**:112010 (2012); Also arXiv:1305.4218

1) Evidence for $B^0 \rightarrow \omega \omega$, and improved limit for $B^0 \rightarrow \omega \phi$

Brand new! To be submitted to PRL

$B^0 \rightarrow \omega \omega$ and $B^0 \rightarrow \omega \phi$: Motivation

> Anomalies in charmless decays with loops:

	sin(2	β^{en})	≡ ;	siı	n(2	2¢	$(1)_1^{\text{en}}$	HFAG Moriond 2012 PRELIMINARY
b→ccs	World Aver	age		÷	:	:		0.68 ± 0.02
φ	Average						* 1	0.74 ^{+0.11} -0.13
η΄ Κ ⁰	Average				ł	*		0.59 ± 0.07
K _s K _s K	Average				ł		+ 1	0.72 ± 0.19
$\pi^0 K^0$	Average					*	-1	0.57 ± 0.17
$\rho^0 K_S$	Average				— ,		4	0.54 ^{+0.18} -0.21
ωK _S	Average			-	*			0.45 ± 0.24
f ₀ K _S	Average					н	 1	0.69 +0.10 -0.12
$f_2 K_S$	Average		-		*			0.48 ± 0.53
f _x K _s	Average			*			4	0.20 ± 0.53
π ⁰ π ⁰	Average		-					-0.72 ± 0.71
$\phi \pi^0 K_S$	Average				-		*	0.97 +0.03 -0.52
$\pi^+ \pi^- K_S$	NAverage		*		4			0.01 ± 0.33
K ⁵ 4K⁻ K⁰	Average					н		0.68 +0.09
* *	Average			:	:	H	H	0.68 ± 0.07
-1.6 -1.4	-1.2 -1 -0.8 -0.6	-0.4 -0.2	0	0.2	0.4	0.6	0.8	1 1.2 1.4 1.6

~ff

(Somewhat) low values of CP asymmetries.

- <u>Quite</u> low measured value of longitudinally-polarized fraction in B⁰ → φK* (HFAG avg. = 0.48 ± 0.03).
- Potential signs of new physics in loops...?

SM expected BFs: $B^0 \rightarrow \omega \omega$: O(1 x 10-6) $B^0 \rightarrow \omega \phi$: O(1 x 10-7)

New Results in Charmless B Decays from **BABAR** 16 Aug. 13 J. Albert 👹 3

233 x $10^6 B\overline{B}$ decays $B^0 \rightarrow \omega \omega$ and $B^0 \rightarrow \omega \phi$: **Previous Measurement at BABAR** (2006)

 $\mathcal{B}(\phi\omega) < 1.2 \times 10^{-6} (90\% \text{ CL}), \ \mathcal{B}(\omega\omega) = (1.8^{+1.3}_{-0.9} \pm 0.4) \times 10^{-6} (< 4.0 \times 10^{-6} \oplus 90\% \text{ CL})$

- At leading order, $\phi \omega$ is pure penguin and $\omega \omega$ is a penguin-tree combination.
- \succ Limits on BFs can provide a constraint on amplitudes of ϕK^* . Neither helicity amplitude measurements, nor even significant signal peaks, are required.

$B^{0} \rightarrow \omega\omega$ and $B^{0} \rightarrow \omega\phi$: Reconstruction

- Full reconstruction of B^0 candidates, with $\omega \to \pi^+ \pi^- \pi^0$ and $\phi \to K^+ K^-$.
- State Inv. mass (MeV) ω 740 < $m_{\pi\pi\pi}$ < 820 ϕ 1009 < m_{KK} < 1029
- $\pi^0 \qquad 120 < m_{\gamma\gamma} < 150$
- Resulting B⁰ signal candidates are characterized by the $\Delta E = E_B^* - \frac{1}{2}\sqrt{s}$ standard variables: $m_{ES} = \sqrt{(\frac{1}{2}s + \mathbf{p}_0 \cdot \mathbf{p}_B)^2 / E_0^{*2} - \mathbf{p}_B^2}$
- For a candidate to be selected, it must satisfy $|\Delta E| < 200$ MeV and 5.24 < $m_{ES} < 5.29$ GeV, and have a vertex probability > 0.
- Event shape variables are additionally used to help reject continuum background.

$B^{0} \rightarrow \omega \omega$ and $B^{0} \rightarrow \omega \phi$: Maximum Likelihood Fit

- We use an unbinned maximum likelihood in the 8 ($\omega\phi$) or 9 ($\omega\omega$) variables:
 - *m*_{ES}
 - Δ*E*
 - the resonance masses (2)
 - the resonance helicities (2)
 - an event shape Fisher discriminant
- The likelihood is defined as:

 + the ω "internal" helicity angle(s) (i.e. angle of the π⁰ in the dipion rest frame) = 2 extra variables for ωω, but just 1 extra variable for ωφ:

Di-pion (π + π -) rest frame:

where Y_j are the free parameters of the fit, i.e. the number of events for each hypothesis *j* (signal, combinatoric background, and peaking background), and $P_j(x_j)$ are the probabilities for each hypothesis *j* evaluated from the vector of 7 observables x_j , for each of the *N* total events.

$B^0 \rightarrow \omega\omega$ and $B^0 \rightarrow \omega\phi$: Fit Result

> $\mathcal{B}(\omega\omega) = (1.2 \pm 0.3^{+0.3}_{-0.2}) \times 10^{-6} (4.4\sigma \text{ significance})$

> $\mathcal{B}(\phi\omega) < 0.7 \times 10^{-6}$ (90% CL)

Brand new! To be submitted to PRL

► Largest systematic contributions from fit yield bias estimation $(O(5 \text{ events}) \leq 10\% \text{ for } \omega\omega)$ and marginalizing over longitudinal vs transverse fraction $(f_L = 0.88 \text{ is used as the nominal central value}).$

$B^{0} \rightarrow \omega\omega$ and $B^{0} \rightarrow \omega\phi$: Projection Plots

New Results in Charmless B Decays from BABAR 16 Aug. 13 J. Albert 📷 8

2) Measurement of CP violation in B decays to three charged kaons

PRD 85:112010 (2012) ; Also arXiv:1305.4218 (2013)

$B \rightarrow 3K CPV$

- Tree amplitudes subdominant in SM
- New Physics can appear in loops altering CP violation from SM expectation!
- $B^0 \rightarrow K^+K^-K_s$:

Measure time-dependent CP asymmetry

 $A_{CP}(\Delta t) \sim \eta_{CP} \sin(2\beta_{eff}) \sin(\Delta m_d \Delta t)$

Complication – K⁺K⁻K_s not CP eigenstate CP content depends on Dalitz plot/spin structure of intermediate state

• $B^+ \rightarrow K^+K^-K^+$ and $B^+ \rightarrow K_SK_SK^+$

Study Dalitz structure – help understand CP content in K⁺K⁻K_S $f_X(1500)$ – poorly understood resonance, seen in B \rightarrow KKK, taken to be a scalar Large "nonresonant" contribution needs further study

Search for direct CP violation

$B \rightarrow 3K CPV$: Dalitz

$$\mathcal{A} \equiv \mathcal{A}(B \to KKK; m_{12}, m_{23}) = \sum_{i} a_{i}F_{j}(m_{12}, m_{23})$$

F_j are resonant or nonresonant lineshapes: relativistic Breit-Wigner, with spin factors.

arXiv: 1201.5897, PRD 85: 112010 (2012) 471 x 10⁶ BB decays

We measure the isobar coefficients c_j and b_j . From isobar coefficients can derive: partial branching fractions, A_{CP} (= -2b/(1+b²)), β_{eff} (= β + δ), etc.

 $a_j = c_j(1+b_j)e^{i(\phi_j+\delta_j)}$ $\bar{a_j} = c_j(1-b_j)e^{i(\phi_j-\delta_j)}$

New Results in Charmless B Decays from **BABAR** 16 Aug. 13 J. Albert 📆 10

$\mathbf{B} \rightarrow \mathbf{3K} \ \mathbf{CPV}:$

- A BaBar followup to the amplitude analysis of $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$. PR **D85**, 112010 (2012)
- Invariant mass dependence of CP asymmetries, comparison with LHCb results:

LHCb-CONF-2012-018

- BaBar A_{CP} from sPlots.
 - LHC*b* A_{raw} from fits in bins (no acceptance corrections; no corrections for detection and production asymmetry ~ 1.4%).

$$\Delta_{m_{KK \text{ low}}}^{\text{BaBar-LHCb}} = 0.045 \pm 0.021$$
$$\Delta_{m_{KK \text{ low}}}^{\text{BaBar-LHCb}} = 0.053 \pm 0.021$$
$$m_{KK \text{ high}}$$

- Similar patterns in the asymmetries.
- Apparent tension between BaBar and LHC*b* (less than 2σ) is consistent with the difference in the overall asymmetry, & reduced by acceptance etc. corrections.
- BaBar measures a 2.8 σ positive asymmetry in $\phi(1020)$, not seen by LHCb.
- Further investigation to pin down sources of CPV needed.

B → 3K CPV: Summary

- Indication of direct CP violation in B⁺→φK⁺ at 2.8σ.
 - $A_{CP} = (12.8 \pm 4.4 \pm 1.3)\%$
 - SM: (0−4.7)%

$$\begin{split} \mathsf{A}_{CP}(\phi\mathsf{K^{+}}) \text{ larger than SM expectation:} \\ A_{CP} &= (1.6^{+3.1}_{-1.4})\% \quad \text{(QCDF)} \quad \text{Beneke, Neubert, Nucl Phys B675, 333} \\ A_{CP} &= (1^{+0}_{-1})\% \quad \text{(PQCD)} \quad \text{Li, Mishima, PRD 74, 094020} \end{split}$$

World's most precise measurement of β_{eff}(φK_S):

- $f_X(1500)$ not a single resonance well described by $f_0(1500) + f_2'(1525) + f_0(1710)$
- Small tension in A_{CP} measurements between Babar and LHCb; further studies needed.

New Results in Charmless B Decays from **BABAR** 16 Aug. 13 J. Albert

Summary

1) Evidence (at 4.4 σ level) for $B^0 \to \omega \omega$, and improved limit for $B^0 \to \omega \phi$. $\pounds(\omega \omega) = (1.2 \pm 0.3^{+0.3}_{-0.2}) \times 10^{-6}$ Brand new! To be submitted to PRL

2) Measurement of CP violation in B decays to three charged kaons.

World's most precise measurement of $\beta_{eff}(\phi K_s)$: (21 ± 6 ± 2) degrees

Backup Slide

m_{ES} and ΔE

$$\Delta E = E_B^* - \frac{1}{2}\sqrt{s}$$
$$m_{ES} = \sqrt{(\frac{1}{2}s + \mathbf{p}_0 \cdot \mathbf{p}_B)^2 / E_0^{*2} - \mathbf{p}_B^2}$$

Typical experimental resolution ~2.6 MeV/c²

Beam-energy difference

Typical experimental resolution [15-20] MeV

