The new radiation-hard optical links for the ATLAS pixel detector

The Ohio State University

P. Buchholz, M. Ziolkowski
Universität Siegen

OUTLINE
Lessons learned...
IBL/nSQP opto-board
 overview
 assembly experience
 radiation hardness
 production
Summary/Conclusions
Pixel Optical Data Links

Optical data transmission preferred over copper wire links:
- optical fibers are lower in mass than copper
- higher data transmission rate over long distances (80m)
- no ground loop between front and back end electronics

Optical Transmitter: VCSEL (vertical cavity surface-emitting laser)
Optical Receiver: PIN diode
Can be packaged in one, four, twelve channels
Work in the radiation environment of the LHC

VCSEL: Vertical Cavity Surface Emitting Laser diode
VDC: VCSEL Driver Circuit
PIN: PiN diode
DORIC: Digital Optical Receiver Integrated Circuit
The pre-IBL Opto-board

Optical signal ⇔ electrical signal conversion occurs here

Contains 7 optical links, each link serving one Pixel module

Fabricated in 2 flavors
- Layer B: for inner barrel, 2 data links per module for high occupancy
- Layer D: for outer barrel and disks 1 and 2

Fabricated with BeO for heat management

44 B boards
228 D boards
Pixel Opto-board Lessons 2010-12

On opto-boards, only 1 confirmed VCSEL death (connected but not lasing)

We were saved by the low humidity environment

There are some weak links (besides the VCSELs) we have addressed on the new opto-boards

Single Iset line (pin) per board

😊 Added a redundant pin to the 80/100 pin connector (nSQP/IBL)

Soldering of opto-packs

😊 Suspect 15 VCSEL and 6 PIN failures due to cold solder joints

😊 New Opto-pack connections are wire bonded

DORIC reset daisy chain

😊 Some DORIC channels/modules hard to configure have a broken reset line

😊 Added an redundant pin on the 80 pin connector

😊 Improved routing so no more daisy chaining through chips

DPF 2013
IBL/nSQP Opto-board Overview

Use same 0.25 µm DORIC /VDC ASIC chips as present pixel opto-boards
Use copper+Polyimide instead of BeO for the PCB
Switch to industry standard MTP fiber connector and OSU opto-pack
Switch to fully qualified Finisar VCSEL and ULM PIN arrays
 Finisar V850-2093-001 ULMPIN-04-TN-U0112U
nSQP: 2 flavors of opto-boards (for legacy fiber mapping)
 – B-Layer
 – D-Tall
 – All equipped with 14 DTO / 7 TTC (enables operation at higher rates)
IBL: 1 flavor of opto-board
 – 16 DTO / 8 TTC

DTO: data output signal
TTC: timing, trigger, control signal
nSQP/IBL Opto-Board Prototyping

We have constructed

10 nSQP B-boards
 5 for irradiation
 5 for system tests (2 to CERN, 1 to SLAC, 1 to BERN, 1 to Wuppertal)
6 nSQP D-boards
 All for system tests (4 to CERN)
 2 failed QA
 1 with bad wire-bonds
 1 with a bad DORIC (slipped through test in 2005)
6 IBL boards
 All for system tests (5 to CERN, 1 to SLAC)

No complaints received on distributed boards
Opto-board Radiation Hardness

0.25 μm DORIC and VDC ASICs well exercised

Dedicated ASIC irradiation to 61 Mrad (2003)
4 production opto-boards to 30 Mrad (2004)
10 opto-boards to 30 Mrad for VCSEL/PIN SEU R&D (2006-9)

VCSEL/PIN qualified
Opto-boards exercised

Constructed 6 nSQP B-Layer boards in July 2011
Used Finisar 5Gb/s VCSELs and ULM PINs on OSU Opto-packs
Irradiated 2 sets of 2 boards with 24 GeV protons @ CERN
 First set 8x10^{13} p/cm^2 → 1.8 Mrad (18 KGy)
 Second set 10.4x10^{13} p/cm^2 → 2.3 Mrad (23 KGy)
Test successful: No failed channels, PIN current thresholds for no bit errors remained constant, modest decrease in output optical power, boards fully functional after irradiation

Since IBL board of identical construction, no need to repeat
nSQP B-Layer Irradiation

Modest degradation in VCSEL output power

1.8 Mrad

2.3 Mrad

DPF 2013
IBL/nSQP Opto-boards

Mounting of passive components (outside vendor)

- Electrical open/short test
- 30 mm x 46 mm PCB
- 6-layer board
- Use copper for thermal management

Component side
- Passive components mounted by vendor
- Everything else mounted at Ohio State

Backside
- 1mm thick copper backing plate slides into cooling rail

DPF 2013
Opto-Pack Production

Opto-pack holds a VCSEL or PIN array
Alignment of fiber to PIN/VCSEL is critical

Substrate
BeO for VCSELS (thermal management)
Alumina for PINs

"bare" opto-pack and guide pins

Gluing guide pins into opto-pack

Opto-pack with guide pins
Opto-Pack Production

Produce opto-packs (2 VCSEL, 1 PIN per opto-board)

PIN/VCSEL array must be put on Opto-pack & connected to traces

VCSEL QA: LIV, reverse bias looking for ESD
PIN QA: dark current, illuminate with 1mW & measure responsivity, check specs

1. PIN/VCSEL array glued to opto-pack
2. Wire bonding to PIN/VCSEL
3. Wire bonded PIN/VCSEL array
4. Dust cover installed
Opto-board Production Procedure

Mounting of optical connectors

Mounting of opto-packs

Mounting of DORIC & VDC

Wire bonding chips to board, board to opto-packs

Encapsulation of wire bonds
Opto-board Q/A Procedure

Go/No Go Test
check optical power, all channels error free
Burn in: 72hrs @ 50° C, powered
Thermal cycling: 0° C -> + 50° C, 10 cycles, 2hrs per cycle
Full electrical and optical QA at 10° C
error free for 1 hr at 10° C (data at 40 Mbits)
measure optical power at 0, 10, 10, 50° C
ccheck LVDS, jitter, rise/fall time, duty cycle

Send to CERN
Reception Test at CERN
Go/No Go Test
Install

R. Kass
DPF 2013
Completed Opto-board

cooling from here (top rail)

VDC
DORIC
opto-pack

VCSEL
VCSEL
PIN
MTP Fiber Connector

30 mm
IBL/nSQP Opto-board Summary

We have been in production for ~ 3 months

<table>
<thead>
<tr>
<th></th>
<th>needed</th>
<th>completed</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>nSQP B-layer</td>
<td>44</td>
<td>55</td>
<td>Done</td>
</tr>
<tr>
<td>nSQP D-Tall</td>
<td>228</td>
<td>37</td>
<td>Waiting for PCBs</td>
</tr>
<tr>
<td>IBL</td>
<td>28</td>
<td>6</td>
<td>In progress</td>
</tr>
</tbody>
</table>

Expect to finish production late fall.
Rise/Fall times, Jitter, and Duty Cycle

Each plot shows the results for two opto-boards
No degradation in rise/fall times
Decoded clock duty cycle and jitter within the limits after irradiation
Opto-board Reception Tests at CERN

- Delivered and setup a copy of the QA system from OSU at CERN
- Reception test
 - Optical power must be consistent with OSU QA
 - Check that delivered boards operate with no bit errors at PIN current of 100 μA – 1 mA
- System test
 - All boards should be tested within a replica of the full readout chain after passing the reception
VCSEL array
Finisar V850-2093-001

PIN array
ULMPIN-04-TN-U0112U

VDC
(VCSEL Driver Chip)

DORIC
(Digital Opto-Receiver Integrated Circuit)

Encapsulation: Dymax 9001 V.3.1
Mounting glue: Loctite Hysol EA 9396
Epoxy: Epotek H20E

Fiber maps:
- B-Layer
- D-Tall
- IBL