

Measurements of τ hadronic branching fractions and spectra, and search for 2nd class current τ decays

Meeting of the APS Division of Particles and Fields (DPF2013), Santa Cruz, 13-17 August 2013

Alexandre Beaulieu¹ for the BABAR Collaboration

¹University of Victoria, Canada

Outline

Introducing the BABAR experiment

Methodology

τ hadronic branching fractions One-prong decays including $2K_s^0$ High-multiplicity (3 or 5 prong) decays excluding K_s^0 Search for decays involving η' (958) and 2nd class current

au invariant mass distributions for three-prong hadronic decays

 $\begin{array}{cccc} \tau^- \rightarrow \pi^- & \pi^+ & \pi^- & \nu_\tau \\ \tau^- \rightarrow K^- & \pi^+ & \pi^- & \nu_\tau \\ \tau^- \rightarrow K^- & K^+ & \pi^- & \nu_\tau \\ \tau^- \rightarrow K^- & K^+ & K^- & \nu_\tau \end{array}$

Summary

SLAC linar PEP-II Rings Positrons Low Energy Ring **BABAR Detector** Electrons **High Energy Ring**

The BABAR experiment

- Located at PEP-II asymmetric e^+e^- collider at the SLAC National Accelerator Laboratory
- Operated from 1999 to 2008
- Centre-of-mass energy $\sqrt{s} = 10.58 \,\text{GeV}$, just above the $B\overline{B}$ treshold
- Multipurpose detector recorded over $511 \, \text{fb}^{-1}$ of data
- B-factory: optimized for B physics but excellent for τ and c studies

General methodology

Data sample

- Use integrated luminosity $\mathcal{L} = 468 \, \text{fb}^{-1}$ ($\approx 430 \times 10^6 \, \tau$ pairs)
- ▶ $\tau^+\tau^-$ production simulated with KK2F, decays with Taula and detector interaction from GEANT4

Selection

- Divide event perpendicular to the thrust axis
- "tag" hemisphere: $\tau^- \rightarrow e^- \nu_\tau \overline{\nu}_e$ or $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ (charge conjugaison implied)
- "signal" hemisphere: 1,3 or 5 "prongs" (tracks)
- Use PID information from all subdetectors of BABAR

Branching fraction of
$$\tau^- \rightarrow (\pi^-, K^-) K^0_s K^0_s (\pi^0) \nu_\tau$$
 decays

- Four poorly-measured decay channels that include $2K_s^0$
- ► $\tau^- \rightarrow \pi^- K_s^0 K_s^0 \nu_\tau$: background in *CP* violation searches measuring rate asymmetry in $\tau^- \rightarrow \pi^- K_s^0 \nu_\tau$
- Better understanding required in a future high-*L* B Factory measurement
- See Phys. Rev. D 86 092013 (2012)

Branching fraction of $\tau^- \rightarrow (\pi^-, K^-) K^0_s K^0_s (\pi^0) \nu_\tau$ decays

- ► Branching fraction for $\tau^- \rightarrow \pi^- K_s^0 K_s^0 \nu_\tau$ agrees with previous measurements from ALEPH and CLEO
- ► First measurement for $\tau^- \to \pi^- K^0_s K^0_s \pi^0 \nu_\tau$ and first limits for the charged kaon decays
- ▶ Main systematic uncertainty sources: tracking, PID, topological selection. For $1\pi^0$ modes: selection efficiency

Decay mode	Data events	Estimated background	Efficiency (%)	Branching ratio [†] (10^{-5})
$\tau^- \rightarrow$				
$\pi^- K_c^0 K_c^0 \nu_{\tau}$	4985	98 ± 17	4.93 ± 0.03	$23.1 \pm 0.4 \pm 0.8$
$\pi^- K_c^{\dagger} K_c^{\dagger} \pi^0 \nu_{\tau}$	409	35 ± 7	2.65 ± 0.02	$1.60 \pm 0.20 \pm 0.22$
$K^- K_s^0 K_s^0 v_\tau$	23	20.0 ± 0.5	3.85 ± 0.04	≤ 0.063
$K^{-} K_{s}^{0} K_{s}^{0} \pi^{0} \nu_{\tau}$	1	0.15 ± 0.02	1.37 ± 0.03	≤ 0.040
[†] or 90% CL limit				

Study of high-multiplicity three-prong five-prong au decays

- Phys. Rev. D 86, 092010 (2012)
- Study of rare modes and search for forbidden processes
- 23 branching fractions measured
- Divided into
 - resonnant modes (η , f_1 , ω)
 - "nonresonnant" modes
 - involving η' (958)
 - with either one or two K[±] (not presented here)
- ► Measurement of m_{f1} = (1281.16 ± 0.39 ± 0.45) MeV/c²
- New or more precise B measurements

Resonnant modes:

 $\blacktriangleright \tau^- \rightarrow \pi^- f_1 \nu_\tau$ • $f_1 \rightarrow 2\pi^+ 2\pi^-$ • $f_1 \rightarrow \pi^+ \pi^- n$ $\succ \tau^- \rightarrow 2\pi^-\pi^+ n \nu_\tau$ • $\eta \rightarrow \gamma \gamma$ ▶ $n \rightarrow 3\pi^0$ ► $n \rightarrow \pi^- \pi^+ \pi^0$ $\succ \tau^- \rightarrow 2\pi^0 \pi^- n \nu_\tau$ ► $n \rightarrow \pi^- \pi^+ \pi^0$ $\succ \tau^- \rightarrow 2\pi^-\pi^+ \omega \nu_\tau$ • $\omega \rightarrow \pi^- \pi^+ \pi^0$

$$\tau^{-} \rightarrow 2\pi^{0}\pi^{-}\omega\nu_{1}$$

$$\omega \rightarrow \pi^{-}\pi^{+}\pi^{0}$$

Results for high-multiplicity three-prong five-prong au decays

Resonnant:	Nonresonnant:	Summary of	the results:
f ₁ decays	$\tau^- \rightarrow 2\pi^- \pi^+ 3\pi^0 \nu_\tau$	Decay mode	Branching ratio (10 ⁻⁵)
$\begin{array}{c} 3 \ 5000 \\ g \ 5000 \\ g \ 5000 \\ g \ 5000 \\ f \ $	$\begin{array}{c} 3 & 300 \\ \hline \\ 8 & 500 \\ -5 & 0.6 & 0.7 & 0.8 & 0.9 & 1 & 1.1 & 1. \\ \hline \\ 8 & 2000 \\ -5 & 0.6 & 0.7 & 0.8 & 0.9 & 1 & 1.1 & 1. \\ \hline \\ 8 & 2000 \\ \hline \\ 8 & 500 \\ -5 & -5 & -5 & -5 & -5 & -5 & -5 \\ \hline \\ 8 & 1 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1 & 1. \\ \hline \\ 8 & 1 & 1 & 1 & 1 $	Resonmant $2\pi^{-}\pi^{+}\eta\nu_{\tau}$ $\pi^{-}2\pi^{0}\eta\nu_{\tau}$ $\pi^{-}f_{1}\eta\nu_{\tau}$ $5\pi^{+}2\pi^{-}$ $\pi^{-}f_{1}\eta\nu_{\tau}$	$22.5 \pm 0.7 \pm 1.2 \\ 20.1 \pm 3.4 \pm 2.2 \\ 5.2 \pm 0.31 \pm 0.37$
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1.1 \\ 1.15 \\ 1.2 \\ 1.25 \\ 1.3 \\ 1.35 \\ 1.4 \\ 1.45 \\ 1.5 \\$	⁸ 1000 ⁹ 500 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1. π' π' π' Mass (GeV/c ²)	$ \begin{array}{c} \downarrow \pi^{+}\pi^{-}\eta \\ 2\pi^{-}\pi^{+}\omega\nu_{\tau} \\ \star \pi^{-}2\pi^{0}\omega\nu_{\tau} \end{array} $	$\begin{array}{c} 12.6 \pm 0.6 \pm 0.6 \\ 8.4 \pm 0.4 \pm 0.6 \\ 7.3 \pm 1.2 \pm 1.2 \end{array}$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1$	$\begin{array}{c} y & 300 \\ y & 220 \\ y & 122 \\$	Nonesonnaht $3\pi^{-}2\pi^{+}\nu_{\tau}$ $2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ $3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ Inclusive (incl. η .	$76.8 \pm 0.4 \pm 4.0 1.0 \pm 0.8 \pm 3.0 3.6 \pm 0.3 \pm 0.9 , \omega, f_1)$
$\begin{array}{c} x^*x^* \eta \text{ Mass (GeV/c^2)} \\ \hline \\ 100 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00$	22" r* 3x ⁹ Mass (GeV/c ²) 90% CL limit:	$\frac{2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}}{3\pi^{-}2\pi^{+}\nu_{\tau}}$ $\frac{3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}}{3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}}$	$20.7 \pm 1.8 \pm 3.7 \\ 83.3 \pm 0.4 \pm 4.3 \\ 16.5 \pm 0.5 \pm 0.9$
⁵ 20 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1 π ⁺ π ⁻ m Mass (GeV/c ²)	$\beta(\tau^{-} \to 2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}) < 5.8$	× 10 ⁻⁵	0/16
			8/10

Search for decays involving η' (958)

- Hadronic currents of spin-parity J^P are classified according to their transformation properties under G parity:
 - ► 1st class: $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (dominate)
 - ▶ 2nd class: $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$ (0 if $m_u = m_d$)
- Search for allowed first-class current decays:
 - $\tau^- \rightarrow \pi^- \pi^0 \eta' (958) \nu_\tau$
 - $\blacktriangleright \ \tau^- \to K^- \ \eta' \ (958) \nu_\tau$
- Search for second-class current decay
 - $\blacktriangleright \ \tau^- \rightarrow \pi^- \ \eta' \ (958) \nu_\tau$
 - Branching fraction predicted $< 1.4 \times 10^{-6}$
- Reconstruction with $\eta'(985) \rightarrow \pi^- \pi^+ \eta$

$$\begin{array}{ll} \mathcal{B}\left(\tau^{-} \to \pi^{-} \pi^{0} \eta'(958) \nu_{\tau}\right) &< 1.2 \times 10^{-5} \\ \mathcal{B}\left(\tau^{-} \to K^{-} \eta'(958) \nu_{\tau}\right) &< 2.4 \times 10^{-6} \\ \mathcal{B}\left(\tau^{-} \to \pi^{-} \eta'(958) \nu_{\tau}\right) &< 4.0 \times 10^{-6} \end{array}$$

Search for 2nd class current decay $\tau^- \rightarrow \eta \pi^- \nu_{\tau}$

- Phys. Rev. D 83, 032002 (2011)
- Expected $\mathcal{B}(\tau^- \rightarrow \eta \pi^- \nu_{\tau}) < \sim 10^{-5}$
- Also measured $\mathcal{B}(\tau^- \rightarrow \eta K^- \nu_{\tau})$

Decay mode	Branching ratio (10 ⁻⁵)
$\begin{array}{l} \tau^- \to \eta K^- \nu_\tau \\ \tau^- \to \eta \pi^- \nu_\tau \end{array}$	$14.2 \pm 1.1 \pm 0.7$ $3.4 \pm 3.4 \pm 2.1$

- η peak in $\tau^- \rightarrow \eta \pi^- \nu_{\tau}$
 - Is mostly background (qq̄ and τpair decaying into channel with η)
- Limit on this 2nd class current signal (90% C.L.):

 $\mathcal{B}(\tau^- \to \eta \pi^- \nu_\tau) < 8.8 \times 10^{-5}$

Exclusive invariant mass distributions for $\tau^- \rightarrow h^- h^- h^+ \nu_{\tau}$

Motivation:

- The final state contains a rich spectrum of resonnances
- Measurement of strange and non-strange spectral functions can be used for measuring m_S and |V_{us}|
- Aims to improve simulation of hadronic au decays
- Also provide better theoretical understanding of the dynamics of their decay structure

Methodology:

- I lepton track "tag" + 3-prong "signal"
- ► Backgrounds estimated from data-driven techniques (mostly cross-feed from other $\tau^- \rightarrow h^- h^- h^+ \nu_{\tau}$ decays)
- Mass spectra unfloded as per NIM A 362, 487 (1995)
- Preliminary (unpublished) results

Exclusive invariant mass distributions for $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$

12/16

Exclusive invariant mass distributions for $\tau^- \rightarrow K^- \ \pi^+ \ \pi^- \ \nu_{\tau}$

13/16

Exclusive invariant mass distributions for $\tau^- \rightarrow K^- K^+ \pi^- \nu_{\tau}$

14/16

Exclusive invariant mass distributions for $\tau^- \rightarrow K^- K^+ K^- \nu_{\tau}$

Summary

- Many au hadronic branching fractions measured at BABAR
- Best limits on 2nd class current decays
- Invariant mass distributions for $\tau^- \rightarrow h^- h^- h^+ v_{\tau}$

The speaker would like to thank Dr. Randall Sobie, Dr. Ian Nugent and the *BABAR* Collaboration for their help in preparing this talk!