

Hadron Production in e^+e^- Annihilation at B_AB_{AR} and Implications for the Muon Anomalous Magnetic Moment

Frank Porter
For the BABAR Collaboration

Caltech

August 16, 2013

$e^+e^- o$ hadrons and $g_\mu-2$ in $B_{\!A}\!B_{\!A\!R}$ Outline

- Introduction
- Muon anomalous magnetic moment
- ▶ ISR measurement of e^+e^- → hadrons
- Analysis
- Results
- Conclusions

Introduction

BABAR is a high luminosity ($10^{34} \text{ cm}^{-2}\text{s}^{-1}$) e^+e^- experiment.

In processes involving initial state radiation, this enables precise measurement of $\sigma(e^+e^- \to \text{hadrons})$ as a function of CM energy from threshhold to several GeV.

- ▶ Hadron form factors (π, K, p)
- Light hadron spectroscopy
- ▶ Hadronic vacuum polarization (HVP) contribution to $(g-2)_{\mu}$

Muon g-2

Lepton magnetic moment anomaly, sensitivity to new physics $\sim m_\ell^2$

$$ec{\mu}_{\ell} = -rac{g_{\ell}e}{2m_{\ell}}ec{S}; \quad a_{\ell} \equiv rac{(g-2)_{\ell}}{2}$$

$$a_{\mu}({\sf measured}) = 116592089 \pm 63 \times 10^{-11}$$

(BNL E821 - Bennett 2006 PRD 73, 072003; RPP 2013)

$$a_{\mu}(SM) = 116591802 \pm 49 \times 10^{-11}$$

Measured value is 3.6σ larger than SM prediction! Standard Model calculation:

$$a_{\mu}(\mathsf{SM}) = a_{\mu}(\mathsf{QED}) + a_{\mu}(\mathsf{weak}) + a_{\mu}(\mathsf{had})$$
 $a_{\mu}(\mathsf{QED}) = 116584718.10 \pm 0.15 \times 10^{-11}$ $a_{\mu}(\mathsf{weak}) = 154 \pm 2 \times 10^{-11}$ $a_{\mu}(\mathsf{had}) = 6930 \pm 49 \times 10^{-11}$

See Engel, Patel, Ramsey-Musolf, PR D 86 (2012) 037502; Davier, Hoecker, Malaescu, Zhang, EP J C 71 (2011) 1515

$a_{\mu}(had)$

- ▶ a_{μ} (had) is largest term after a_{μ} (QED)
- Contributions from hadronic vacuum polarization and hadronic light-by-light scattering
- Largest contribution to uncertainty $(\pm 42 \times 10^{-11})$ is hadronic vacuum polarization, $a_{\mu}(\text{HVP})$
- ▶ Not possible to compute $a_{\mu}(HVP)$ perturbatively
- ▶ Instead, measure $\sigma(e^+e^- \to \text{hadrons})$ as a function of CM energy and use dispersion relation

Use of dispersion relation for $a_{\mu}(had)$

Dispersion relation

$$a_{\mu}(\mathsf{had}) = rac{lpha^2}{3\pi^2} \int_{\mathsf{threshold}}^{\infty} R(s) rac{K(s)}{s} ds$$

where

$$R(s) = \frac{\sigma^0(e^+e^- o hadrons(\gamma))}{\sigma_{
m pt}}$$

and

$$K(s) \sim 1/s$$

Hence, emphasis is from the low-energy portion of hadron spectrum Dominant contribution is from $\pi^+\pi^-$ (but other channels can not be neglected)

We need to measure σ^0 , the bare cross section including FSR, as a function of s.

The ISR method

- ▶ BABAR: e^+e^- collisions at $\sqrt{s} = 10.6$ GeV
- ▶ With ISR, effective $e^+e^- \to \gamma^*$ energy is $\sqrt{s'} = \sqrt{s(1-x)}$, where $x = 2E_{\gamma}^*/\sqrt{s}$ in CM frame
- ► Select events with a high energy ISR photon ($E_{\gamma}^* > 3$ GeV) at large angle
- ► ISR photon is opposite hadrons in CM. High acceptance for boosted hadrons even from threshold
- ► ISR luminosity determined with $e^+e^- \rightarrow \gamma_{\rm ISR}\mu^+\mu^-$ ($\pi\pi$, KK)
- Additional ISR and FSR accounted for
- ► Measurement from threshold to 3–5 GeV in single dataset, reduces systematics

B_AB_{AR}'s ISR measurements

BABAR has extensive program to measure $e^+e^- \rightarrow \text{hadrons}$ as a function of energy using ISR method (channels include possible additional FSR photon)

```
Final state(s)
\pi^+\pi^-
K^+K^-
\pi^{+}\pi^{-}\pi^{0}
K^{+}K^{-}\eta, K^{+}K^{-}\pi^{0}, K_{s}^{0}K^{\pm}\pi^{\mp}
\pi^{+}\pi^{-}\pi^{+}\pi^{-}
K^{+}K^{-}\pi^{+}\pi^{-}, K^{+}K^{-}\pi^{0}\pi^{0}, 2(K^{+}K^{-})
\Lambda \bar{\Lambda}, \Lambda \bar{\Sigma}^0, \Sigma \bar{\Sigma}^0
2(\pi^+\pi^-)\pi^0, 2(\pi^+\pi^-)\eta, K^+K^-\pi^+\pi^-\pi^0,
         K^{+}K^{-}\pi^{+}\pi^{-}n
\phi\eta
3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0), K^+K^-2(\pi^+\pi^-)
p\bar{p}, see C. Cartaro talk
K_{S}^{0}K_{L}^{0}, K_{S}^{0}K_{L}^{0}\pi^{+}\pi^{-}, K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{0},
         K_c^0 K^{\pm} \pi^{\mp} n. \pi^{+} \pi^{-} 2 \pi^{0}
```

```
Publication
```

PRD **86** 032013 (2012) TBP, PRD (2013) arXiv:1306.3600

PRD **70** 072004 (2004) PRD **77** 092002 (2008)

PRD **85** 112009 (2012)

PRD 86 012008 (2012)

PRD **76** 092006 (2007)

PRD **76** 0922005 (2007)

PRD RC **74** 111103 (2006) PRD **73** 052003 (2006)

PRD **87** 092005 (2013)

in progress

Analysis (e.g., K^+K^-)

- ▶ Measured $K^+K^-(\gamma)$ yield in ISR production
- ► Effective luminosity from measured $\mu^+\mu^-(\gamma)$ rate (for $\pi\pi$, KK)
- Efficiency from data-corrected simulations
- Gives the result for the cross section

$$\frac{dN_{K^+K^-(\gamma)\gamma_{\rm ISR}}}{d\sqrt{s'}} = \frac{dL_{\rm ISR}^{\rm eff}}{d\sqrt{s'}} \; \epsilon_{KK\gamma_{\rm ISR}}(\sqrt{s'}) \; \sigma_{KK(\gamma)}^0(\sqrt{s'})$$

"Bare" cross section σ^0 includes Final State Radiation (FSR), but no leptonic or hadronic vacuum polarization effects. These have been removed by using the normalization based on the measured $\mu^+\mu^-(\gamma)$ rate.

Efficiency and Background

(Many details skipped! See publications)
Monte Carlo efficiency corrected for MC/data differences, using in

▶ Trigger: Corrections \sim few \times 10⁻⁴

situ efficiency measurements:

- ▶ Tracking: Systematic uncertainties < few $\times 10^{-3}$
- ▶ Particle identification: Systematic uncertainties typically few ×10⁻³
- ▶ Kinematic fit selection errors from uncertainty in modeling of additional ISR/FSR: Systematic uncertainties < few $\times 10^{-3}$

Backgrounds mainly cross-feed from other ISR processes; systematic uncertainty typically few $\times 10^{-3}$ or less depending on channel, but tends higher at extremes of $\sqrt{s'}$

K^+K^- results: Cross section

K^+K^- results: Charged kaon form factor

Confirm discrepancy with QCD prediction for normalization ($\sim \times 4$); shape is consistent.

$\pi^+\pi^-$ cross section results

$K^+K^-\pi\pi$ cross section results

Based on 454 fb⁻¹ dataset (statistical uncertainties shown) Dressed cross section, including vacuum polarization

$\pi^+\pi^-\pi^+\pi^-$ cross section results

Based on 454 fb $^{-1}$ dataset (statistical uncertainties shown) Dressed cross section, including vacuum polarization

Conclusions

Channel	$a_{\mu}(had) \ (10^{-11})$	
	BaBar	world average w/o BABAR
$\pi\pi(\gamma)$	$5141 \pm 22 \pm 31$	5056 ± 30
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$136.4 \pm 0.3 \pm 3.6$	139.5 ± 9.0
K ⁺ K ⁻	$229.3 \pm 1.8 \pm 2.2$	$216.3 \pm 2.7 \pm 6.8$

- Precision on $\pi^+\pi^-$ comparable with previous WA
- Precision on 4π factor 2.6 better than previous WA
- Precision on K⁺K⁻ factor 3 better than previous WA
- ▶ FNAL E989 goal: reduce error bar on measured a_{μ} from 63×10^{-11} to 16×10^{-11}
 - ► Expect lattice calculations to eventually provide most precise SM predictions for HVP, but:
 - ► "few percent error on timescale of Muon g-2 experiment"

 R. Van de Water. Snowmass 2013
 - ▶ Dominant $\pi\pi$ channel result is on half of the *BABAR* dataset. Possibly could use other half as well to help on E989 timescale.
- ► Analysis of $K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+ \pi^-$, $K_S^0 K^{\pm} \pi^{\mp} \pi^0$ in progress

BACKUP

K^+K^- comparison with other experiments

 ϕ mass consistent within calibration uncertainties with CMD2 and SND However, normalization is not:

$$\begin{split} &\frac{\mathsf{norm}(\textit{BABAR})}{\mathsf{norm}(\mathsf{CMD2},\,\mathsf{SND})} - 1 \\ &= \begin{cases} 0.051 \pm 0.003_{\mathsf{CMD2}} \pm 0.006_{\textit{BABAR}} & \textit{BABAR} \; \; \mathsf{vs} \; \mathsf{CMD2} \\ 0.096 \pm 0.009_{\mathsf{SND}} \pm 0.006_{\textit{BABAR}} & \textit{BABAR} \; \; \; \mathsf{vs} \; \mathsf{SND} \end{cases} \end{split}$$

Substructure in $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

Red: Data Black: MC Czyż and Kühn, EP J C**18** 497 (2001)