The new radiation-hard optical links for the ATLAS pixel detector

K.K. Gan, H.P. Kagan, R.D. Kass, J. Moss, J. Moore, S. Smith, Y. Yang The Ohio State University

> P. Buchholz, M. Ziolkowski Universität Siegen

OUTLINE

Lessons learned... IBL/nSQP opto-board overview assembly experience radiation hardness production Summary/Conclusions

Pixel Optical Data Links

Öptical data transmission preferred over copper wire links: optical fibers are lower in mass than copper higher data transmission rate over long distances (80m) no ground loop between front and back end electronics Optical Transmitter: VCSEL (vertical cavity surface-emitting laser) Optical Receiver: PIN diode Can be packaged in one, four, twelve channels Work in the radiation environment of the LHC

The pre-IBL Opto-board

44 B boards

228 D boards

Optical signal \Leftrightarrow electrical signal conversion occurs here

Contains 7 optical links, each link serving one Pixel module Fabricated in 2 flavors

- Layer B: for inner barrel, 2 data links per module for high occupancy
- Layer D: for outer barrel and disks 1 and 2

Fabricated with **BeO** for heat management

 VCSEL array
 Opto-pack

 VDC
 Pin array

 VDC
 DORIC

 Rkss
 DF203

Pixel Opto-board Lessons 2010-12

On opto-boards, only 1 confirmed VCSEL death (connected but not lasing) We were saved by the low humidity environment There are some weak links (besides the VCSELs) we have addressed on the new opto-boards Single Iset line (pin) per board ©Added a redundant pin to the 80/100 pin connector (nSQP/IBL) Soldering of opto-packs ©Suspect 15 VCSEL and 6 PIN failures due to cold solder joints ©New Opto-pack connections are wire bonded DORIC reset daisy chain Some DORIC channels/modules hard to configure have a broken reset line ©Added an redundant pin on the 80 pin connector ©Improved routing so no more daisy chaining through chips

IBL/nSQP Opto-board Overview

- Use same 0.25 µm DORIC /VDC ASIC chips as present pixel opto-boards
- Use copper+Polyimide instead of BeO for the PCB
- Switch to industry standard MTP fiber connector and OSU opto-pack
- Switch to fully qualified Finisar VCSEL and ULM PIN arrays Finisar V850-2093-001 ULMPIN-04-TN-U0112U

nSQP: 2 flavors of opto-boards (for legacy fiber mapping)

- B-Layer
- D-Tall
- All equipped with 14 DTO / 7 TTC (enables operation at higher rates)
- IBL: 1 flavor of opto-board
 - 16 DTO / 8 TTC

DTO: data output signal TTC: timing, trigger, control signal

nSQP/IBL Opto-Board Prototyping

We have constructed 10 nSQP B-boards

> 5 for irradiation 5 for system tests (2 to CERN 1 to SLAC, 1 to BERN, 1 to Wuppertal) 6 nSQP D-boards All for system tests (4 to CERN) 2 failed QA 1 with bad wire-bonds

> > 1 with a bad DORIC (slipped through test in 2005)

6 IBL boards

All for system tests (5 to CERN, 1 to SLAC)

No complaints received on distributed boards

Opto-board Radiation Hardness

0.25 µm DORIC and VDC ASICs well exercised Dedicated ASIC irradiation to 61 Mrad (2003) 4 production opto-boards to 30 Mrad (2004) 10 opto-boards to 30 Mrad for VCSEL/PIN SEU R&D (2006-9) VCSEL/PIN gualified **Opto-boards** exercised Constructed 6 nSQP B-Layer boards in July 2011 Used Finisar 5Gb/s VCSELs and ULM PINs on OSU Opto-packs Irradiated 2 sets of 2 boards with 24 GeV protons @ CERN First set $8 \times 10^{13} \text{ p/cm}^2 \rightarrow 1.8 \text{ Mrad}$ (18 KGy) Second set $10.4 \times 10^{13} \text{ p/cm}^2 \rightarrow 2.3 \text{ Mrad}$ (23 KGy) Test successful: No failed channels , PIN current thresholds for no bit errors remained constant, modest decrease in output optical power, boards fully functional after irradiation Since IBL board of identical construction, no need to repeat

nSQP B-Layer Irradiation Modest degradation in VCSEL output power

IBL/nSQP Opto-boards

Mounting of passive components (outside vendor) Electrical open/short test 30 mm x 46 mm PCB

6-layer board

Use copper for thermal management

Component side passive components mounted by vender Everything else mounted at Ohio State

Backside 1mm thick copper backing plate slides into cooling rail

Opto-Pack Production

Produce opto-packs (2 VCSEL, 1 PIN per opto-board) PIN/VCSEL array must be put on Opto-pack & connected to traces VCSEL QA: LIV, reverse bias looking for ESD PIN QA: dark current, illuminate with 1mW & measure responsivity, check specs

PIN/VCSEL array glued to opto-pack

wire bonding to PIN/VCSEL

wire bonded PIN/VCSEL array

dust cover installed

DPF 2013

Opto-board Production Procedure

Mounting of optical connectors

Wire bonding chips to board, board to opto-packs

Mounting of opto-packs

Encapsulation of wire bonds

DPF 2013

Opto-board Q/A Procedure

Go/No Go Test check optical power, all channels error free Burn in: 72hrs @ 50° C, powered Thermal cycling: 0° C -> + 50° C, 10 cycles, 2hrs per cycle Full electrical and optical QA at 10° C error free for 1 hr at 10° C (data at 40 Mbits) measure optical power at 0, 10, 10, 50° C check LVDS, jitter, rise/fall time, duty cycle

Send to CERN Reception Test at CERN Go/No Go Test Install R. Kass

DPF 2013

IBL/nSQP Opto-board Summary

We have been in production for ~ 3 months

Expect to finish production late fall.

- No degradation in rise/fall times
- Decoded clock duty cycle and jitter within the limits after irradiation

Opto-board Reception Tests at CERN

- Delivered and setup a copy of the QA system from OSU at CERN
- Reception test
 - Optical power must be consistent with OSU QA
 - Check that delivered boards operate with no bit errors at PIN current of 100 μA 1 mA
- System test
 - All boards should be tested within a replica of the full readout chain after passing the reception

