# Measurements of vector boson production in association with jets in ATLAS

### Gerhard Brandt (LBNL)

on behalf of the ATLAS collaboration







Unterstützt von / Supported by

#### **Vector Bosons (V = W,Z) are standard candles at hadron colliders**

- Large production cross sections
- Clean experimental signature in leptonic decay
  - No color flow between Vector Boson and QCD final state (ISR partons  $\rightarrow$  jets)
- Can select kinematic regime of lepton and jets to study signatures

### Ideal test bench for QCD

- Precision tests of fixed-order NLO pQCD predictions at high  $p_{\tau}$  scales
- Precision tests of resummation techniques at low  $p_{\tau}$  scales
- Measurements can be sensitive to or independent of PDFs (flavor selectable)

### Important for background modeling

- Measurements test modeling in current generators
- Improve model uncertainties from V+jets
- Relevant in measurements of Higgs boson production and BSM searches
  - In particular for boosted *V* in associated Higgs production

## Recent ATLAS Publications on V+jets

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults#W\_Z\_Physics

- To date all ATLAS V+jets measurements using pp collisions at  $\sqrt{s} = 7$  TeV
- Will only show a selection of highlights from these results

#### **V Recoil**

| $ ho_{_{	extsf{T}}}^{_{	extsf{W}}}$ | 36 pb <sup>-1</sup>  | Phys.Rev. D85 (2012) 012005     | ←            |
|-------------------------------------|----------------------|---------------------------------|--------------|
| $Z \phi_n^*$                        | 4.6 fb <sup>-1</sup> | Phys. Lett. B 720 (2013) 32-51  | $\leftarrow$ |
| $p_{T}^{Z}$                         | 36 pb <sup>-1</sup>  | Phys.Lett. B705 (2011) 415-434  |              |
| V + Inclusive Flavor                |                      |                                 |              |
| Z + jets                            | 4.6 fb <sup>-1</sup> | JHEP 07 (2013) 032              | ←            |
| W + jets                            | 36 pb <sup>-1</sup>  | Phys. Rev. D85 (2012) 092002    | ←            |
| R <sub>jets</sub>                   | 36 pb <sup>-1</sup>  | Phys. Lett. B708 (2012) 221-224 | ←            |
| V + Heavy Flavor                    |                      |                                 |              |
| W + b jets                          | 4.6 fb <sup>-1</sup> | JHEP 06 (2013) 084              | ←            |
| W + c jets                          | 4.6 fb <sup>-1</sup> | ATLAS-CÒNF-2013-0045            | $\leftarrow$ |
| Z + b jets                          | 36 pb <sup>-1</sup>  | Phys. Lett. B706 (2012) 295-313 |              |
| MPI                                 |                      |                                 |              |
| W + 2 jets DPI                      | 36 pb <sup>-1</sup>  | New J. Phys. 15 (2013) 033038   |              |
| -                                   | -                    |                                 |              |



- Most inclusive test of QCD dynamics: Look at hadronic recoil of vector boson
- Expect to describe high  $p_T^W$  via pQCD, low  $p_T^W$  via resummation
- W+jets: Measure  $p_T^W$  via the hadronic recoil in  $W \rightarrow ev$  and  $W \rightarrow \mu v$  channels
- Not optimal resolution but ~10x statistics and complementary to  $p_T^Z$  measurement



• Data described within 20% over covered  $p_T^{W}$  range by the RESBOS calculation NNLL Resummation matched to  $O(\alpha_s) + O(\alpha_s^2)$  and p



- Leading order predictions at  $O(\alpha_s)$  are Insufficient
- Also good to 20%: LO+PS

- Can compare  $p_{T}^{Z}$  and  $p_{T}^{W}$  measurements to **RESBOS** in resp. phase spaces
- Ratios show similar trends
- Strong support for expected universality of QCD effects in W, Z production

250

300

### Boosted Z bosons: $\phi_n$

• Further improve precision of measurement of  $Z/\gamma^* \rightarrow II + X$  final state by introducing a new variable

$$\phi_{\eta}^* \equiv \tan(\phi_{\rm acop}/2) \cdot \sin(\theta_{\eta}^*)$$

 $\phi_{\rm acop} \equiv \pi - \Delta \phi, \quad \cos(\theta_{\eta}^*) \equiv \tanh[(\eta^- - \eta^+)/2]$ 

- Correlated to  $\phi_{\eta}^* \sim p_T^Z / m_{\mu}$
- Probe same physics, but use only precisely measured track directions



RESBOS

~2% - 5% agreement with data (uncertainty dominated by PDF uncertainty)

- NNLL matched to NLO from MCFM agrees within ~10%
- Experimental uncertainty one order of magnitude more precise than predictions
- Valuable information for MC tuning

V+jets in ATLAS

A. Banfi et al...

PLB 715 (2012) 152

## Z+jets: $p_T^Z$

• Measurement of production of Z bosons in association with at least one jet





- Compare normalised (NNLO) cross section to LO and NLO predictions
- Above  $p_T^z > 100$  GeV where  $\langle N_{iet} \rangle > 2$ 
  - Missing EW corrections
  - Missing pQCD in fixed order NLO Z + ≥1 jets
- ALPGEN tends to overestimate cross section at high p<sub>τ</sub><sup>z</sup> > 200 GeV

## Incl. jet multiplicity in V+jets

8

- Z+jets: 4.6 fb<sup>-1</sup> measured up to 7 jets and  $p_{\tau}^{jet} = 700 \text{ GeV}$
- W+jets: 36 pb<sup>-1</sup> up to 4 jets (cross section 10x larger than Z+jets)



# QCD scaling in Z+jets

#### JHEP07(2013)032

- Exploitation of QCD scaling properties can be useful for analyses using jet vetoes
- Can be applied in background prediction of V+jets between different jet bins

#### **Staircase scaling**

- Symmetric jet  $p_{T}$  requirements
- PDF suppression
- Z+(N+1) / Z+N ~ constant

#### **Poisson scaling**

- Asymmetric jet pT requirements
- No PDF suppression
- Z+(N+1) / Z+N ~ <N>/N

Gerwick et al. arXiv:1208.3676



Both kinematic extremes well modeled by predictions

V+jets in ATLAS

# Leading jet $p_{T}$ and $R_{iets}$



- Leading jet  $p_{\tau}$  well described by NLO
- Described within errors by LO
  - tensions at high values

DPF 2013



- Also measured ratio  $R_{1-jet} = N(W + 1-jet) / N(Z + 1-jet)$
- Statistically limited for p<sub>T</sub> > 100 GeV, potential cancellation of many experimental uncertainties while still retaining all sensitivity to dynamics of QCD effects

Theory / Data ratio

<u>1-jet)</u>

 $\frac{\sigma(W (\rightarrow |v) + 1)}{\sigma(Z (\rightarrow |1) + 1)}$ 

# Z+jets VBF-like topologies

• Within Z+jets also look at VBF-like selection: two well-separated high mass, high  $p_{T}$  jets



- Look at modelling of 3<sup>rd</sup> jet in central gap
- Well modelled up to  $p_{\rm T} \sim 70$  GeV, lack of data beyond
- Test of ME+PS matching, important for jet veto efficiency DPF 2013 V+jets in ATLAS

jet veto requirement

gap fraction

Described by SHERPA

ALPGEN underestimates

### W +≥1 *b*

• Differential measurement of  $\sigma(W + \ge 1 b$ -jet ) in excl. 1 jet, 2 jet and 1+2 jet bins



- Comparison of data to predicitions using various schemes to include heavy flavor
  - 4FNS: no *b*-PDF in initial state at LO (ALPGEN), NLO (POWHEG)
  - 5FNS: considering *b*-PDF in initial state at NLO (MCFM)
- Data and predictions agree within uncertainties (dominated by JES, JER)
  - Central values about 1.5 $\sigma$  above predictions (trend rising with *b*-jet  $p_{T}$ )

DPF 2013

#### V+jets in ATLAS

### W + c

- Preliminary measurement of  $\sigma(W^{-/+} + D(^{*})^{+/-})/\sigma(W^{-/+})$
- In  $pp \rightarrow WcX$  at 7 TeV  $gs \rightarrow Wc$  dominant (~90%) : sensitive to strange PDF at x ~ 0.01
- Compare measured cross section to aMC@NLO + HERWIG<sup>++</sup>
  - Cross section prediction depends strongly on chosen PDF
  - PDFs where d  $\approx$  s at x ~ 0.01: SU(3) symmetric sea favoured



### Summary

#### **ATLAS 7 TeV data largely exploited for V+jets measurements**

- Many accurate experimental results compared to recent predictions at LO, NLO, NNLL
- Experimental uncertainties smaller than theoretical uncertainties in large regions of phase space

#### **Main observations**

- Mostly good agreement of data and predictions
  - Nevertheless tensions of data and theory **central values** in some regions for example high  $p_{T}$  and high  $N_{iet}$
  - Needs confirmation using higher statistics / from other experiments
  - Opportunity to compare to even higher-order pQCD predictions
- In *W*+*c* preference for flavor-symmetric light-quark sea



# SM Measurements Summary



SM processes well understood over many orders of magnitude production rate