Search for Lepton Number Violation in B-meson Decays

Eugenia Puccio Stanford University

on behalf of the BaBar Collaboration

Outline of talk

- Introducing lepton number violation (LNV), lepton flavour violation (LFV) and baryon number violation (BNV) in B decays
- Analysis techniques
- LNV and BNV in B⁺ $\rightarrow \Lambda_{(c)}e^{+}/\mu^{+}$
- LNV (and LFV) in $B^+ \rightarrow X^-I^+I'^+$

Searching for NP in LNV, LFV and BNV decays

- Neutrino oscillations suggest that lepton number and lepton flavor need not be conserved quantities
 - LFV processes expected to have extremely small unobservable probabilities in SM
- BNV is an essential condition to explain matter/antimatter asymmetry in the Universe
 - Predicted in the SM via non-perturbative processes called sphalerons
 - SM cannot accommodate observed matter/antimatter asymmetry
- LNV predicted in many New Physics models:
 - For example Majorana neutrino exchange¹
 - SU(5) GUT predict both LNV and BNV²
 - Support leptogenesis explanation for the baryon asymmetry in the Universe ³

¹ A. Atre, T. Han, S. Pascoli and B. Zhang,"The Search for Heavy Majorana Neutrinos", JHEP 0905, 030 (2009)
 ² H. Georgi and S. L. Glashow,"Unity of All Elementary-Particle Forces", Phys. Rev. Lett. 32, 438 (1974)
 ³ A. Pilaftsis,"The Little Review on Leptogenesis", J. Phys. Conf. Ser. 171 (2009) 012017

LNV in B decays

- Most sensitive searches for LNV involve neutrinoless double beta decay
 - Nuclear environment complicates extraction of neutrino mass scale

 Alternative approach uses processes involving B meson decays

- Measurements of extremely rare B decays improves our sensitivity to physics beyond the SM
- Observation can be a sign of New Physics!

As of 2008/04/11 00:00

The BaBar detector

PEP-II B-Factory collided e⁺e⁻ asymmetric beams at Y(4S) energy threshold

- BaBar in operation from 1999
 2008
- All analyses presented use full BaBar Y(4S) dataset
 - 432fb⁻¹ at the Y(4S)
 - □ 467M BB pairs

Analysis techniques - Kinematics

- Use precise kinematical information from beam: m_{ES} and ΔE
- Blind analyses selection requirements and ML fit tested on MC or data with hidden signal region

Analysis techniques - Event topology

- Distinguish light qq from bb using event topology:
 - B mesons produced almost at rest in the Y(4S) frame – isotropic event topology
 - continuum produced with large kinetic energy – jet-like event topology
 - Combine variables in multivariate discriminant
- Perform maximum likelihood fit that includes signal and background PDFs for m_{ES}, ΔE, and output of multivariate discriminant

Outline

- Introducing lepton number violation (LNV), lepton flavour violation (LFV) and baryon number violation (BNV) in B decays
- Analysis techniques and dataset
- ■LNV and BNV in B⁺ $\rightarrow \Lambda_{(c)}e^{+}/\mu^{+}$ ■LNV in B⁺ $\rightarrow X^{-}|^{+}|^{'+}$

LNV in $B^{+(0)} \rightarrow \Lambda_{(c)}e^{+}/\mu^{+}$: Analysis

- Not only LNV but also BNV
- First and only measurement of these decay modes
- Reconstruct Λ_c→pK⁻π⁺ (BF = 5%) and Λ→pπ⁻ (BF = 64%) originating from common vertex with a lepton
- Require more than four chargedparticle tracks to reduce e⁺e⁻→e⁺e⁻γ background
- Construct neural network from six event-shape variables

PRD 83, 091101 (2011)

LNV in $B^{+(0)} \rightarrow \Lambda_{(c)} e^{+}/\mu^{+}$: Results PRD 83, 091101 (2011)

- Signal region defined as:
 - □ 5.2<m_{ES}<5.289 GeV/c²
 - □ |∆E|<0.2 GeV
- Signal m_{ES} and ΔE PDF modeled via Crystal Ball function;
- NN_{out} modeled via nonparametric PDF
- No significant signal observed
 - Branching fraction upper limits range between (3-180)×10⁻⁸

Decay Mode	N_{cand}	$\mathcal{B}(\times 10^{-8})$	$\epsilon(\%)$	$\mathcal{B}_{90\%}(\times 10^{-8})$
$B^0 \to \Lambda_c^+ \mu^-$	814	-4^{+71}_{-56}	26.3 ± 0.9	180
$B^0 \rightarrow \Lambda_c^+ e^-$	651	190^{+130}_{-90}	25.7 ± 0.7	520
$B^- \to A \mu^-$	320	$-2.3^{+3.5}_{-2.5}$	28.7 ± 0.9	6.2
$B^- \to A e^-$	194	$1.2^{+3.7}_{-2.6}$	27.2 ± 0.6	8.1
$B^- \to \overline{\Lambda} \mu^-$	192	$1.5^{+2.6}_{-1.7}$	31.3 ± 1.0	6.1
$B^- \to \overline{A} e^-$	74	$-0.9\substack{+0.7\\-0.0}$	30.0 ± 0.6	3.2

Outline

- Introducing lepton number violation (LNV), lepton flavour violation (LFV) and baryon number violation (BNV) in B decays
- Analysis techniques and dataset
 LNV and BNV in B⁺ $\rightarrow \Lambda_{(c)}e^{+}/\mu^{+}$
- LNV in $B^+ \rightarrow X^- I^+ I'^+$

LNV in B⁺ \rightarrow K⁻(π ⁻) μ ⁺ μ ⁺ and B⁺ \rightarrow K⁻(π ⁻)e⁺e⁺

- Decay mechanism topologically similar to 0νββ decays.
- Select events with four charged-particle tracks and same-sign charged leptons from a single vertex
- Apply a veto for J/ψ and ψ(2S) mass range
- 18 event shape variables in Boosted Decision Tree
- Signal m_{ES} distribution parametrised using Gaussian mean and width from a fit to similar final state B⁺ \rightarrow J/ ψ (\rightarrow I⁺I⁻)h⁺
- No significant signal found
 - BF upper limits of order 10⁻⁸

LNV in $B^+ \rightarrow X^{-1+1'+}$: Introduction

To be submitted to PRD

- Searching for 11 modes:
 - $\Box B^+ \rightarrow \rho^- I^+ I'^+$
 - □ $B^+ \rightarrow K^{*-} (\rightarrow K_S^0 \pi^- \text{ and } \rightarrow K^- \pi^0) I^+ I'^+$
 - $\Box B^+ \rightarrow D^- (\rightarrow K^- \pi^- \pi^+) I^+ I'^+$
 - □ B⁺→K⁻(π⁻)e⁺μ⁺
- $B^+ \rightarrow X^- e^+ \mu^+$ both LNV and LFV
- Some decay modes not measured since CLEO
- CLEO searches found upper limits on branching fractions in ranges (1.0-8.3)×10⁻⁶ at 90% CL

LNV in B⁺ \rightarrow X⁻I⁺I'⁺: Analysis

To be submitted to PRD

- Signal m_{ES} and ΔE PDFs modeled with Crystal Ball function
- Boosted Decision Tree includes 9 event shape variable inputs and fitted using a nonparametric KEYS function
- Invariant masses modeled with two Gaussians, Breit-Wigner and Gounaris-Sakurai function for D⁻, K^{*-} and ρ⁻ respectively

LNV in B⁺ \rightarrow X⁻I⁺I'⁺: Results

To be submitted to PRD

- No significant signal found
- BF upper limits found in range (15-264)×10⁻⁸
- Good agreement in the upper limits with BaBar and Belle results for B⁺→D⁻I⁺I^{'+}
- More stringent limits on π, ρ,
 K and K* modes
 - π, ρ, K upper limits an order of magnitude more stringent a previous measurements

Conclusion

- BaBar has searched for many LNV and BNV B decays
- No significant signal is found in any channel
 - BF upper limits set on all decay modes at 90% CL
 - □ Best sensitivity ~10⁻⁸
 - New results give more stringent upper limits on most decay modes
- Higher statistics in the search for these extremely rare decays does not automatically lead to higher efficiencies
 - Increase in the background level can mean efficiency is the same
 - Higher luminosity experiments like Belle-II or future LHCb measurements can increase sensitivity to these decays
- Some future experiments are specifically designed to search for LNV and LFV e.g. Mu2e experiment at Fermilab and neutrinoless double beta decay experiments

Back-up

LNV in B⁺ \rightarrow K⁻(π ⁻) μ ⁺ μ ⁺ and B⁺ \rightarrow K⁻(π ⁻)e⁺e⁺: Results

Mode	Events	Fit Bias	Yield	η (%) .	$S(\sigma)$	$\mathcal{B}(\times 10^{-8})$	$\mathcal{B}_{UL}~(imes 10^{-8})$
$B^+ \to \pi^- e^+ e^+$	123	$+0.15\pm0.09$	$0.6^{+2.5}_{-2.7}$	47.8 ± 0.1	0.4	$0.27^{+1.1}_{-1.2}\pm0.1$	2.3
$B^+ \to K^- e^+ e^+$	42	-0.30 ± 0.15	$0.7^{+1.8}_{-1.2}$	30.9 ± 0.1	0.5	$0.49^{+1.3}_{-0.8}\pm0.1$	3.0
$B^+ \to \pi^- \mu^+ \mu^+$	228	-0.01 ± 0.05	$0.0^{+3.2}_{-2.0}$	13.1 ± 0.1	0.0	$0.03^{+5.1}_{-3.2}\pm0.6$	10.7
$B^+ \to K^- \mu^+ \mu^+$	209	$+0.02\pm0.04$	$0.5^{+3.5}_{-2.5}$	23.0 ± 0.1	0.2	$0.45^{+3.2}_{-2.7}\pm0.4$	6.7

LNV in $B^+ \rightarrow X^{-1+1'+}$: Results

Mode	Events	Yield	$\epsilon(\%)$	$\Pi \mathcal{B}_i(\%)$	$S(\sigma)$	\mathcal{B} (×10 ⁻⁸)	$\mathcal{B}_{UL}~(\times 10^{-8})$
$B^+ \to K^{*-} e^+ e^+$					1.2	$17\pm14\pm1.4$	40
$K^{*-} \rightarrow K^- \pi^0$	63	3.8 ± 3.3	11.5 ± 0.1	33.3	1.2	$21\pm18\pm1.5$	51
$K^{*-} \rightarrow K^0_S \pi^-$	91	0.8 ± 3.9	12.3 ± 0.1	22.8	0.3	$6.1\pm29\pm1.6$	60
$B^+ \to K^{*-} e^+ \mu^+$					0.0	$-49\pm28\pm4$	33
$K^{*-} \rightarrow K^- \pi^0$	117	-1.9 ± 4.7	7.9 ± 0.1	33.3	0.0	$-15\pm38\pm4$	65
$K^{*-} \rightarrow K^0_S \pi^-$	172	-13.4 ± 3.5	8.5 ± 0.1	22.8	0.0	$-92\pm36\pm7$	49
$B^+ \to K^{*-} \mu^+ \mu^+$					1.3	$24\pm18\pm4$	59
$K^{*-} \to K^- \pi^0$	85	2.3 ± 1.8	6.1 ± 0.1	33.3	1.5	$20\pm18\pm2$	70
$K^{*-} \rightarrow K^0_S \pi^-$	98	2.0 ± 2.3	5.8 ± 0.1	22.8	1.9	$31\pm29\pm9$	98
$B^+ \rightarrow \rho^- e^+ e^+$	411	-2.1 ± 5.7	12.1 ± 0.1	100.0	0.0	$-3.8\pm10\pm1.2$	17
$B^+ \to \rho^- e^+ \mu^+$	1651	4.6 ± 11.4	10.3 ± 0.1	100.0	0.4	$9.6\pm24\pm2.4$	47
$B^+ \to \rho^- \mu^+ \mu^+$	936	2.9 ± 6.8	7.3 ± 0.1	100.0	0.5	$8.5\pm20\pm2.6$	42
$B^+ \rightarrow D^- e^+ e^+$	401	3.9 ± 4.8	10.2 ± 0.1	9.13	1.0	$88\pm86\pm15$	264
$B^+ \rightarrow D^- e^+ \mu^+$	549	1.1 ± 3.2	7.7 ± 0.1	9.13	0.5	$34\pm94\pm11$	215
$B^+ \to D^- \mu^+ \mu^+$	229	-1.7 ± 2.5	5.7 ± 0.1	9.13	0.0	$-65\pm99\pm9$	174
$B^+ \to K^- e^+ \mu^+$	117	5.5 ± 3.5	15.2 ± 0.1	100.0	1.8	$6.0\pm4.9\pm0.9$	16
$B^+ \to \pi^- e^+ \mu^+$	464	3.8 ± 3.5	16.4 ± 0.2	100.0	1.2	$4.9\pm4.5\pm0.3$	15