Inclusive Production of Light Charged Hadrons at BaBar

David Muller, SLAC representing the BaBar collaboration

APS Division of Particles and Fields Meeting 13-17 August, 2013, Santa Cruz

- Introduction
- Analysis
 - production rates for π[±], K[±], p/p̄
- Results
 - model and scaling tests
 - tests of MLLA QCD
 - fractions, ratios, totals

Summary

115

arXiv:1306.2895 to appear in PRD

Introduction

- partons (quarks and gluons) from hard interactions appear as hadronic jets in a detector
- need to understand hadronization / structure of jets
 - → fundamental strong interaction physics
 - \rightarrow jets are signals and backgrounds at high E, e.g. LHC
 - → jet substructure becoming important
- best studied in e⁺e⁻ annihilations
 - \rightarrow initial state is known (E_{CM}, \vec{p}_{CM}), non-hadronic
 - → fine-grained detectors with precise tracking and particle identification
- identified hadrons provide
 - → effect of flavor, baryon #, spin, etc. on hadronization
 - → dependence on mass, scaling issues
 - \rightarrow information on the parton flavor, spin, ...

- our current understanding of e+e-→hadrons
- theory:
 - → EW physics known
 - → inclusive features of the parton shower are calculated in MLLA QCD*
 - → E_{CM} dependence calculated in pQCD*
- phenomenology:
 - → parton shower, hadronization modelled in various ways*
- experiment:
 - \rightarrow measurements at several E_{CM}*
 - → and for many particles
 - → the only measurements with good precision and coverage are at 91.2 GeV (the Z⁰ peak)

Q

Q

00000

0000

Perturbative

QCD

→Fragmentation

200000

Theory→

 γ^*/Z^0

 \leftarrow ElectroWeak $\rightarrow \leftarrow$

David Muller

Inclusive production of light charged hadrons at BaBar

e

e

 K^0

Hadronization

Experiment –

*see references in backup

 $Models \rightarrow$

 \leftarrow Decays $\rightarrow \leftarrow$ Detector \rightarrow

<u>The BaBar Experiment</u>

- e⁺e⁻ collisions at E_{CM} near 10.6 GeV, designed for CP violation in B decays
- different beam energies
 - \rightarrow E_e- = 9.0 GeV
 - \rightarrow E_{e+} = 3.1 GeV
 - \rightarrow CM-lab boost, $\beta\gamma=0.55$
- asymmetric detector \rightarrow CM frame acceptance $-0.9 \sim \cos\theta^* \sim 0.85$ wrt e- beam
- with excellent performance
 - \rightarrow good tracking, mass resolution
 - \rightarrow good γ , π^0 recon.
 - \rightarrow full e,µ, π ,K,p ID

Particle ID (DIRC)

 High luminosity \rightarrow ~520 fb⁻¹ accumulated \leftrightarrow 1.7 billion e⁺e⁻ \rightarrow qq events

Hadronic Event and Track Selection
 Use data from a very good running period → "only" 1 fb⁻¹ at 10.54 GeV +4 fb⁻¹ on the Y(4S) for calibration → dominated by systematics
 select a clean sample of e⁺e⁻ → uū, dd, ss and cc events with low bias in track multiplicity, momentum, → requirements on event vertex, topology, visible energy, lcosθ[*]_{thrust}l, e[±] content (details in backup)
\rightarrow 70% efficiency, 2.2 million events
→ critical to understand backgrounds: $e^+e^- \rightarrow \tau^+\tau^-$ 4.5% $e^+e^- \rightarrow e^+e^-\gamma$ 0.1% $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^- + hadrons$ <1% beam-gas, others, very small
• track sample unbiased, good DCH, DIRC information \rightarrow reqmts. on hits, extrapolation to event vertex, DIRC $\rightarrow p_t > 0.2 \text{ GeV}; -0.77 < \cos\theta < 0.88$ (details in backup)

Event and track selection, II

- charged hadron definition
 - \rightarrow no decay products of "stable" μ^{\pm} , π^{\pm} , K[±], K⁰_L, n/n
 - → ...or of K_S^0 , Λ , Σ , Ξ , Ω measure "prompt" production also add back the latter for "conventional"
- divide into 6 subsamples of polar angle: θ 1, θ 2 ... θ 6
 - → perform analysis ~independently in each
 - → tremendous set of systematic cross checks
- extensive studies, corrections to the simulation
 - \rightarrow hit effs., dE/dx, material interactions (Δ 's)
- π^{\pm} Κ[±] pp • performance: 0.8 → bias understood Efficiency 9.0 $\rightarrow \pi$,K,p tracking similar 0.4 Event Selectior → small corrections Track Finding Correction 0.2 Total → ~1% error for p > 1 GeV 4 5 6 3 56 Laboratory Momentum (GeV/c)

1.0

 $\theta 6: 0.77 < \cos\theta < 0.88;$ worst case

Particle Identification

- want high efficiency, low misidentification, smooth variation with p, θ
 - → optimized linear comb. of DCH and DIRC likelihood ratios
- the efficiency matrix is calibrated from the data
 - $\rightarrow \pi^{\pm} \text{ from } K^{0}_{S}, \Lambda, D^{0}, \tau$ $K^{\pm} \text{ from } D^{0}, \varphi$ $p/\overline{p} \text{ from } \Lambda \text{ decays}$
 - → most corrections small
 - → and show the expected correlations
 - → error bands from control sample statistics: sub-% to few-%

David Muller

Inclusive production of light charged hadrons at BaBar

<u>Analysis</u>

- count identified tracks $n_{\pi,K,p}$ in p, θ bins
 - \rightarrow check that the sum $\Sigma_{ij} \mathcal{E}_{ij}^{-1} n_j / n_{tot} = 1$

efficiency matrix⁷

 \rightarrow get raw production rates $\left(\frac{1}{N^{sel}}\right)\left(\frac{dn_i}{dn_i}\right)$

- subtract backgrounds, correct for efficiencies
 → see previous slides
- transform to the e+e- CM frame
 - → includes corrections for resolution in p, θ

- $\rightarrow \left(\frac{1}{N_{evt}^{had}}\right)\left(\frac{dn_i}{dp^*}\right)$
- → uses a transfer matrix sensitive to the true p* distn. iterative procedure to estimate, remove bias
- → ...and an acceptance factor sensitive to the true θ^* distribution the simulation must be verified ...

<u>Analysis, II</u>

- extensive cross checks
 - → many data-MC comparisons
 - → compare positively and negatively charged tracks
 - → check for dependence on θ, φ
- ~independent measurements in the six θ regions
 - → different: backgrounds amounts of material lab.→CM transforms
 - → comparison limits many systematic effects: angular distribution CM system boost p* distribution

<u>Results</u>

- average over the θ regions contributing to each p* bin
 → gives prompt results
 - → add in K⁰_S, s-baryon decay products to get conventional results
- nice coverage, precision
 - → see most of the K[±] and p/p̄ spectra
 - → and peak, high-p* side of the π[±] spectrum
 - → uncertainties: statistics small (shown)
 - 1% normalization

1.3-50% other systematics, correlated over short and long momentum ranges

Comparison with ARGUS

- compare with other experiments using scaled quantities
 → e.g., scaled momentum x_p = 2p*/E_{CM}
- ARGUS has results* at a nearby E_{CM}=9.98 GeV
 → consistent above 1 GeV
 - → ~expected scaling violation below
 - → big improvement in precision (mostly stat.)
 - → we (they) have better high-(low-)x_p coverage
 - → nicely complementary

Tests of Hadronization Models

- consider 3 models representing three types of particle prod.
 - → JETSET*: string, many free parameters
 - → UCLA*: area law, ~1 free parameter
 - → HERWIG*: clusters, few free params
- use default parameters
 - \rightarrow the models all fail
 - → better tunes exist...
 - → but none get the shapes right
 - → our data provide valuable input

David Muller

Inclusive production of light charged hadrons at BaBar

Scaling Properties: high xp

the evolution of jets with energy is calculable
 → ...by theorists, but we can test models

David Muller

Inclusive production of light charged hadrons at BaBar

High-xp scaling, II

- now consider the corresponding K[±] data
- again, strong scaling violation at high (and low) x_{p}
 - → ...at least from 10.5 to 91.2 GeV...
 - → 34 GeV precision limited
- only ~10% change in models from 34-91 GeV
 - → due to changing flavor composition
 - → UCLA shown, other models similar
- the change from 10.5→91.2 GeV is ~15% larger than in the data
 → ... ±~6% experimental

 K^{\pm} (91.2 GeV) SLD TASSO (34) BaBar (10.54) $(1/N_{evts}) dn_K/dx_p$ 10 UCLA 91.2 GeV 34 10^{-2} 10.54 0.8 0.2 Scaled Momentum

 \rightarrow ...how uncertain are flavor composition effects?

David Muller

Inclusive production of light charged hadrons at BaBar

Tests of QCD, modified-leading-log approx.

- MLLA(+local parton-hadron duality)* predicts:
 - → shapes of spectra
 - → low-x_p scaling behavior
- transform to $\xi = -\ln(x_p)$
 - → emphasizes low-x_p region
 - \rightarrow ... on a linear scale
 - → measure peak position, ξ*
- test shape prediction

 → (distorted) Gaussian should fit data within (more than) ±1 unit of ξ*
 - → looks good

David Muller

MLLA QCD, II

- test scaling prediction 1
 - → ξ* should decrease exponentially with mass for a given E_{CM}
 - → meson data are consistent
 - → baryons seem to follow a different trajectory
- test scaling prediction 2
 - → ξ* should increase logarithmically with E_{CM} for a given particle
 - → data are consistent
 - → BaBar and Z⁰ data provide precise slopes

Production Ratios and Fractions

- calculate ratios of differential production rates
 - \rightarrow and charged hadron fractions for π^{\pm} , K[±], p/p

Total Production Rates

- integrate the differential rates over measured range
 → taking correlations in uncertainties into account
- extrapolate into unmeasured regions
 - → non-trivial
 - → use models, fits to estimate correction, error

		Average Multiplicity in qq Events					
Particle		BaBar	CLEO	ARGUS	JETSET	UCLA	HERWIG
prompt	π± K± p/p̄	6.07 ±0.09 ±0.13 0.972±0.012±0.016 0.185±0.006±0.001		5.694±0.108 0.888±0.030 0.212±0.017	5.59 1.01 0.28	5.62 1.02 0.14	5.49 1.01 0.31
conventional	π± K± P/P	6.87 ±0.11 ±0.16 0.972±0.012±0.001 0.265±0.008±0.002	8.3 ±0.4 1.3 ±0.2 0.40±0.06	8.38 ±0.12 0.888±0.030 0.271±0.018	6.33 1.01 0.37	6.34 1.02 0.20	6.31 1.01 0.46

<u>Summary</u>

- we have measured the inclusive production of π[±], K[±], and p/p̄ in hadronic e⁺e[−] annihilations at 10.54 GeV
 → for both prompt and conventional particles
 - → wide coverage, 0.2 GeV/c to the kinematic limit
 - → consistent with ARGUS results
 - \rightarrow (much) more precise for π^{\pm} (K[±], p/p̄)
- they provide stringent tests of hadronization models
 → which fail in many ways
- and, combined with higher-E_{CM} data, precise tests of scaling at high x_p
 - \rightarrow models good for π^{\pm} , ok for K[±], poor for p/p, η
 - → theory awaited eagerly
- and tests of MLLA QCD
 - \rightarrow consistent with shapes, E_{CM} dependence in the data
 - \rightarrow and mass dependence, except for p/p

Backup Slides

David Muller

<u>References</u>

MLLA QCD

Z. Phys. C 27, 65 (1985) Int. J. Mod. Phys. A7, 1875 (1992)

QCD Evolution

AKK: Nucl. Phys. B 803, 42 (2008)DSS: Phys. Rev. D 75, 114010 (2007)HKNS: Phys. Rev. D 75, 094009 (2007)

Hadronization Models

JETSET 7.4: Comput. Phys. Commun. 82, 74 (1994) HERWIG 5.8: JHEP 0101, 010 (2001), Comput. Phys. Commun. 67, 465 (1992) UCLA 4.1: Phys. Rep. 292, 239 (1998)

Inclusive π ,K,p measurements

CLEO:	Phys. Rev. D 31, 2161 (1985)
ARGUS:	Z. Phys. C 44, 547 (1989)
TPC-2γ:	Phys. Rev. Lett. 61, 1263 (1988)
TASSO:	Z. Phys. C 42, 189 (1989)
TOPAZ:	Phys. Lett. B 345, 335 (1995)
DELPHI:	Eur. Phys. J. C 5, 585 (1998); 18, 203 (2000)
OPAL:	Z. Phys. C 63, 181 (1994)
ALEPH:	Z. Phys. C 66, 355 (1995)
SI D.	Phys Rev D 69 072003 (2004)

Hadronic Event Selection

- want: clean sample of e⁺e⁻ → uū, dd, ss and cc events; low bias in track multiplicity, momentum, etc.
 - \rightarrow require:
 - a) at least 3 charged tracks
 - b) forming a good vertex within the interaction region
 - c) R₂<0.9
 - d) visible energy 5-14 GeV
 - e) $|\cos\theta^*_{\text{thrust}}| < 0.8$
 - f) e[±] veto on (2) highest-p track(s) if < 6 (4) tracks
 - \rightarrow efficiency: 68% for uu, dd, ss; 73% for cc
 - → bias reasonable (d,e)

• backgrounds:

 $e^+e^- \rightarrow \tau^+ \tau^-$ 4.5% (a,c,d,f) understood $e^+e^- \rightarrow e^+e^- \gamma$ → $e^+e^-e^+e^-$ 0.1% (a,b,c,e,f) measured $e^+e^- \rightarrow e^+e^- \gamma \gamma \rightarrow e^+e^- + hadrons < 1\%$ (a,d) limited in data beam-gas, others very small meas'd/lim'd

Track Selection

- want: an unbiased sample of charged particles with good DCH and DIRC information
 - \rightarrow require:
 - a) at least 4 SVT hits, including 2 in z
 - b) at least 19 DCH hits
 - c) extrapolation within 1 mm of the event vertex
 - d) ... and through a DIRC bar
 - e) includes $p_t > 0.2 \text{ GeV}$, $-0.77 < \cos\theta < 0.88$
 - → ~80% efficiency
 - \rightarrow small dependence on p, θ , particle type
- backgrounds are small except: $\tau^+\tau^-$ events up to 25(2)% of high-p* $\pi^{\pm}(K^{\pm})$ radiative Bhabhas up to 8% of high-p* π^{\pm} two photon events up to 20% of tau pair bkg material interactions up to 15% of low-p p/p K_s^0, s-baryon decay prods few % of most π^{\pm} , p/p

David Muller

Inclusive production of light charged hadrons at BaBar