

Overview: 2 (of Many) New BaBar Results

1) Evidence for $B^{0} \rightarrow \omega \omega$, and improved limit for $B^{0} \rightarrow \omega \phi$.

2) Measurement of $C P$ violation in B decays to three charged kaons.

PRD 85:112010 (2012);
Also arXiv:1305.4218

1) Evidence for $B^{0} \rightarrow \omega \omega$, and improved limit for $B^{0} \rightarrow \omega \phi$

Brand new! To be
submitted to PRL

$B^{0} \rightarrow \omega \omega$ and $B^{0} \rightarrow \omega \phi$: Motivation

> Anomalies in charmless decays with loops:

$$
\sin \left(2 \beta^{\mathrm{eff}}\right) \equiv \sin \left(2 \phi_{1}^{\mathrm{eff}} \underset{\substack{\text { Heriond 2012 } \\ \text { PRELUMNARY }}}{\text { HF AG }}\right.
$$

> (Somewhat) low values of CP asymmetries.

> Quite low measured value of Iongitudinally-polarized fraction in $B^{0} \rightarrow \varphi K^{*}$ (HFAG avg. $=0.48 \pm 0.03$).
> Potential signs of new physics in loops...?

SM expected BFs:
$B^{0} \rightarrow \omega \omega: ~ O\left(1 \times 10^{-6}\right)$
$B^{0} \rightarrow \omega \phi: O\left(1 \times 10^{-7}\right)$

New Results in Charmless B Decays from BaBAR
16 Aug. 13 J. Albert

$B^{0} \rightarrow \omega \omega$ and $B^{0} \rightarrow \omega \phi:$ Previous Measurement at BABAR (2006)

$233 \times 10^{6} B \bar{B}$ decays

$>\mathcal{B}(\phi \omega)<1.2 \times 10^{-6}(90 \% C L), \mathcal{B}(\omega \omega)=\left(1.8_{-0.9}^{+1.3} \pm 0.4\right) \times 10^{-6}\left(<4.0 \times 10^{-6} @ 90 \% C L\right)$
$>$ At leading order, $\phi \omega$ is pure penguin and $\omega \omega$ is a penguin-tree combination.
$>$ Limits on BFs can provide a constraint on amplitudes of ϕK^{*}. Neither helicity amplitude measurements, nor even significant signal peaks, are required.
> Full reconstruction of B^{0} candidates, with $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\phi \rightarrow K^{+} K^{-}$.

State	Inv. mass (MeV)
ω	$740<m_{\pi \pi \pi}<820$
ϕ	$1009<m_{K K}<1029$
π^{0}	$120<m_{\gamma \gamma}<150$

> Resulting B^{0} signal candidates are characterized by the $\quad \Delta E=E_{B}^{*}-\frac{1}{2} \sqrt{s}$ standard variables: $\longleftarrow m_{E S}=\sqrt{\left(\frac{1}{2} s+\mathbf{p}_{0} \cdot \mathbf{p}_{B}\right)^{2} / E_{0}^{* 2}-\mathbf{p}_{B}^{2}}$
> For a candidate to be selected, it must satisfy $|\Delta \mathrm{E}|<200 \mathrm{MeV}$ and $5.24<$ $m_{E S}<5.29 \mathrm{GeV}$, and have a vertex probability >0.
> Event shape variables are additionally used to help reject continuum background.
$B^{0} \rightarrow \omega \omega$ and $B^{0} \rightarrow \omega \phi:$

Maximum Likelihood Fit

$>$ We use an unbinned maximum likelihood in the $8(\omega \phi)$ or $9(\omega \omega)$ variables:

- $m_{E S}$
- ΔE
- the resonance masses (2)
- the resonance helicities (2)
- an event shape Fisher discriminant
> The likelihood is defined as:

$$
\mathcal{L}=\frac{e^{-\left(\sum Y_{j}\right)}}{N!} \prod_{i=1}^{N} \sum_{j} Y_{j} \mathcal{P}_{j}^{i}
$$

- + the ω "internal" helicity angle(s) (i.e. angle of the π^{0} in the dipion rest frame) $=2$ extra variables for $\omega \omega$, but just 1 extra variable for $\omega \phi$:

Di-pion ($\pi+\pi-$) rest frame:

where Y_{j} are the free parameters of the fit, i.e. the number of events for each hypothesis j (signal, combinatoric background, and peaking background), and $P_{j}\left(x_{j}\right)$ are the probabilities for each hypothesis j evaluated from the vector of 7 observables x_{i}, for each of the N total events.

$B^{0} \rightarrow \omega \omega$ and $B^{0} \rightarrow \omega \phi$: Fit Result

$>\mathcal{B}(\omega \omega)=\left(1.2 \pm 0.3_{-0.2}^{+0.3}\right) \times 10^{-6}(4.4 \sigma$ significance $)$
$>\mathcal{B}(\phi \omega)<0.7 \times 10^{-6}(90 \% \mathrm{CL}) \quad \begin{aligned} & \text { Brand new! To be } \\ & \text { submitted to PRL }\end{aligned}$
$>$ Largest systematic contributions from fit yield bias estimation (O (5 events) $\leqslant 10 \%$ for $\omega \omega$) and marginalizing over longitudinal vs transverse fraction ($f_{L}=0.88$ is used as the nominal central value).

New Results in Charmless B Decays from BABAR
$B^{\boldsymbol{0}} \rightarrow \omega \omega$ and $B^{\boldsymbol{0}} \rightarrow \omega \phi:$ Projection Plots

New Results in Charmless B
2) Measurement of CP violation in \boldsymbol{B} decays to three charged kaons

- Tree amplitudes subdominant in SM
- New Physics can appear in loops - altering CP violation from SM expectation!
- $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{s}}$:

Measure time-dependent CP asymmetry

$$
A_{C P}(\Delta t) \sim \eta_{C P} \sin \left(2 \beta_{e f f}\right) \sin \left(\Delta m_{d} \Delta t\right)
$$

Complication - $\mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{S}}$ not CP eigenstate
CP content depends on Dalitz plot/spin structure of intermediate state

- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}^{+}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{S}} \mathrm{K}^{+}$

Study Dalitz structure - help understand CP content in $\mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{S}}$ $\mathrm{f}_{\mathrm{X}}(1500)$ - poorly understood resonance, seen in B \rightarrow KKK, taken to be a scalar
Large "nonresonant" contribution needs further study
Search for direct CP violation
New Results in Charmless B Decays from BABAR

$B \rightarrow 3 K$ CPV: Dalitz

$$
\begin{array}{ll}
\mathcal{A} \equiv \mathcal{A}\left(B \rightarrow K K K ; m_{12}, m_{23}\right)=\sum_{j} a_{j} F_{j}\left(m_{12}, m_{23}\right) \\
a_{j}=c_{j}\left(1+b_{j}\right) e^{2\left(\phi_{j}+o_{j}\right)} & \mathrm{F}_{\mathrm{j}} \text { are resonant or nonresonant lineshapes: } \\
\overline{a_{j}}=c_{j}\left(1-b_{j}\right) e^{i\left(\phi_{j}-\delta_{j}\right)} & \text { relativistic Breit-Wigner, with spin factors. }
\end{array}
$$

We measure the isobar coefficients c_{j} and b_{j}.
From isobar coefficients can derive: partial branching fractions, $A_{C P}\left(=-2 b /\left(1+b^{2}\right)\right), \beta_{\text {eff }}(=\beta+\delta)$, etc.

$B \rightarrow 3 K \mathrm{CPV}:$

- A BaBar followup to the amplitude analysis of $B^{ \pm} \rightarrow K^{ \pm} K^{+} K$. PR D85, 112010 (2012)
- Invariant mass dependence of CP asymmetries, comparison with LHCb results:

LHCb-CONF-2012-018

- BaBar $\mathrm{A}_{\text {CP }}$ from sPlots.
- LHCb $\mathrm{A}_{\text {raw }}$ from fits in bins (no acceptance corrections; no corrections for detection and production asymmetry ~ 1.4\%).
$\Delta^{\mathrm{BaBar-LHCb}}=0.045 \pm 0.021$
$m_{\text {Kк low }}$
$\Delta_{m_{\text {KKhigh }}}^{\mathrm{BaBar-LHCb}}=0.053 \pm 0.021$
- Similar patterns in the asymmetries.
- Apparent tension between BaBar and LHCb (less than 2σ) is consistent with the difference in the overall asymmetry, \& reduced by acceptance etc. corrections.
- BaBar measures a 2.8σ positive asymmetry in $\phi(1020)$, not seen by LHCb.
- Further investigation to pin down sources of CPV needed.

$B \rightarrow 3 K$ CPV: Summary

- Indication of direct CP violation in $\mathrm{B}^{+} \rightarrow \phi \mathrm{K}^{+}$at 2.8σ.
$-A_{C P}=(12.8 \pm 4.4 \pm 1.3) \%$
$\mathrm{A}_{\mathrm{CP}}\left(\phi \mathrm{K}^{+}\right)$larger than SM expectation:
- SM: (0-4.7)\%
- World's most precise measurement of $\beta_{\text {eff }}\left(\phi \mathrm{K}_{\mathrm{S}}\right)$:
- $\beta_{\text {eff }}=(21 \pm 6 \pm 2)$ degrees

$$
\begin{gathered}
\text { PRD } 85: 112010(2012) ; \\
\text { Also arXiv:1305.4218 (2013) } \\
471 \times 10^{6} \text { BB decays }
\end{gathered}
$$

```
Good agreement with SM
    Charmonium:
    \beta=21.4 }\pm0.8 de
```

- $f_{x}(1500)$ not a single resonance - well described by $f_{0}(1500)$ + $\mathrm{f}_{2}{ }^{\prime}(1525)+\mathrm{f}_{0}(1710)$
- Small tension in A_{CP} measurements between Babar and LHCb; further studies needed.

New Results in Charmless B Decays from BaBAR
16 Aug. 13
J. Albert 12

Summary

1) Evidence (at 4.4σ level) for $B^{0} \rightarrow \omega \omega$, and improved limit for $B^{0} \rightarrow \omega \phi$.

$$
\begin{aligned}
& \mathcal{B}(\omega \omega)=\left(1.2 \pm 0.3_{-0.2}^{+0.3}\right) \times 10^{-6} \\
& \mathcal{B}(\phi \omega)<0.7 \times 10^{-6}(90 \% C L)
\end{aligned}
$$

Brand new! To be submitted to PRL

2) Measurement of $C P$ violation in B decays to three charged kaons.

World's most precise measurement of $\beta_{\text {eff }}\left(\phi K_{s}\right)$: ($21 \pm 6 \pm 2$) degrees

Backup Slide

$m_{E S}$ and ΔE

$$
\begin{gathered}
\Delta E=E_{B}^{*}-\frac{1}{2} \sqrt{s} \\
m_{E S}=\sqrt{\left(\frac{1}{2} s+\mathbf{p}_{0} \cdot \mathbf{p}_{B}\right)^{2} / E_{0}^{* 2}-\mathbf{p}_{B}^{2}}
\end{gathered}
$$

Energy substituted mass

$$
m_{E S}=\sqrt{E_{\text {beam }}^{2}-p_{B}^{2}}
$$

Typical experimental resolution $\sim 2.6 \mathrm{MeV} / \mathrm{c}^{2}$

Beam-energy difference

$$
\Delta E=E_{B}-E_{\text {beam }}
$$

Typical experimental resolution [15-20] MeV

New Results in Charmless B Decays from BABAR

