Observation of associated W+J/ψ production

Peter Onyisi

DPF, 15 August 2013

Introduction

- Simultaneous production of charmonium and a weak boson has not been seen at a hadron collider before
- Potentially a good test of production models
- Also sensitive to multiple parton interactions in a single pp collision
- ATLAS has made the first measurement of this process in 4.6 fb⁻¹ of 7 TeV pp collisions

Quarkonium Production

- Quarkonium production in hadron collisions still poorly understood
- Various models fail to predict pt spectrum, polarization, or both

Double Parton Scattering (DPS)

- Background for some rare processes
- Probes the structure of the proton (transverse and momentum correlations of partons)
- Strong evidence, but still want to measure and probe universality

Vector boson + J/ψ

- Interesting probe of both J/ ψ production and double parton scattering
 - quark-initiated process selects very different production diagrams than inclusive J/ψ (which is mostly gg)
 - expected single parton scattering production rate small enough that DPS can compete
- Analogous process vector boson+Y(1S) searched for by CDF (PRL 90 (2003) 221803), limits set
- This talk: ATLAS observation of W+J/ψ (ATLAS-CONF-2013-042)

Production Mechanisms

Single parton scattering (SPS)

Double parton scattering (DPS)

Event Selection

15 Aug 2013

Peter Onyisi

15 Aug 2013

Peter Onyisi

Efficiency Map

 Better low-p_T muon efficiency at high η motivates barrel/endcap separation in fits

Interpretation

- Do we have prompt J/ ψ production in selected 3 μ events?
- Are the prompt J/ ψ events compatible with having a W candidate?
 - sPlot technique used to project transverse mass of additional muon + MET
- What do the differential distributions look like?
 - $\Delta \phi(J/\psi, W)$ expected to be a good diagnostic for DPS vs single parton scattering process
 - p_T spectrum also interesting

Fits

- Components for J/ψ fit: prompt J/ψ, non-prompt J/ψ, prompt combinatorics, non-prompt combinatorics
- 2D fit in $\mu\mu$ invariant mass and candidate pseudoproper time $\tau \equiv \frac{\vec{L} \cdot \vec{p}_T^{J/\psi}}{p_T^{J/\psi}} \cdot \frac{m_{\mu^+\mu^-}}{p_T^{J/\psi}}$

Yields

- Significant prompt J/ψ yields for both barrel and endcap candidates
 - Expect larger yield in endcap due to better acceptance in $p_{T}(J/\psi)$
- Combined significance 5.3 σ

Yields from two-dimensional fit			
Process	Barrel	Endcap	Total
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	$29.2^{+7.5}_{-6.5}$
Non-prompt J/ψ	$27.9^{+6.5}_{-5.8}$	$13.9^{+5.3}_{-4.5}$	$41.8^{+8.4}_{-7.3}$
Prompt background	$20.4^{+5.9}_{-5.1}$	$18.8^{+6.3}_{-5.3}$	$39.2^{+8.6}_{-7.3}$
Non-prompt background	$19.8^{+5.8}_{-4.9}$	$19.2^{+6.1}_{-5.1}$	$39.0^{+8.4}_{-7.1}$
<i>p</i> -value	1.5×10^{-3}	1.4×10^{-6}	$4.4 imes 10^{-8}$
Significance	3.0	4.7	5.3

Are these W + J/ ψ events?

- M_{τ} distributions very consistent with W
 - multijet contribution < 31% at 95% credibility level
 - assume 100% W + J/ψ signal

Azimuthal angle

- Diagnostic for SPS (peak at π) vs DPS (flat)
- Low statistics make interpretation difficult but distribution is suggestive of DPS
 - MC SPS shape very model dependent

Acceptance/Efficiency Unfolding

- Correct for μ efficiency for J/ ψ daughters to get "fiducial cross section"
 - i.e. not corrected for $\boldsymbol{\mu}$ outside our kinematic cuts
- Then correct for μ falling outside kinematic cuts to get "inclusive cross section"
 - requires assumption on J/ ψ decay angular distribution; envelope gives systematic

15 Aug 2013

Systematics

- Largest systematic in inclusive measurement from J/ ψ decay angular distribution ("spin-alignment")
- Largest systematics for fiducial measurement from muon efficiency and possible W efficiency non-cancellation
 - None of these affect significance of observation, only central value of measurement

Source	Barrel	Endcap
J/ψ muon efficiency	$\approx 5\%$	$\approx 5\%$
W^{\pm} boson kinematics	2%	5%
Fit procedure	$^{+3}_{-2}\%$	$^{+2}_{-1}\%$
Choice of fit nuisance parameters	1%	1%
Choice of fit functional forms	4%	4%
Muon momentum scale	negligible	
J/ψ spin-alignment	$^{+36}_{-25}\%$	$^{+27}_{-13}\%$
Statistical	$^{+47}_{-40}\%$	$^{+30}_{-27}\%$

p_T-differential measurement

- Plotted: ratio of normalized differential σ to σ (W)
- Excess over DPS prediction concentrated in lowest momentum bin [8.5, 10] GeV

Results (1)

- Numbers are ratio to inclusive $\sigma(W)$
 - in all cases, $p_T(J/\psi) > 8.5 \text{ GeV}$, $|y(J/\psi)| < 2.1$
- Fiducial ratio (does not correct for muon acceptance): $(50 \pm 12(\text{stat}) \pm 4(\text{syst})) \times 10^{-8}$
- Inclusive ratio (corrects for muon acceptance, not for DPS contribution):

 $(123 \pm 31(\text{stat}) \pm 10(\text{syst})^{+40}_{-24}(\text{pol})) \times 10^{-8}$

DPS-subtracted ratio (subtracts expected DPS rate from inclusive):

 $(74 \pm 31(\text{stat}) \pm 21(\text{syst})^{+40}_{-24}(\text{pol})) \times 10^{-8}$

Results (2)

- Theory comparisons of single parton scattering rate:
 - color octet ("NLO COM"): Li, Song, Zhang, Ma, Phys. Rev. D83 (2011)
 014001
 - color singlet ("LO CSM"): Lansberg, Lorce, arXiv:1303.5327
- Apparent large disagreement between theory and DPSsubtracted rate
- Suggestions from theory community of large feeddown from χ_c states

Conclusion

- W+J/ψ provides a potentially very interesting window into strong force dynamics, in both quarkonium production and proton structure.
- ATLAS has made a 5.3 σ observation of this process with 4.6 fb⁻¹ of 7 TeV data. ATLAS-CONF-2013-042
- Low statistics make it hard to disentangle different components but distributions are suggestive of both SPS and DPS processes.
- Result appears to significantly exceed early theoretical expectations for SPS processes.

Extra

Polarizations

